2014届上海高考数学解析几何专练
2014年上海市高考数学试卷(理科)答案与解析

2014年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是.考点:二倍角的余弦;三角函数的周期性及其求法.专题:三角函数的求值.分析:由二倍角的余弦公式化简,可得其周期.解答:解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:点评:本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可.解答:解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6点评:本题考查复数代数形式的混合运算,基本知识的考查.3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=﹣2.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题设中的条件y2=2px(p>0)的焦点与椭圆+=1的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程解答:解:由题意椭圆+=1,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆+=1的右焦点重合,故得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2点评:本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2].考点: 分段函数的应用;真题集萃.专题: 分类讨论;函数的性质及应用.分析:可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.解答:解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].点评:本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.考点: 基本不等式.专题: 不等式的解法及应用.分析:由已知可得y=,代入要求的式子,由基本不等式可得.解答:解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2点评:本题考查基本不等式,属基础题.6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos (结果用反三角函数值表示).考点: 旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.解答:解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos点评:本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:由题意,θ=0,可得C与极轴的交点到极点的距离.解答:解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.点评:正确理解C与极轴的交点到极点的距离是解题的关键.8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.考点:极限及其运算.专题:等差数列与等比数列.分析:由已知条件推导出a1=,由此能求出q的值.解答:解:∵无穷等比数列{a n}的公比为q,a1=(a3+a4+…a n)=(﹣a1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.点评:本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).考点:指、对数不等式的解法;其他不等式的解法.专题:不等式的解法及应用.分析:直接利用已知条件转化不等式求解即可.解答:解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).点评:本题考查指数不等式的解法,函数的单调性的应用,考查计算能力.10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.解答:解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:.点评:本题考查古典概型以及概率计算公式,属基础题.11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1.考点: 集合的相等.专题: 集合.分析:根据集合相等的条件,得到元素关系,即可得到结论.解答:解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.点评:本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.考点: 正弦函数的图象;两角和与差的正弦函数.专题: 三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.解答:解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:点评:本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4。
2014年高考上海理科数学试题及答案(解析版)

2014年普通高等学校招生全国统一考试(上海卷)数学(理科)第Ⅰ卷(选择题共50分)一、填空题(本大题共14小题,共56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.(1)【2014年上海,理1,4分】函数212cos (2)y x 的最小正周期是.【答案】2【解析】原式=cos4x ,242T.(2)【2014年上海,理2,4分】若复数12i z ,其中i 是虚数单位,则1zzz.【答案】6【解析】原式=211516z z z.(3)【2014年上海,理3,4分】若抛物线22ypx 的焦点与椭圆22195xy的右焦点重合,则该抛物线的准线方程为.【答案】2x 【解析】椭圆右焦点为(2,0),即抛物线焦点,所以准线方程2x.(4)【2014年上海,理4,4分】设2(,)()[,)x x a f x xx a ,若(2)4f ,则a 的取值范围为.【答案】2a 【解析】根据题意,2[,)a ,∴2a .(5)【2014年上海,理5,4分】若实数x ,y 满足1xy ,则222xy 的最小值为.【答案】22【解析】2222222xyx y.(6)【2014年上海,理6,4分】若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为.(结果用反三角函数值表示)【答案】1arccos3【解析】设圆锥母线长为R ,底面圆半径为r ,∵3S S 侧底,∴23r R r ,即3Rr ,∴1cos3,即母线与底面夹角大小为1arccos 3.(7)【2014年上海,理7,4分】已知曲线C 的极坐标方程为(3cos 4sin )1,则C 与极轴的交点到极点的距离是.【答案】13【解析】曲线C 的直角坐标方程为341xy,与x 轴的交点为1(,0)3,到原点距离为13.(8)【2014年上海,理8,4分】设无穷等比数列n a 的公比为q ,若134lim n n a a a a L ,则q .【答案】512【解析】223111510112a a qa qq qqq,∵01q,∴512q.P2P5P 6P7P 8P4P3P1B A(9)【2014年上海,理9,4分】若2132()f x x x,则满足()0f x 的x 的取值范围是.【答案】(0,1)【解析】2132()f x x x,结合幂函数图像,如下图,可得x 的取值范围是(0,1).(10)【2014年上海,理10,4分】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是.(结果用最简分数表示)【答案】115【解析】3108115PC.(11)【2014年上海,理11,4分】已知互异的复数,a b 满足0ab,集合22,,a ba b,则a b .【答案】1【解析】第一种情况:22,a a b b ,∵0ab ,∴1a b ,与已知条件矛盾,不符;第二种情况:22,ab ba ,∴431a a a ,∴210a a ,即1ab .(12)【2014年上海,理12,4分】设常数a 使方程sin 3cos xxa 在闭区间[0,2]上恰有三个解123,,x x x ,则123x x x .【答案】73【解析】化简得2sin()3x a ,根据下图,当且仅当3a 时,恰有三个交点,即12370233x x x .(13)【2014年上海,理13,4分】某游戏的得分为1,2,3,4,5,随机变量表示小白玩该游戏的得分.若()4.2E ,则小白得5分的概率至少为.【答案】0.2【解析】设得i 分的概率为i p ,∴123452345 4.2p p p p p ,且123451p p p p p ,∴12345444444p p p p p ,与前式相减得:1235320.2p p p p ,∵0ip ,∴1235532p p p p p ,即50.2p .(14)【2014年上海,理14,4分】已知曲线2:4C xy ,直线:6l x .若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ u u u r u uu r r,则m 的取值范围为.【答案】1615【解析】根据题意,A 是PQ 中点,即622PQP x x x m,∵20P x ,∴[2,3]m .二、选择题(本大题共有4题,满分20分)考生应在答题纸相应编号位置填涂,每题只有一个正确选项,选对得5分,否则一律得零分.(15)【2014年上海,理15,5分】设,a b R ,则“4a b ”是“2a 且2b ”的()(A )充分条件(B )必要条件(C )充要条件(D )既非充分也非必要条件【答案】B【解析】充分性不成立,如5a ,1b ;必要性成立,故选B .(16)【2014年上海,理16,5分】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i L 是上底面上其余的八个点,则(1, 2,, 8)i AB AP i uu u r u u u rK 的不同值的个数为()(A )1 (B )2 (C )4 (D )8【答案】AACBD【解析】根据向量数量积的几何意义,i ABAP u uu ru uu r 等于AB uu u r 乘以i AP u u u r 在AB u uu r 方向上的投影,而i AP uu u r 在AB uu u r方向上的投影是定值,AB u u u r 也是定值,∴i AB AP u uu ru u u r 为定值1,故选A .(17)【2014年上海,理17,5分】已知111(,)P a b 与222(,)P a b 是直线1ykx (k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a xb y的解的情况是()(A )无论12,,k P P 如何,总是无解(B )无论12,,k P P 如何,总有唯一解(C )存在12,,k P P ,使之恰有两解(D )存在12,,k P P ,使之有无穷多解【答案】B 【解析】由已知条件111b ka ,221b ka ,11122122a b D a b a b a b 122112(1)(1)0a ka a ka a a ,∴有唯一解,故选B .(18)【2014年上海,理18,5分】设2(),0,()1,0.xa xf x xa xx若(0)f 是()f x 的最小值,则a 的取值范围为()(A )[1,2](B )[1,0](C )[1,2](D )[0,2]【答案】D【解析】先分析0x 的情况,是一个对称轴为xa 的二次函数,当0a 时,min()()(0)f x f a f ,不符合题意,排除AB 选项;当0a 时,根据图像min ()(0)f x f ,即0a符合题意,排除C 选项,故选D .三、解答题(本题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.(19)【2014年上海,理19,12分】底面边长为2的正三棱锥P ABC ,其表面展开图是三角形123PP P ,如图.求123PP P 的各边长及此三棱锥的体积V .解:根据题意可得12,,P B P 共线,∵112ABP BAP CBP ,60ABC,∴11260ABP BAP CBP ,∴160P ,同理2360P P ,∴123PP P 是等边三角形,P ABC 是正四面体,所以123PP P 边长为4;∴3222123VAB.(20)【2014年上海,理20,14分】设常数0a,函数2()2x xa f x a .(1)若4a,求函数()yf x 的反函数1()yfx ;(2)根据a 的不同取值,讨论函数()yf x 的奇偶性,并说明理由.解:(1)∵4a,∴24()24x xf x y ,∴4421xyy ,∴244log 1y x y,∴1244()log 1xyfx x ,(,1)(1,)xU .……6分(2)若()f x 为偶函数,则()()f x f x ,∴2222x x xxa a aa ,整理得(22)0xxa ,∴0a ,此时为偶函,若()f x 为奇函数,则()()f x f x ,∴2222x x xxaaa a,整理得210a,∵0a,∴1a,此时为奇函数,当(0,1)(1,)a时,此时()f x 既非奇函数也非偶函数.……14分(21)【2014年上海,理21,14分】如图,某公司要在A B 、两地连线上的定点C处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米.设点A B 、在同一水平面上,从A 和B 看D 的仰角分别为和.(1)设计中CD 是铅垂方向.若要求2,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差.现在实测得38.12,18.45,求CD 的长(结果精确到0.01米).BA CP 3P 1P 2解:(1)设CD 的长为x 米,则tan,tan3580x x ,∵202,∴tantan 2,∴22tan tan1tan,∴2221608035640016400x x x xx,解得020228.28x ,∴CD 的长至多为28.28米.……6分(2)设,,DBa DAb DCm ,180123.43ADB,则sinsina AB ADB,解得115sin38.1285.06sin123.43a∴2280160cos18.4526.93maa ∴CD 的长为26.93米.……14分(22)【2014年上海,理22,16分】在平面直角坐标系xOy 中,对于直线:0l ax by c 和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c .若0,则称点12,P P 被直线l 分割.若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分割,则称直线l 为曲线C 的一条分割线.(1)求证:点(1,2),(1,0)A B 被直线10x y 分割;(2)若直线ykx 是曲线2241x y 的分割线,求实数k 的取值范围;(3)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求证:通过原点的直线中,有且仅有一条直线是E 的分割线.解:(1)将(1,2),(1,0)A B 分别代入1x y ,得(121)(11)40,∴点(1,2),(1,0)A B 被直线10x y 分割.……3分(2)联立2241xy ykx,得22(14)1k x,依题意,方程无解∴2140k,∴12k或12k.……8分(3)设(,)M x y ,则22(2)1x y x,∴曲线E 的方程为222[(2)]1xy x①当斜率不存在时,直线0x ,显然与方程①联立无解,又12(1,2),(1,2)P P 为E 上两点,且代入0x ,有10,∴0x 是一条分割线;当斜率存在时,设直线为y kx ,代入方程得:2432(1)4410kxkxx,令2432()(1)441f x kxkx x,则(0)1f ,22(1)143(2)f kkk,22(1)143(2)f kkk,当2k 时,(1)0f ,∴(0)(1)0f f ,即()0f x 在(0,1)之间存在实根,∴ykx 与曲线E 有公共点当2k时,(0)(1)0f f ,即()0f x 在(1,0)之间存在实根,∴ykx 与曲线E 有公共点,∴直线ykx 与曲线E 始终有公共点,∴不是分割线,综上,所有通过原点的直线中,有且仅有一条直线0x 是E 的分割线.……16分(23)【2014年上海,理23,18分】已知数列n a 满足1133nnn a a a ,*n N ,11a .(1)若2342,,9a a x a ,求x 的取值范围;(2)设n a 是公比为q 的等比数列,12n n S a a a L .若1133nnn S S S ,*n N ,求q 的取值范围;(3)若12,,,k a a a L 成等差数列,且121000ka a a L ,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a L 的公差.解:(1)依题意,232133a a a ,∴263x ,又343133a a a ,∴327x ,综上可得36x .……3分(2)由已知得1n na q ,又121133a a a ,∴133q ,当1q 时,n S n ,1133n nn S S S ,即133n nn ,成立;当13q时,11nnq S q ,1133nnn S S S ,即1111133111nn nq qqq q q ,∴111331n nqq ,此不等式即1132032n n n nq q qq,∵1q ,∴132(31)2220n nnnqqq q q ,对于不等式1320n nq q,令1n ,得2320qq ,解得12q ,又当12q 时,30q ,∴132(3)2(3)2(1)(2)0n nnq qq q q qq q 成立,∴12q ,当113q 时,11nnqS q,1133nnn S S S ,即1111133111nn nq qq q q q,即11320320n n n nq q qq ,310,30q q,∵132(31)2220n nnnq qq q q,132(3)2(3)2(1)(2)n nnqqq q q q q q∴113q 时,不等式恒成立,综上,q 的取值范围为123q.……10分(3)设公差为d ,显然,当1000,0kd 时,是一组符合题意的解,∴max 1000k ,则由已知得1(2)1(1)3[1(2)]3kdk dkd ,∴(21)2(25)2k d kd,当1000k 时,不等式即22,2125d dk k,∴221dk,12(1) (10002)kk kd a a a k,∴1000k时,200022(1)21k dk kk ,解得10009990001000999000k ,∴1999k ,∴k 的最大值为1999,此时公差2000219981(1)199919981999kdk k .……18分。
上海高考数学真题专题-解析几何专题

第六部 解析几何专题【考点1】轨迹方程常用方法:① 直接法. ② 定义法. ③ 代入法. ④ 消参法. ⑤ 交轨法.1.(2014春23)若点P 的坐标为(,)a b ,曲线C 的方程为(,)0F x y ,则“(,)0F a b ” 是“点P 在曲线C 上”的( )A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件2.(2019春16)平面直角坐标系中,两动圆1O 、2O 的圆心分别为1(,0)a 、2(,0)a ,且两 圆均过定点(1,0),两圆与y 轴正半轴分别交于点1(0,)y 、2(0,)y ,若12ln ln 0y y ,点1211(,a a 的轨迹为 ,则 所在的曲线可能是( ) A. 直线 B. 圆 C. 椭圆 D. 双曲线3.(2015春12)已知点(1,0)A ,直线:1l x ,两个动圆均过点A 且与l 相切,其圆心分别为1C 、2C ,若动点M 满足22122C M C C C A,则M 的轨迹方程为4.(2014春12)已知函数2()1x f x x与()1g x mx m 的图像相交于A 、B 两点, 若动点P 满足||2PA PB,则P 的轨迹方程为5.(2013春24)已知A 、B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N ,若2MN AN NB,其中 为常数,则动点M 的轨迹不可能是( )A. 圆B. 椭圆C. 抛物线D. 双曲线6.(2014春30)已知直角三角形ABC 的两直角边AC 、BC 的边长分别为b 、a ,如图, 过AC 边的n 等分点i A 作AC 边的垂线i d ,过BC 边的n 等分点i B 和顶点A 作直线i l ,记i d 与i l 的交点为i P (1,2,,1i n ),是否存在一条圆锥曲线,对任意的正整数2n ,点i P (1,2,,1i n )都在这条曲线上?说明理由.7.(2011理23)已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值 称为点P 到线段l 的距离,记作(,)d P l .(1)求点(1,1)P 到线段:30(35)l x y x 的距离(,)d P l ;(2)设l 是长为2的线段,求点的集合{|(,)1}D P d P l 所表示的图形面积; (3)写出到两条线段1l 、2l 距离相等的点的集合12{|(,)(,)}P d P l d P l ,其中1l AB ,2l CD ,A 、B 、C 、D 是下列三组点中的一组.对于以下三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多 于一种情形,按照序号较小的解答计分 ①(1,3)A ,(1,0)B ,(1,3)C ,(1,0)D ; ②(1,3)A ,(1,0)B ,(1,3)C ,(1,2)D ; ③(0,1)A ,(0,0)B ,(0,0)C ,(2,0)D .【考点2】直线方程点方向式方程:点00(,)x y ,方向向量(,)d u v ,00x x y y u v. 点法向式方程:点00(,)x y ,法向量(,)n a b,00()()0a x x b y y .点斜式方程:点00(,)x y ,斜率为k ,00()y y k x x . 斜截式方程:点(0,)b ,且斜率为k ,y kx b .截距式方程:与x 轴和y 轴分别交于点(,0)a 、(0,)b (0)ab ,1x ya b. 一般式方程:0ax by c (a b 、不同时为零) 夹角公式1:1111:0l a x b y c 和2222:0l a x b y c ,1212||cos ||||d d d d12211212tan a b a b a a b b.夹角公式2:111:l y k x b 和222:l y k x b ,1212||tan |1|k k k k当1l 与2l 相互垂直时,12120a a b b ,121k k点00(,)P x y 到直线:0l ax by c的距离公式:d的符号确定了点P 关于直线l 的相对位置,在直线同侧的所有点, 的符号是相同的,在直 线异侧的点, 的符号是相反的.两平行线间距离公式:设两条平行直线为11:0l ax by c 和22:0l ax by c ,12c c,它们之间的距离d.弦长公式:12AB x .12AB y 8.(2019年13)已知直线方程20x y c 的一个方向向量d 可以是( )A. (2,1)B. (2,1)C. (1,2)D. (1,2) 9.(2013春15)直线2310x y 的一个方向向量是( )A. (2,3)B. (2,3)C. (3,2)D. (3,2)10.(2012文4)若(2,1)d是直线l 的一个方向向量,则l 的倾斜角的大小为(结果用反三角函数值表示)11.(2012理4)若(2,1)n是直线l 的一个法向量,则l 的倾斜角的大小为(结果用反三角函数值表示)12.(2015春17)直线3450x y 的倾斜角为( ) A. 3arctan 4 B. 3arctan 4 C. 4arctan 3 D. 4arctan 313.(2016年3)已知平行直线1:210l x y ,2:210l x y ,则1l 与2l 的距离是14.(2014春5)点(0,0)O 到直线40x y 的距离是15.(2011春7)两条直线1:20l x 与2:20l x y 夹角的大小是16.(2016春3)直线1y x 与直线2y 的夹角为17.(2011文5)若直线l 过点(3,4),且(1,2)是它的一个法向量,则直线l 的方程为18.(2018年12)已知常数1x 、2x 、1y 、2y 满足:22111x y ,22221x y ,121212x x y y的最大值为19.(2018春12)如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方 形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点 P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的 速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长 约为 秒(精确到0.1)20.(2017年12)如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个 标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P PP P ,点P ,过P 作直线 P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“ ”的点到P l 的距离之和. 若过P 的直线P l 中有且只有一条满足12()()P P D l D l , 则 中所有这样的P 为21.(2014年22)在平面直角坐标系xOy 中,对于直线:0l ax by c 和点111(,)P x y ,222(,)P x y ,记1122()()ax by c ax by c ,若0 ,则称点1P 、2P被直线l 分隔, 若曲线C 与直线l 没有公共点,且曲线C 上存在点1P 、2P被直线l 隔,则称直线l 为曲线 C 的一条分隔线.(1)求证:点(1,2)A ,(1,0)B 被直线10x y 分隔;(2)若直线y kx 是曲线2241x y 的分隔线,求实数k 的取值范围;(3)(文)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E , 求E 的方程,并证明y 轴为曲线E 的分隔线.(3)(理)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E , 求证:通过原点的直线中,有且仅有一条直线是E 的分割线.【考点3】圆的方程圆的标准方程:222()()x a y b r ,表示以(,)a b 为圆心,以r 为半径的圆.圆的一般方程:220x y Dx Ey F ,即22224((224D E D E F x y .圆的参数方程:cos sin x a r y b r,表示以(,)a b 为圆心,以r 为半径的圆. 切线公式:对于圆222()()x a y b r ,若直线和圆的切点为00(,)x y ,则切线方程 为200()()()()x a x a y b y b r . 若点00(,)x y 在圆外,则方程0()()x a x a20()()y b y b r 表示过两个切点的切点弦方程.两圆公共弦公式:若两圆221111:0C x y D x E y F 和22222:C x y D x E y20F 相交,则它们公共弦的方程为121212()()()0D D x E E y F F .22.(2015春5)以(2,6)为圆心,1为半径的圆的标准方程为23.(2017春7)若P 、Q 是圆222440x y x y 上的动点,则||PQ 的最大值为24.(2016春12)在平面直角坐标系xOy 中,点A 、B 是圆22650x y x 上的两个动点,且满足||AB ||OA OB的最小值为25.(2011春17)直线1:()2l y k x 与圆22:1C x y 的位置关系为( ) A. 相交或相切 B. 相交或相离 C. 相切 D. 相交26.(2014年14)已知曲线:C x :6l x ,若对于点(,0)A m ,存在C上的点P 和l 上的Q 使得0AP AQ,则m 的取值范围为【考点4】椭圆方程及相关综合题型从椭圆的标准方程22221x y ab (0)a b 中,我们可以得到下列性质和结论:① 对称性:椭圆既是以x 轴、y 轴为对称轴的轴对称图形,又是以坐标原点为对称中心的 中心对称图形. 椭圆的对称中心叫做椭圆的中心.② 顶点:(,0)a 和(0,)b ,这四个点叫做椭圆的顶点. 若0a b ,2a 表示椭圆长轴的长,2b 表示椭圆短轴的长,椭圆的两个焦点都在它的长轴上,且222c a b . ③ 范围:a x a ,b y b . ④ 焦点三角形面积公式:2tan 2S b.⑤ 切线方程:00(,)x y 为切点,00221x x y yab . ⑥ 参数方程:cos sin x a y b,[0,2) .⑦ 中点弦结论:若直线1:l y k x m 与椭圆22221x y a b 相交于A B 、两点,A B 、的中点 为P ,连结OP ,设OP 的斜率为2k ,则2122b k k a.27.(2018春6)已知平面上动点P 到两个定点(1,0)和(1,0) 的距离之和等于4,则动点P 的轨迹方程为28.(2016春附4)椭圆221259x y的长半轴的长为 29.(2018年13)设P 是椭圆22153x y上的动点,则P 到该椭圆的两个焦点的距离之 和为( )A.B.C.D. 30.(2012春15)已知椭圆221:1124x y C ,222:1168x y C ,则( )A. 1C 与2C 顶点相同B. 1C 与2C 长轴长相同C. 1C 与2C 短轴长相同D. 1C 与2C 焦距相等31.(2015春19)以(3,0) 和(3,0)为焦点,长轴长为8的椭圆方程为( )A.2211625x y B. 221167x y C. 2212516x y D. 221716x y32.(2012文16)对于常数m 、n ,“0mn ”是“方程221mx ny 的曲线是椭圆” 的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件33.(2017春10)设椭圆2212x y 的左、右焦点分别为1F 、2F ,点P 在该椭圆上,则使得△12F F P 是等腰三角形的点P 的个数是34.(2015春附4)关于x 的实系数一元二次方程220x px 的两个虚数根为1z 、2z , 若1z 、2z 在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为35.(2011春10)若点O 和点F 分别为椭圆2212x y 的中心和左焦点,点P 为椭圆上的任意一点,则22||||OP PF 的最小值为36.(2019春11)已知P 为椭圆22142x y上的任意一点,Q 与P 关于x 轴对称,1F 、2F 为椭圆的左右焦点,若有121F P F P,则向量1F P 与2F Q的夹角范围为37.(2013理9)设AB 是椭圆 的长轴,点C 在 上,且4CBA,若4AB ,BC ,则 的两个焦点之间的距离为38.(2017年16)在平面直角坐标系xOy 中,已知椭圆221:1364x y C 和222:19y C x .P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ的最大值. 记{(,)|P Q P 在1C 上,Q 在2C 上,且}OP OQ w,则 中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个39.(2016春24)对于椭圆22(,)22:1a b x y C ab (,0,)a b a b ,若点00(,)x y 满足2200221x y ab ,则称该点在椭圆(,)a b C 内,在平面直角坐标系中,若点A 在过点(2,1) 的任意椭圆(,)a b C 内或椭圆(,)a b C 上,则满足条件的点A 构成的图形为( )A. 三角形及其内部B. 矩形及其内部C. 圆及其内部D. 椭圆及其内部41.(2013春28)已知椭圆C 的两个焦点分别为1(1,0)F 、2(1,0)F ,短轴的两个 端点分别为1B 、2B .(1)若△112F B B 为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于P 、Q 两点,且11F P F Q,求直线l 的方程.42.(2015理21)已知椭圆2221x y ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、 B 和C 、D ,记得到的平行四边形ACBD 的面积为S .(1)设11(,)A x y ,22(,)C x y ,用A 、C 的坐标表示 点C 到直线1l 的距离,并证明12212||S x y x y ; (2)设1l 与2l 的斜率之积为12,求面积S 的值.43.(2015文22)已知椭圆2221x y ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、 B 和C 、D ,记△AOC 的面积为S .(1)设11(,)A x y ,22(,)C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明12211||2S x y x y; (2)设1:l y kx,C ,13S ,求k ;(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无 论1l 与2l 如何变动,面积S 保持不变.44.(2017年20)在平面直角坐标系xOy 中,已知椭圆22:14x y ,A 为 的上顶点,P 为 上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P在第一象限,且||OP P 的坐标;(2)设83(,)55P(3)若||||MA MP ,直线AQ 与 交于另一点C ,且2AQ AC,4PQ PM ,求直线AQ 的方程.,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;45.(2011文22)已知椭圆222:1x C y m(常数1m ),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A 的坐标为(2,0). (1)若M 与A 重合,求曲线C 的焦点坐标; (2)若3m ,求||PA 的最大值与最小值;(3)若||PA 的最小值为||MA ,求实数m 的取值范围.46.(2019年20)已知椭圆22184x y,1F 、2F 为左、右焦点,直线l 过2F 交椭圆于A 、 B 两点.(1)若直线l 垂直于x 轴,求||AB ;(2)当190F AB 时,A 在x 轴上方时,求A 、B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F AB F MN S S , 若存在,求出直线l 的方程,若不存在,请说明理由.【考点5】双曲线方程及相关综合题型从双曲线的标准方程22221x y a b(0,0)a b 中,我们可以得到下列性质和结论:① 对称性:双曲线既是以x 轴、y 轴为对称轴的轴对称图形,又是以坐标原点为对称中心的中心对称图形. 双曲线的对称中心叫做双曲线的中心.② 顶点:(,0)a 和(0,)b ,这四个点叫做双曲线的顶点. 2a 表示双曲线实轴的长,2b 表示双曲线虚轴的长,双曲线的两个焦点都在它的实轴所在的直线上,且222c a b .③ 范围:x a 或x a ,y R . ④ 渐近线:b y x a. ⑤ 焦点三角形面积公式:2cot 2S b⑥ 切线方程:00(,)x y 为切点,00221x x y ya b . ⑦ 参数方程:sec tan x a y b,[0,2) .⑧ 中点弦结论:若直线1:l y k x m 与双曲线22221x y a b 相交于A B 、两点,A B 、的中 点为P ,连结OP ,设OP 的斜率为2k ,则2122b k k a .47.(2018年2)双曲线2214x y 的渐近线方程为48.(2011理3)设m 是常数,若点(0,5)F 是双曲线2219y x m的一个焦点,则m 49.(2016春20)关于双曲线221164x y 与221164y x 的焦距和渐近线,下列说法正确的是( )A. 焦距相等,渐近线相同B. 焦距相等,渐近线不相同C. 焦距不相等,渐近线相同D. 焦距不相等,渐近线不相同50.(2011春9)若椭圆C 焦点和顶点分别是双曲线22154x y的顶点和焦点,则椭圆C 的方程是51.(2015理9)已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C ,若1C的渐近线方程为y ,则2C 的渐近线方程为52.(2015文12)已知双曲线1C 、2C 的顶点重合,1C 的方程为2214x y ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为53.(2017年6)设双曲线22219x y b(0)b 的焦点为1F 、2F ,P 为该双曲线上的一点, 若1||5PF ,则2||PF54.(2019年11)已知数列{}n a 满足1n n a a (*n N ),若(,)n n P n a (3)n 均在双曲线22162x y上,则1lim ||n n n P P55.(2018春18)已知a R ,双曲线222:1x y a.(1)若点(2,1)在 上,求 的焦点坐标;(2)若1a ,直线1y kx 与 相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值.56.(2012春21)已知双曲线221:14y C x .(1)求与双曲线1C 有相同的焦点,且过点P 的双曲线2C 的标准方程;(2)直线:l y x m 分别交双曲线1C 的两条渐近线于A 、B 两点,当3OA OB时,求实数m 的值.57.(2015春28)已知点1F 、2F 依次为双曲线2222:1x y C ab (,0)a b 的左右焦点,126F F ,1(0,)B b ,2(0,)B b .(1)若a ,以(3,4)d为方向向量的直线l 经过1B ,求2F 到l 的距离;(2)若双曲线C 上存在点P ,使得122PB PB,求实数b 的取值范围.58.(2016年21)双曲线2221y x b(0b )的左、右焦点分别为1F 、2F ,直线l 过2F 且与双曲线交于A 、B 两点. (1)若l 的倾斜角为2,1F AB 是等边三角形,求双曲线的渐近线方程;(2)(文)设b ,若l 的斜率存在,且||4AB ,求l 的斜率.(2)(理)设b ,若l 的斜率存在,且11()0F A F B AB,求l 的斜率.59.(2013理22)如图,已知双曲线221:12x C y ,曲线2:||||1C y x ,P 是平面内一点,若存在过点P 的直线与1C 、2C 都有公共点,则称P 为“12C C 型点”.(1)在正确证明1C 的左焦点是“12C C 型点”时,要使用一条过该焦点的直线,试写 出一条这样的直线的方程(不要求验证); (2)设直线y kx 与2C 有公共点,求证:||1k ,进而证明原点不是“12C C 型点”; (3)求证:圆2212x y 内的点都不是“12C C 型点”.60.(2017春20)已知双曲线222:1y x b(0)b ,直线:l y kx m (0)km ,l 与交于P 、Q 两点,P 为P 关于y 轴的对称点,直线P Q 与y 轴交于点(0,)N n .(1)若点(2,0)是 的一个焦点,求 的渐近线方程; (2)若1b ,点P 的坐标为(1,0) ,且32NP P Q,求k 的值; (3)若2m ,求n 关于b 的表达式.61.(2012文22)在平面直角坐标系xOy 中,已知双曲线22:21C x y .(1)设F 是C 的左焦点,M 是C 右支上一点,若MF ,求点M 的坐标; (2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成平行四边形的面积;(3)设斜率为k (||k的直线l 交C 于P 、Q 两点,若l 与圆221x y 相切,求证:OP OQ .62.(2012理22)在平面直角坐标系xOy 中,已知双曲线221:21C x y .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐进线及x 轴围成的 三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆221x y 相切,求证:OP OQ ; (3)设椭圆222:41C x y ,若M 、N 分别是1C 、2C 上的动点,且OM ON ,求证:O 到直线MN 的距离是定值.【考点6】抛物线方程及相关综合题型从抛物线的标准方程22y px (0)p 中,我们可以得到下列性质和结论: ① 对称性:关于x 轴对称. ② 顶点:原点(0,0). ③ 范围:0x ,y R . ④ 准线:2p x;焦点:(,0)2p.⑤ 切线方程:00(,)x y 为切点,00()y y p x x .⑥ 参数方程:22()2x pt t y ptR . ⑦ 抛物线焦点弦性质AM BM ,A F B F ,M F AB .2124p x x ,212y y p ,234OA OB p . A 、O 、B 共线,A 、O 、B 共线.1cos p AF,1cos pBF ,112AF BF p, 1222sin pAB x x p ,22sin AOB p S.63.(2012春3)抛物线28y x 的焦点坐标为64.(2013春3)抛物线28y x 的准线方程是65.(2014理3)若抛物线22y px 的焦点与椭圆22195x y的右焦点重合,则该抛物线 的准线方程为66.(2015理5)抛物线22y px (0)p 上的动点Q 到焦点的距离的最小值为1,则p67.(2019年9)过曲线24y x 的焦点F 并垂直于x 轴的直线分别与曲线24y x 交于A 、B ,A 在B 上方,M 为抛物线上一点,(2)OM OA OB,则68.(2016春27)如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆 面与反射镜的轴垂直,灯泡位于抛物线的焦点F 处,已知灯口直径是24cm ,灯深10cm ,求灯泡与反射镜的顶点O 的距离.69.(2013春29)已知抛物线2:4C y x 的焦点为F .(1)点A 、P 满足2AP FA,当点A 在抛物线C 上运动时,求动点P 的轨迹方程;(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x 的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.70.(2011春21)已知抛物线2:4F x y .(1)△ABC 的三个顶点在抛物线F 上,记△ABC 的三边AB 、BC 、CA 所在直线的斜率分别为AB k 、BC k 、CA k ,若点A 在坐标原点,求AB BC CA k k k 的值;(2)请你给出一个以(2,1)P 为顶点,且其余各顶点均为抛物线F 上的动点的多边形,写出 多边形各边所在直线的斜率之间的关系式,并说明理由. 说明:第(2)题将根据结论的一般性程度给与不同的评分.71.(2016年20)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收获的蔬菜可送 到F 点或河边运走,于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图. (1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为83, 设M 是C 上纵坐标为1的点,请计算以EH 为一边、另一边过点M 的矩形的面积,及五 边形EOMGH 的面积,并判断哪一个更接近于1S 面积的“经验值”.72.(2012年21)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北 方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正 南方向12海里A 处,如图,现假设:① 失事船的移动路径可视为抛物线21249y x;② 定 位后救援船即刻沿直线匀速前往救援;③ 救援船出发t 小时后,失事船所在位置的横坐标 为7t .(1)当0.5t 时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速 度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?73.(2019春20)已知抛物线24y x ,F 为焦点,P 为抛物线准线l 上一动点,线段PF 与 抛物线交于点Q ,定义||()||FP d P FQ. (1)若点P 坐标为8(1,3,求()d P ;(2)求证:存在常数a ,使得2()||d P FP a 成立;(3)设1P 、2P 、3P 为抛物线准线l 上的三点,且1223||||PP P P ,试比较13()()d P d P 与22()d P 的大小.74.(2018年20)设常数2t ,在平面直角坐标系xOy 中,已知点(2,0)F ,直线:l x t , 曲线2:8y x (0x t ,0y ),l 与x 轴交于点A 、与 交于点B ,P 、Q 分别是 曲线 与线段AB 上的动点. (1)用t 表示点B 到点F 的距离;(2)设3t ,||2FQ ,线段OQ 的中点在直线FP 上,求AQP 的面积;(3)设8t ,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在 上?若存在,求点P 的坐标,若不存在,说明理由.。
2014年全国高考试卷解析几何部分汇编(下)

2014年全国高考试卷解析几何部分汇编(下)1. (2014理10)已知0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离,则2C 的渐近线方程为( ) A.0x ±= B0y ±= C .20x y ±= D .20x y ±=【解析】 A2. (2014理21)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF△为正三角形. ⑴求C 的方程;⑵若直线1l l ∥,且1l 和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标;②ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【解析】 ⑴当A 的横坐标为3时,过A 作AG x ⊥轴于G ,3pAF =+32pFD AF ∴==+AFD △为等边三角形13224pFG FD ∴==+又32pFG =-33242p p∴+=-,2p ∴=,2:4C y x ∴= ⑵(ⅰ)设11()A x y ,,11FD AF x ==+ ()120D x ∴+,,12AB y k ∴=-1//AB l l ,1112l k y ∴=-又1l 与C 相切,设切点()E E E x y ,, 214x y =,12x y '=,1122E y y -∴=,14E y y ∴=- 22111444E x y y ⎛⎫=-= ⎪⎝⎭,211211444y E A y y y ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,,, 1211121214:444AEy y y l y y x y y +⎛⎫∴-=- ⎪⎝⎭-即()121414y y x y =--恒过点()10,∴直线AE 过定点()10,.(ⅱ)2111:24AB y y l y y x ⎛⎫-=-- ⎪⎝⎭,即21122244y x y y y x ⎧=-++⎪⎨⎪=⎩,得()2211880y y y y +-+= 1218y y y +=-,2118y y y ∴=--12118+AB y y y y =-= 点E 到AB的距离d =32311121111184222222162242y y S AB d y y y y ∴=⋅=+++=+⨯=≥,当且仅当12y =±时,“=”成立.3. (2014文14)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x轴所得弦的长为,则圆C 的标准方程为.【解析】 ()()22214x y -+-= 4. (2014文15)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为.【解析】 y x =±由已知得2p b ==,抛物线准线与双曲线的一个交点坐标为2p c ⎛⎫- ⎪⎝⎭,,即()c b -,代入双曲线方程为22221c b a b -=得222c a=,1b a ∴=∴渐近线方程为y x =±.故答案为y x =±.5. (2014文21)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>,直线y x =被椭圆C⑴求椭圆C 的方程;⑵过原点的直线与椭圆C 交于A B ,两点(A B ,不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值; ②求OMN ∆面积的最大值.【解析】⑴c e a ==,设2c a n ==,,则b n =,椭圆方程为2224x y n +=设y x =与椭圆在第一象限的交点为()00x y ,则00x y =000x y ⎧=⎪⎪=∴⎨⎪=⎪⎩将代入椭圆得1n =,2214x y ∴+=⑵方法一:(ⅰ)设AB l :y kx =2244y kx A B x y =⎛⎫⎛⎫⎧⇒⎨+=⎩, AD l:2211k y x y x k k +⎛⎫=-⇒=- ⎝2222222442242482402114x y k k k k x k k k k y x k ⎧+=⎛⎫++ ⎪⎪+⎪⎝⎭⇒++-=+⎨+⎪=--⎪⎩222216164D D k x k +=⇒=+3D y =3124kk -∴==+BD l:4k y x ⎛⎫-=⎝ 令0y=0m x M ⎛⎫⇒=⇒⎪⎭22k k ∴==-121122k k λ∴=-∴=-,(ⅱ)0⎛⎫⎪⎭,对BD l:4k y x ⎛⎫=- ⎝ 令0x =得3N k y319121224OMNkSkk∴==⨯+△14kk+≥4当且仅当12k=±时取等号[]max919248OMNS∴=⨯=△方法二:(ⅰ)设()()1122B x y D x y,,,则()11A x y--,1212ADy ykx x+=+221122221414xyxy⎧+=⎪⎪⎨⎪+=⎪⎩()()()()121212124x x x xy y y y+-++-=即1212121214y y y yx x x x-+⋅=--+114ADk k∴⋅=-又AB AD⊥1AB ADk k∴⋅=-14ABk k∴=()111:BDl y y k x x-=-令0y=,111yx xk=-+令0x=,111y y k x=-()11111100yM x N y k xk⎛⎫∴-+-⎪⎝⎭,,,111211111111211222ABAByy x kk ky ykxkk x k====--⋅--⋅1212k k∴=-12λ∴=-(ⅱ)()11111112OMNyS x y k xk⎛⎫=-+-⎪⎝⎭△1114ykx=11999888 OMNS x y∴===△[]max 98OMN S ∴=△当且仅当1x ==”成立.6. (2014理12)若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为_________________.【解析】 22(1)1x y +-=根据题意得点(10),关于直线y x =对称的点(01),为圆心,又半径1r =,所以圆C 的标准方程为22(1)1x y +-=.7. (2014理20)如图,曲线C 由上半椭圆1C :()2222100y x a b y a b+=>>,≥和部分抛物线2C :()210y x y =-+≤连接而成,1C 与2C 的公共点为A B ,其中1C.⑴求a b ,的值;⑵过点B 的直线l 与12C C ,别交于点P Q ,(均异于点A B ,),若AP AQ ⊥,求直线l 的方程.【解析】 ⑴在12C C ,的方程中,令0y =,可得1b =,且(10)(10)A B -,,,是上半椭圆1C 的 左,右顶点.设1C 的半焦距为c,由c a =及2221a c b -==得2a =. 21a b ∴==,.⑵解法一:由⑴知,上半椭圆1C 的方程为221(0)4y x y +=≥.易知,直线l 与x 轴不重合也不垂直,设其方程(1)(0)y k x k =-≠,代入1C 的方程,整理得2222(4)240k x k x k +-+-=*() 设点P 的坐标为()p p x y ,, 直线l 过点B ,1x ∴=是方程*()的一个根. 由求根公式,得2244p k x k -=+,从而284p k y k -=+,∴点P 的坐标为22248()44k kk k --++,.同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+⎩≤,,得点Q 的坐标为2(12)k k k ----,. 22(4)(12)4kAP k AQ k k k ∴=-=-++,,,.0Ap AQ AP AQ ∴⊥∴⋅=,,即222[4(2)]04k k k k --+=+,04(2)0k k k ∴≠∴-+=,解得83k =-.经检验,83k =-符合题意,故直线l 的方程为8(1)3y x =--.解法二:若设直线l 的方程为1(0)x my m =+≠,比照解法一给分.8. (2014文11)抛物线24y x =的准线方程为____________.【解析】 1x =- 9. (2014文20)已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左右焦点分别为12(0)(0)F c F c -,,,. ⑴求椭圆的方程;⑵若直线1:2l x m =-+与椭圆交于点A B ,,与以12F F 为直径的圆交于C D ,两点,且满足AB CD =求直线l 的方程.【解析】 ⑴由题设知2221,2,b c a b a c ⎧=⎪⎪=⎨⎪⎪=-⎩解得2a =,b =1c =,∴椭圆的方程为22143x y +=.⑵由⑴知,以12F F 为直径的圆的方程为221x y +=, ∴圆心到直线l的距离d =,由1d <得5||2m <.(*)∴||CD ==.设()()1122A x y B x y ,,由2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩ 得22=0x mx m -+ 有212123x x m x x m +==-,AB =由||||AB CD =1=,解得m =,满足(*) ∴直线l的方程为12y x =-+或12y x =-.10. (2014理22)在平面直角坐标系xoy 中,对于直线:0l ax by c ++=和点111(,)P x y ,222(,)P x y记1122()()ax by c ax by c η=++++,若0η<,则称点12,P P 被直线l 分隔。
2014高考数学复习解析几何习题

一、选择题(本大题共12小题,每小题5分,共60分.)1、(2013年高考山东数学(理))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=2、(2013年高考新课标Ⅱ卷数学(理))已知点(1,0),(1,0),(0,1)A B C -,直线(0)yax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B.1(1)2( C) 1(1]3 D . 11[,)323、【贵州省六校联盟2013届高三第一次联考理】 若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( )A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --=4.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 5 .【2012厦门期末质检理】直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( )A .2 B . 2 C .22 D . 46、(广东省惠州市2013届高三4月模拟考试)设抛物线的顶点在原点,准线方程为-2,x =则抛物线的方程是( )A .28y x =B .28y x =-C .24y x =-D .24y x =7、(上海青浦区2013届高三一模)15.设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为………………………………………………( ).A . x y 2±= .B x y 2±=C . x y 21±=D . x y 22±=8、【北京市朝阳区2013届高三上学期期末理】已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是A .1422=-y x B .1422=-y x C .13222=-y x D .12322=-y x9、(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( )A .12B C .1 D 10、【云南师大附中2013届高三高考适应性月考卷(四)理】设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,双曲线两条渐近线分别为12,l l ,过F 作直线1l 的垂线,分别交12,l l 于A 、B 两点,且向量BF 与FA 同向.若||,||,||OA AB OB 成等差数列,则双曲线离心率e 的大小为A .2B C D 11、【山东省枣庄三中2013届高三上学期1月阶段测试理】抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为12、(2013年高考重庆数学(理)试题)已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A .4B 1C .6-D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.【北京市丰台区2013届高三上学期期末理】12,l l 是分别经过A(1,1),B(0,-1)两点的两条平行直线,当12,l l 间的距离最大时,直线1l 的方程是 .14、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________.15、(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___.16、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分) .(2013年普通高等学校招生全国统一招生考试江苏卷)本小题满分14分.如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为,圆心在上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.18. (本小题满分12分) (2013广东理)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20x y --=的距.设P 为直线上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线上移动时,求AF BF ⋅的最小值.19.(本小题满分12分) 【山东省青岛一中2013届高三1月调研理】(本大题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切,过点P (4,0)且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点。
(上海版 第03期)2014届高三数学 试题分省分项汇编 专题10 圆锥曲线 理(含解析)苏教版

(上海版 第03期)2014届高三数学 试题分省分项汇编 专题10 圆锥曲线 理(含解析)一.基础题组1. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】已知双曲线12222=-b y a x (0>a ,0>b )满足021=ba ,且双曲线的右焦点与抛物线x y 342=的焦点重合,则该双曲线的方程为______________.2. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知椭圆的中心在原点,一个焦点与抛物线x y 82=的焦点重合,一个顶点的坐标为)2,0(,则此椭圆方程为 .3. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】双曲线19422=-y x 的焦点到渐近线的距离等于 .4. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 .5. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】双曲线221mx y +=的虚轴长是实轴长的2倍,则m = .6. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】在平面直角坐标系中,动点P 和点M (-2,0)、N (2,0)满足0MN MP MN NP ⋅+⋅=,则动点P (x ,y )的轨迹方程为 . 【答案】28y x =- 【解析】试题分析:本题可用求轨迹方程的基本方法—直接法来求,把已知条件等式0MN MP MN NP ⋅+⋅=用坐标表示出来, 4(2)0x -=,化简变形即得.考点:用基本法求轨迹方程.7. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科)】双曲线2221(0)y x bb-=>的一条渐近线方程为y =,则b =________.二.拔高题组1. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点⎪⎪⎭⎫⎝⎛23,1在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是椭圆C 长轴上的一个动点,过P 作方向向量)1,2(=d的直线l 交椭圆C于A 、B 两点,求证:22||||PB PA +为定值.出直线l 的方程,把它与椭圆方程联立方程组,可求出,A B 两点的坐标,从而求出22||||PB PA +的值,看它与m 有没有关系(是不是常数),当然在求22||||PB PA +时,不一定要把,A B 两点的坐标直接求出(如直接求出,对下面的计算没有帮助),而是采取设而不求的思想,即设1122(,),(,)A x y B x y ,然后求出12x x +,12x x ,而再把22||||PB PA +用12x x +,12x x 表示出来然后代入计算,可使计算过程简化.(写到倒数第2行,最后1分可不扣)考点:(1)椭圆的标准方程;(2)直线与椭圆相交问题.2. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知圆C 过定点)1,0(A ,圆心C 在抛物线y x 22=上,M 、N 为圆C 与x 轴的交点. (1)当圆心C 是抛物线的顶点时,求抛物线准线被该圆截得的弦长. (2)当圆心C 在抛物线上运动时,MN 是否为一定值?请证明你的结论. (3)当圆心C 在抛物线上运动时,记m AM =,n AN =,求mnn m +的最大值,并求出此时圆C 的方程.令0=y ,得01222=-+-a ax x ,得11-=a x ,12+=a x ,∴212=-=x x MN 是定值.………………8分3. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】给定椭圆()2222:10x y C a b a b+=>>,称圆心在坐标原点O ,的圆是椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是())12,F F .(1)若椭圆C 上一动点1M 满足11124M F M F +=,求椭圆C 及其“伴随圆”的方程; (2)在(1)的条件下,过点()()0,0P t t <作直线l 与椭圆C 只有一个交点,且截椭圆C的“伴随圆”所得弦长为P 点的坐标; (3)已知()()cos 3,,0,sin sin m n mn m n θθπθθ+=-=-≠∈,是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点()()22,,,m mn n 的直线的最短距离mindb =.若存在,求出a ,b 的值;若不存在,请说明理由.,得------②------------------------------8分由①②得,又,故,所以点坐标为.-----10分4. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科)】某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1) 求抛物线Γ方程;(2) 如果使“蝴蝶形图案”的面积最小,求α的大小?解得 αα2sin )1(cos 2+=AF ……8分(1) 椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫ ⎝⎛21,m M 满足0m ≠,且m ≠①证明直线F E 与y 轴交点的位置与m 无关;②若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、R 两点,2l 交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程.所以 13131613232341334324348212222=≤+++=++==∆k k k k TR QP S TRQ2522k k =⇒=⇒=±时等号成立,此时直线1:12l y x =±- ……16分 考点:(1) ①动直线中的定点问题;②三角形的面积,线段比与点的坐标之间的关系;(2) 直线与圆相交弦长,直线与椭圆相交的弦长,基本不等式.6. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】已知点)0,2(P ,点Q 在曲线C :x y 22=上.(1)若点Q 在第一象限内,且2||=PQ ,求点Q 的坐标;(2)求||PQ 的最小值.试题解析:设),(y x Q (0,0>>y x ),x y 22=(1)由已知条件得2)2(||22=+-=y x PQ …………………………2分将x y 22=代入上式,并变形得,022=-x x ,解得0=x (舍去)或2=x ……………4分当2=x 时,2±=y只有2,2==y x 满足条件,所以点Q 的坐标为)2,2(………………6分。
上海历年高考数学解析几何真题

Ⅰ 点到直线的距离公式(11春17)直线)21(:+=x k y l 与圆1:22=+y x C 的位置关系是的位置关系是的位置关系是 ( ) ( ) ((A )相交或相切)相交或相切. . . ((B )相交或相离)相交或相离. . ((C )相切)相切. . . ((D )相交)相交. .(10理5文7)圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = 。
(06理2)已知圆2x -4x -4+2y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ..Ⅰ 圆的方程(04理8)圆心在直线2x 2x--y -7=0上的圆C 与y 轴交于两点A(0, -4),B(0, -2),-2),则圆则圆C 的方程为方程为 . .(04文8)圆心在直线x =2上的圆C 与y 轴交于两点A(0, A(0, --4),B(0, 4),B(0, --2),2),则圆则圆C 的方程为 .Ⅰ 圆锥曲线的基本概念:标准方程、焦点、渐近线、准线、定义(12文16)对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的(的曲线是椭圆”的( ) A 、充分不必要条件、充分不必要条件 B 、必要不充分条件、必要不充分条件 C 、充分必要条件、充分必要条件 D 、既不充分也不必要条件、既不充分也不必要条件(11理3)设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
(11春9)若椭圆C 的焦点和顶点分别是双曲线14522=-y x 的顶点和焦点,的顶点和焦点,则椭圆则椭圆C 的方程是程是_______________________________________。
(10理3文8)动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为 ______。
(08文6)若直线01=+-y ax 经过抛物线x y 42=的焦点,则实数=a .(08文12) 设P 是椭圆1162522=+y x 上的点上的点. . . 若若1F 、2F 是椭圆的两个焦点,则21PF PF +等于等于 ( ) ( )(A) 4. (B) 5. (C) 8. (D) 10.(07理8)已知双曲线22145x y -=,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为_____(07文5)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是程是 ..(06理7)已知椭圆中心在原点,一个焦点为F (-(-223,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是则该椭圆的标准方程是 .. (06文7)已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,则双曲线的标准方程是则双曲线的标准方程是____________________. ____________________.(05文7)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是__________.(05理5)若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是____________________。
2014年上海卷高考数学试题详解

2014年上海卷高考数学试题详解一、填空题【1】(A ,上海,理1)函数212cos (2)y x =-的最小正周期是______. 考点名称:三角恒等变形 【1】(A ,上海,理1)2π解析:因212cos (2)1(1cos 4)y x x =-=-+=cos4x -,所以2T π=.【2】(A ,上海,理2)若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅ ⎪⎝⎭=________. 考点名称:复数 【2】(A ,上海,理2)6 解析:11516z z z z z ⎛⎫+⋅=⋅+=+= ⎪⎝⎭.【3】(A ,上海,理3)若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为_______.考点名称:圆锥曲线及其标准方程 【3】(A ,上海,理3)2x =-解析:因椭圆 22195x y +=的2c =,所以22p=,所以抛物线的准线方程为2x =-.【4】(A ,上海,理4)设2,(,),(),[,.x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =,则a 的取值范围为_____.考点名称:函数的概念及其性质 【4】(A ,上海,理4)2a ≤解析:因2(2)42f ==,所以2[,)a ∈+∞,即2a ≤.【5】(A ,上海,理5)若实数,x y 满足1xy =,则222x y +的最小值为_____. 考点名称:不等式及其性质【5】(A ,上海,理5)解析:2222122x y y y+=+≥【6】(A ,上海,理6)若圆锥的侧面积是底面积的3倍,则其母线与底面所成的角的大小为_______(结果用反三角函数值表示). 考点名称:空间几何体【6】(A ,上海,理6)1arccos3解析:设圆锥的底面半径为r ,母线长为l ,母线与底面所成的角为θ,由已知得21232r l r ππ⋅⋅=,1cos 3r l θ==,1arccos 3θ=.【7】(A ,上海,理6)已知曲线C 的极坐标方程为(3cos ρθ-4sin )1θ=, 则C 与极轴的交点到极点的距离是_____.考点名称:极坐标系与参数方程 【7】(A ,上海,理6)13解析:法1把极坐标方程化成直角坐标方程得341x y -=,令0y =得13x =,所以C 与极轴的交点到极点的距离是13. 法2 令0θ=得13ρ=,所以C 与极轴的交点到极点的距离是13.【8】(B ,上海,理8)设无穷数列{}n a 的公比是q .若134lim()n n a a a a →∞=+++,则q =______.考点名称:数列极限 【8】(B ,上海,理8解析:2334(1)lim()lim 1n n n n a q a a a q -→∞→∞-+++=-221111lim .11n n a q a q a q a q q →∞-===--解得q =.【9】(B ,上海,理9)若2132()f x x x -=-,则满足()0f x <的x 的取值范围是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
={(x,y)|2m≤x+y≤2m+1,x,y∈R}, 若 A∩B≠,则实数 m 的取
值范围是
.
7.(12 年 8)在平面直角坐标系 xOy 中,若双曲线xm2-m2y+2 4=1 的 离心率为 5,则 m 的值为 .
8.(12 年 12)在平面直角坐标系 xOy 中,圆 C 的方程为 x2+y2-8x +15=0,若直线 y=kx-2 上至少存在一点,使得以该点为圆心,1 为半径 的圆与圆 C 有公共点,则 k 的最大值是 .
解答题(5 道题) 1.(08 年 18)设平面直角坐标系 xOy 中,设二次函数 f(x)=x2+
2x+b(xR)的图像与两坐标轴有三个交点,经过这三个交点的圆记为 C.求:
(1)求实数 b 的取值范围; (2)求圆 C 的方程 (3)问圆 C 是否经过某定点(其坐标与 b 无关)?请证明你的结论.
②点的坐标的处理的几种常类型.
第1 案例
种.分点问题 1.设 F1,F2 分别为椭圆
C:xa22+by22=1(a>b>0)的左、右
解析几何的问题 ①几何的问题(直线与圆) ②方程的问题(求曲线的方程) ③交点的问题(位置关系)
⑤直线与圆锥曲线的交点.
2.方法上 ①等价转化; ②待ห้องสมุดไป่ตู้系数法.
运算与转化
三、解析几何复习策略 1.我们应该做什么?
重视对基础知识、基本公式、基本方法的复习 如:(1)直线的方程的设法.
①过两点或一点的直线的方程;②不能根据条件设定 合适的方程(如 09 年 13)
直,则离心率 e=
.
3.(09 年 13)如图,在平面直角坐标系 xOy 中,A1,A2,B1,B2 为椭圆xa22+by22=1(a>b>0)的四个顶点,F 为其右焦点,直线 A1B2 与直线
B1F 相交于点 T,线段 OT 与椭圆的交点 M 恰为线段 OT 的中点,则该椭
y
圆的离心率为
.
T
4.(10 年 6)在平面直角坐标系 xOy 中,
4.(11 年 18)如图,在平面直角坐标系 xOy 中,M、N 分别是椭圆
x42+y22=1 的顶点,过坐标原点的直线交椭圆于 P、A 两点,其中 P 在第
一象限,过 P 作 x 轴的垂线,垂足为 C,连接 AC,并延长交椭圆于点 B,
设直线 PA 的斜率为 k.
(1)当直线 PA 平分线段 MN,求 k 的值;
b,c,p 均为非零实数,直线 BP,CP 分别交 AC,AB 于点 E,F,一同
学已正确算的 OE 的方程:(1b-1c)x+(1p-1a)y=0,请你求 OF 的方程:
(
)x+(1p-1a)y=0
2.(08 年 12)在平面直角坐标系中,椭圆xa22+by22=1(a>b>0)的焦
距为 2,以 O 为圆心,a 为半径的圆,过点(ac2,0)作圆的两切线互相垂
解析几何
说明 选用 1、江苏苏教版原题。 2、2013年全国各地圆锥曲线理科数学较难选择题。 3、适合上海高三学生攻克22题。
一、近 5 年江苏高考解析几何试题
填空题(8 道题)
1.(08 年 9)在平面直角坐标系中,设三角形 ABC 的顶点分别为
A(0,a),B(b,0),C(c,0),点 P(0,p)在线段 AO 上(异于端点),设 a,
y
.
.1
O1
x
3.(10 年 18)在平面直角坐标系 xOy 中,如图,已知椭圆x92+y52=1 的 左、右顶点为 A,B,右焦点为 F.设过点 T(t,m)的直线 TA,TB 与椭圆分 别交于点 M(x1,y1)、N(x2,y2),其中 m>0,y1>0,y2<0.
(1)设动点 P 满足 PF2-PB2=4,求点 P 的轨迹; (2)设 x1=2,x2=13,求点 T 的坐标; (3)设 t=9,求证:直线 MN 必过 x 轴上的一定点(其坐标与 m 无关).
(2)当 k=2 时,求点 P 到直线 AB 的距离 d;
(3)对任意 k>0,求证:PA⊥PB.
y
P
O
B
M
C
x
A N
5.(12 年 19)如图,在平面直角坐标系 xOy 中,椭圆xa22+by22=1(a>b
>0)的左、右焦点分别为 F1(-c,0),F2(c,0).已知(1,e)和(e, 23)都在椭 圆上,其中 e 为椭圆的离心率.
(1)求椭圆的方程; (2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF1 与直线 BF2 平 行,AF2 与 BF1 交于点 P.
(i)若 AF1-BF2= 26,求直线 AF1 的斜率; (ii)求证:PF1+PF2 是定值.
二、解析几何都考了什么
1.内容上 ①直线的方程; ②圆的方程; ③圆锥曲线的几何性质; ④直线与圆的位置关系;
B2
M
双曲线x42-1y22 =1 上一点 M,点 M 的横坐标A1
O
是 3,则 M 到双曲线右焦点的距离是____.
A2 x
5.(10 年 9)在平面直角坐标系 xOy 中,
已知圆 x2+y2=4 上有且仅有四个点到直线 12x-5y+c=0 的距离为 1,
则实数 c 的取值范围是______.
6.(11 年 14)设集合 A={(x,y)|m2 ≤(x-2)2+y2≤m2,x,y∈R},B
(2)直线与圆相交的问题及直线与圆的位置关系判断 (3)圆的方程、椭圆方程的求法. (4)与圆有关的一系列问题:圆的方程,弦长,中点 弦,圆上的点到点(直线)的距离的最大值(最小值), 切线方程,切线长等.
2.我们能做什么?
(1)把方法选择、运算还给学生,让学生经历、体验、 比较.
(2)教给学生一些套路. ①直线与圆的问题,从几何角度去想应该是一个不错的 想法.
2.(09 年 18)在平面直角坐标系 xOy 中,已知圆 C1:(x+3)2+(y -1)2=4 和圆 C2:(x-4)2+(y-5)2=4.
(1)若直线 l 过点 A(4,0),且被圆 C1 截得的弦长为 2 3,求直线 l 的方程;
(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互相垂的 直线 l1 和 l2,它们分别与圆 C1 和圆 C2 相交,且直线 l1 被圆 C1 截得的弦 长与直线 l2 被圆 C2 截得的弦长相等,试求所有满足条件的点 P 的坐标.