18共边硼酸盐的结构和性质
硼酸及其性质

• 硼酸的性质 • 1.硼酸系无色、微带珍珠光泽的透明片状或呈细小晶粒, 与皮肤接触有滑腻感。无臭、味微酸后带甜味。 • 2.硼酸比重1.435(15℃)、熔点185℃,露置空气中无变化, 加热至107.5℃时失水而成偏硼酸(HBO2): • H3BO3→HBO2+H2O • 偏硼酸再热至150~160℃时则又失水而成焦硼酸(H2B4O 7) : • 4HBO2→H2B4O 7+H2O • 3.硼酸1克能在沸水4毫升、酒精18毫升、甘油4毫升中溶 解。硼酸的酸性很微弱,1:50的水溶液以石蕊试纸检定, 呈弱酸性反应。 • 注 1.偏硼酸、焦硼酸都是三价硼的含氧酸。
• • • • 分子式: Na2B4O7· 10H2O 分子质量: 381.37 沸点: 15
• 主要用于玻璃和搪瓷行业。在玻璃中,可增强紫 外线的透射率,提高玻璃的透明度及耐热性能。 在搪瓷制品中,可使瓷釉(you)不易脱落而使其具 有光泽。在特种光学玻璃、玻璃纤维、有色金属 的焊接剂、珠宝的粘结剂、印染、洗涤(丝和毛织 品等)、金的精制、化妆品、农药、肥料、硼砂皂、 防腐剂、防冻剂和医学用消毒剂等方面也有广泛 的应用。硼砂是制取含硼化合物的基本原料,几 乎所有的含硼化物都可经硼砂来制得。它们在冶 金、钢铁、机械、军工、刀具、造纸、电子管、 化工及纺织等部门中都有着重要而广泛的用途。
硼砂药理
• 硼砂具有增加食物韧性、脆度及改善食物保水性 及保存度等等功能,为食品加工习惯使用的药品。 但硼砂经由食品摄取后,可与胃酸作用产生硼酸, 硼酸不易被排出具有积存性,连续摄取后,会在 体内蓄积,妨碍消化酵素作用,引起食欲减退、 消化不良、抑制营养素之吸收、促进脂肪分解因 而体重减轻。其中毒症状为呕吐、腹泻、红斑、 循环系统障碍、休克及昏迷等硼酸症症状,而且 有致死量,大人约20公克、小孩约为5公克。单 就食品品质上的改良功能来说,硼砂确实是用途 广泛,但其具有危险的毒性,也是不争的事实。 • 目前世界各国包括我国都早已禁止使用
硼酸的化学性质

硼酸的化学性质
硼酸是一种常见的酸性化合物,它的分子式为H3BO3,主要用于硼烷(Al2O3)的合成,也用于光硅及其它高级核子材料的制备。
硼
酸的结构式中,一个氢原子与一个硼原子存在三种键结,其同系列的硝酸、磷酸等其他酸具有相似的结构。
硼酸具有若干特殊的化学性质,在室温下呈白色无定形晶体,溶于水,溶解度随温度的升高而降低。
硼酸具有强烈的酸性,与嗜碱性的溶液反应时发生反应的温度较低,碱性溶液中形成硼烷,且生成的产物具有悬浮特性,能用来检测碱性溶液中惰性成分的硼含量。
硼酸有良好的非电解质性质,能与质子性离子反应,吸收热量,蓄热-放热。
硼酸与醋酸或乙酸反应,可以生成用于硼烯体系的有机酸类化合物,如硼酸乙酯、硼酸丁酯和硼酸丙酯,也可以通过电熔技术制备硼酸,在制备氢氧化硼的过程中也可以使用硼酸。
硼酸的另一个重要的用途是用来制备硼烯体系的重要的硼基衍
生物,如醇酸和硼酸酯类化合物,还具有重要的有机合成活性,能作为聚合物的硼酸酯催化剂,特别是在各种丙烯聚合物中,大大提高了聚合物的制备速度和质量,在聚合反应中可以有效降低异构体的生成。
此外,硼酸还有广泛的应用性,如用作制备金属表面处理技术中用于清洗氧化物的溶剂,电镀剂,腐蚀抑制剂,多孔材料,磁性材料,药物剂型,荧光粉,烟草及橡胶的贴合性,以及矿物除垢、腐蚀室测试剂等。
总之,硼酸具有多种独特的特性和应用,在化学领域具有广泛的应用前景,为许多行业发展提供了新的可能性和机会。
硼酸化学结构

硼酸化学结构
硼酸又称三硼酸,是一种无机化合物,化学式为H3BO3,其分子结构中由一个硼原子,三个氧原子和三个羟基团组成。
硼酸受热不易挥发,在水中能够溶解,是一种重要的化工
原料。
硼酸在水中的溶解度随着温度的升高而增加,同时浓度也随之增加。
当温度超过373K (100℃)时,硼酸会形成无水硼酸(H3BO3)的水合物,这是一种无色的结晶体,无机化
工领域中应用较多。
硼酸的结构主要可以分为单晶和多晶两种,其中单晶硼酸结构紧密、均匀,而多晶硼
酸由于结构不规则,颗粒较大,从而导致物理性质存在一定的差异。
在化工生产过程中,硼酸属于弱酸性物质,可以参与大量的化学反应。
例如,硼酸可
以与碱反应生成硼酸盐,也可以与强酸反应生成卤化硼酸酯等化合物,这些合成物在化工
领域中有较广泛的应用。
硼酸的反应性较大,是由于硼酸分子中含有多个羟基团,这些羟基团用于酸碱反应和
配位反应中均起到了重要的作用。
值得注意的是,硼酸与羟胺可以发生一二水合物反应,
该反应在有机化学领域中有相应的应用,从而实现有机化合物的合成。
硼酸还可以作为缓冲剂用于生物化学实验中,用于维持溶液的温度、pH值等,从而保证实验数据的准确性。
此外,硼酸还可以作为药物中间体用于生产有益于人类健康的药物。
例如,硼酸盐可以用于生产耐劳、止痛、降糖等各类药物,对人体健康有着积极作用。
新型硼酸盐的合成、结构及性质表征

新型硼酸盐是指通过化学反应合成的含硼的酸性盐,如氧化硼酸(boric acid) 和硼酸钠(sodium tetraborate) 等。
新型硼酸盐的合成一般通过以下几种方法之一来实现:
1.氧化硼矿石法:将硼矿石(borax ore) 经过氧化处理,得到氧化硼酸。
2.硼酸根法:将硼酸根(boron hydride) 与氢氧化物反应,得到氧化硼酸。
3.硼酸根法:将硼酸根与强酸反应,得到氧化硼酸。
新型硼酸盐的结构通常是一维链状或二维平面结构,由硼原子和氧原子组成。
例如,氧化硼酸的结构如下所示:
H3BO3
而硼酸钠的结构如下所示:
Na2B4O7·10H2O
新型硼酸盐的性质取决于它的结构和化学组成。
通常来说,新型硼酸盐是无色或白色结晶体,有较强的酸性。
它们的溶解性也不同,有的在水中很难溶解,有的则很容易溶解。
硼酸 结构

硼酸结构
硼酸是一种无机化合物,其化学式为H3BO3,常见的常温下的形态为白色结晶体。
硼
酸在自然界中不常见,但存在于一些火山环境和硼矿物中。
硼酸具有广泛的应用(如冶金、陶瓷、电子、药品等),因此,在工业生产中制备硼酸非常重要。
硼酸的结构是很重要的,因为它决定了硼酸的物理和化学性质。
硼酸的结构是一个三
角锥形的八面体,其中三面是醒目的氧原子,其它五面是硼原子。
硼原子的电子云特别小,因此硼原子很难形成真正的离子键。
相反,它与氢和氧原子形成共价键。
硼原子有三个价
电子,分别与氧原子形成了三个单键,并与氢原子形成了三个O···H-B的氢键,从而形成六面。
三个氧原子之间也以六面体的形式连接在一起,从而形成八面体。
硼酸的化学键
含有比单键更高的多重键,是硼的典型性质之一。
硼酸的结构中还包括水分子。
硼酸企图结晶成水无机物,处理中发生了化学原理的旁
边作用,形成了十二水合硼酸盐B(OH)3.xH2O。
在这种结构中,硼酸分子被仔细地包围在
周围的水分子中。
水分子定期地分层于硼酸分子外,使得硼酸分子更稳定,更加容易溶
解。
总之,硼酸的结构对它的性质和应用是非常重要的。
硼酸分子是一种八面体的构造,
其中三面是氧原子,五面是硼原子。
这些原子之间的键包括单,双和非常稳定的氢键,这
些键的结构决定了硼酸的物理和化学性质。
另外,硼酸通过与水分子形成水合物,进一步
扩展了其应用范围。
硼酸盐

硼酸盐型润滑油添加剂硼酸盐润滑油抗磨剂据资料介绍,全球每年约有三分之一的金属材料消耗于氧化腐蚀和机械磨损,我国这方面损失每年高达HYB-B型抗磨试验机1800亿元。
可见防止金属腐蚀和改善润滑抗磨性能何等重要。
半个多世纪以来,人们在研发极压抗磨减摩油剂提高润滑性能方面做了不懈努力,开发出多种单剂和复剂。
如硫磷型(SP)齿轮油极压抗磨剂,内燃机油、抗磨液压油用二烷基二硫代磷酸锌(ZDDP)抗氧抗腐抗磨多效剂,有机钼、钨减摩剂,有机铜及纳米硫化铜减摩剂,纳米铈、镧稀土抗磨剂,纳米金刚石、氮化硼、二氧化硅等陶瓷抗磨剂,胶体石墨、二硫化钼、聚四氟乙烯减摩抗磨剂,氨荒酸锌、铜、钼、镉、锑等盐及其酯类极压抗磨剂,非活性高碱值磺酸盐极压剂,烷基咪唑氟硼酸盐离子液,抗水解性硼酸酯和硼酸盐等等。
所有这些,对改善机械极压抗磨减摩性能都有较好的作用。
面对多种添加剂,选择和配伍是最重要的。
过去十年间,内燃机油在质量不断升级的条件下,加剂总量(不含粘指、降凝剂)能从10%-12%降至5%-10%,主要靠对单剂多效性的选择和对复剂配伍性的优化。
选择应当依据节能、环保法规、应用场合和性价比;优化旨在实现性效、成本的最佳化。
有的剂受环保限制,如ZDDP在生产SM/GF-4等高级汽机油中受磷含量不超过0.08%限制,必须寻找新剂替代:有的受节能要求限制,如硫磷剂用于GL-5等车辆齿轮油,比用有机钼或硼酸盐浪费燃油3.2%以上;有的受成本约束,如二戊基二硫代氨基甲酸锌、非活性高碱值磺酸钙、纳米硫化铜、非活性有机钼等性效很好,但价格都在40-80元/Kg之间,在中低档价位的润滑油中推广困难;有的受现有加工工艺条件限制,如纳米陶瓷、纳米金刚石和咪唑氟硼离子液等,目前还很难大批量生产供货;有的外观色泽不佳,如胶体石墨、二硫化钼和氨荒酸硒、碲、锑、镉等,因带有黑、灰、黄颜色而不大受某些用户欢迎。
抗水解性硼酸盐添加剂,近年来倍受关注。
它凭借其坚厚的油膜强度,超高的极压性能,低粘度高抗磨的独有特点,仅次于纳米铜、有机钼等低摩擦系数,理想的抗氧和防锈作用,无金属灰分的清净分散性,无毒无味无害的安全性,可替代ZDDP(T 202/T203)无磷减硫的环保性,不快速腐蚀消减金属表面、消耗添加剂的长寿命性,以及加剂量小作用大,资源丰富成本低,性效全面用途广的市场竞争力,可望被承认为新一代节能减排、极压抗磨、抗摩防腐、清净分散多效添加剂。
硼酸 分子量

硼酸分子量
硼酸,化学式H3BO3,是一种无机化合物,其分子量为61.83g/mol。
它是由硼、氧和氢元素组成的三元化合物,具有许多重要的化学和物理性质。
本文将从硼酸的结构、性质、制备方法和应用等方面进行介绍。
1. 硼酸的结构
硼酸的结构由一个硼原子、三个氢原子和三个氧原子组成。
硼原子与三个氢原子形成共价键,氢原子与氧原子形成极性氢键。
这种结构使得硼酸具有酸性和氢键性质,能够与其他物质发生反应。
2. 硼酸的性质
硼酸是一种白色结晶固体,在常温下可溶于水。
它具有酸性,可以与碱反应生成盐和水。
硼酸也具有缓冲性质,能够稳定溶液的pH 值。
3. 硼酸的制备方法
硼酸可以通过多种方法制备。
一种常见的方法是将硼矿石与硫酸反应,生成硼酸和硫酸盐。
另一种方法是将硼酸酐与水反应,生成硼酸。
此外,还可以通过硼酸酐的加氧反应或脱水反应制备硼酸。
4. 硼酸的应用
硼酸在许多领域都有广泛的应用。
在农业方面,硼酸可以作为植物营养剂,促进植物生长和提高产量。
在玻璃工业中,硼酸可以用作
玻璃添加剂,改善玻璃的耐热性和抗冷冻性。
此外,硼酸还可以用于制备化学试剂、药物和防火材料。
总结:
硼酸是一种无机化合物,其分子量为61.83g/mol。
它具有特殊的结构,由硼、氧和氢元素组成。
硼酸具有酸性和氢键性质,能够与其他物质发生反应。
它可以通过多种方法制备,主要应用于农业、玻璃工业和化学工业等领域。
硼酸的研究和应用对于促进农业生产、改进材料性能和推动科学发展具有重要意义。
硼的结构式

硼的结构式
硼是一种化学元素,其化学符号为B,原子序数为5。
它属于碳族元素,在元素周期表中位于氮的右边,硼的原子量为10.81。
硼的结构式可以表示为B,其中B代表硼原子。
硼是一种非金属元素,具有特殊的结构和性质。
硼的原子结构是由5个电子组成,分布在两个能级上。
第一能级上有2个电子,第二能级上有3个电子。
硼原子的电子排布为1s2 2s2 2p1。
这种电子结构使硼成为一个典型的电子亏损元素。
硼的结构式中,硼原子周围还有一些键和其他原子相连。
硼的键可以与其他元素形成化学键,形成硼化合物。
硼化合物的结构式可以表示为B-X,其中X代表与硼原子形成化学键的元素。
硼化合物具有多种不同的结构,其中最常见的是硼酸和硼酸盐。
硼酸的化学式为H3BO3,硼酸盐的化学式为Na2B4O7。
硼酸和硼酸盐在工业和科学领域中有广泛的应用。
除了硼酸和硼酸盐,硼还可以形成其他的化合物,如硼烷和硼醇。
硼烷的化学式为BH3,硼醇的化学式为B(OH)3。
这些化合物在有机化学中具有重要的应用。
硼的结构和性质决定了它在化学和材料科学中的重要性。
硼具有良好的导热性和电子能带结构,使其成为制备高温材料和半导体材料
的理想选择。
硼的结构和性质还使其在核工业中有重要的应用,如作为中子吸收剂和控制材料。
硼的结构式为B,代表硼原子。
硼是一种非金属元素,具有特殊的结构和性质。
硼可以形成多种化合物,如硼酸和硼酸盐。
硼的结构和性质决定了它在化学和材料科学中的重要性。
硼在工业和科学领域中有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共边硼酸盐的结构和性质金士锋,蔡格梅,王皖燕,许燕萍,陈小龙1(北京凝凝态物理国家实验室,中国科学院物理研究所,北京,100190)摘要共边连接的硼氧基团只是在极端高压的条件下才偶尔出现,这种结构类型的存在违反了传统硼酸盐结构化学的基本假设。
目前,我们第一次在常压硼酸盐晶体中观察到了这种结构类型。
与以往的高压共边硼酸盐晶体不同,文中的常压共边晶体可以稳定的存在到它的熔点。
其孔道状结构中的碱金属离子甚至可以自由移动。
关键字:硼酸盐,晶体结构,离子交换1. 引言硼酸盐(Borates)晶体作为无机化学领域的一个重要分枝,在非线性光学,荧光材料,激光晶体材料等领域有广泛而重要的应用。
同时,复杂多样的硼酸盐结构类型也激发了广大化学工作者的研究兴趣,近50年来,相关工作者已经发现了数以千计的新型晶体,使该领域成为培育新型功能晶体的温床[1-3]。
作为硼酸盐结构化学的支柱,人们针对已发现的硼酸盐化合物概括了这样几条定律:1,硼氧基团存在BO3和BO4两种构型;2,BO3和BO4基团间仅能通过共顶点连接;3,共顶点连接的BO3和BO4基团构成阴离子集团[4-9]。
其中,B-O基团间的共顶点连接是pauli第三和第四定律的直接推论[10,11],在硅酸盐,磷酸盐等领域也存在同样的现象[12-15]。
之前,人们只是在极高压条件下可以获得具有共边连接(Edge-sharing)的硼酸盐晶体[16],但是这些高压相都是常压下的非稳相,因而这些现象只是被当作极端条件下对原有硼酸盐结构化学的扩充。
在本文中,我们将介绍一个常压下合成的新型硼酸盐晶体KZnB3O6,该晶体不仅是第一个具有硼氧集团共边连接的常压晶体,而且也是唯一能够在常压下稳定存在到熔点的共边连接硼酸盐晶体。
这个化合物的发现表明,高压并不是这种新奇结构类型的决定性条件,而且对存在了几十年的硼酸盐基本连接规则,人们还需要深入探讨。
2. 样品制备和实验表征本文中的KZnB3O6粉晶材料通过固态反应的方法制备。
反应初始原料为分析纯的K2CO3(A.R.), ZnO (A.R) 和 H3BO3(99.99%)。
实验中用于结构解析的单晶样品,则直接由纯相的粉晶样品通过熔化后通过自发形核的方式获得。
X射线粉末衍射使用的是帕纳科(X’Pert PRO MRD)粉晶衍射仪,实验条件为Cu Kα,40KV,40mA,测试温度为室温。
X射线单晶衍射使用的是BRUKER APEX CCD单晶衍射仪系统,具体试验条件可参见表3.1中数据收集部分。
变温X射线衍射数据在Mac ScienceM18AHF /M21X(CuKα1; 1.54056Å)粉末衍射仪上收集。
试验开始时,首先收集了室温下1联系作者:电话:82649039;E-mail address:chenx29@的衍射图谱作为比较标准,随后仪器降温至30K,然后缓慢升温,在到达进行数据收集的温度点后停留10分钟,待温度稳定后进行测试。
差热失重分析(DSC-TGA)使用的是SDT Q600 (V20.9 Build 20)装置。
使用氧化铝坩埚作容器,α–Al2O3作为标准参照物。
升温速率为10o C/min。
红外光谱在PE-983G红外光谱仪上测定,使用KBr与样品混合压片,测量范围为200-1500 cm-1。
拉曼光谱测试使用的是JY-T64000:模块式三级拉曼光谱仪系统。
光谱范围:250 nm ~1 μm,波数精度优于0.01 cm-1,测量温度为室温。
3. 结果与讨论KZnB3O6的结构通过单晶X-射线衍射技术确定。
解析出的结构可确认该化合物是第一例由常压合成并具有硼氧集团共边连接的晶体。
KZnB3O6结晶于一个 6.753(6)Å×6.911(6)Å×7.045(7)Å的三斜单胞中,空间群为P⎺1。
每个单胞中仅有两个分子式和11个独立原子位置。
如图1a所示,KZnB3O6晶体的结构可简单的看成由[B6O12]6-基团,[Zn2O6]8-基团和K+离子构成。
其中,晶体的主体是由[B6O12]6-基团和[Zn2O6]8-基团以共顶点相互连接形成的三维框架结构,在框架中填充着以微弱离子键平衡价态的K+离子。
更进一步观察可发现[B6O12]6-基团和[Zn2O6]8-基团相互间以6配位的方式相连(图1a-c),因而从组成基团的角度可认为KZnB3O6的结构为类氯化钠结构,只是晶胞稍稍倾斜。
同时,该晶体沿[0 1⎺1]方向还出现了两个不同大小的孔道,其中较大的孔道被钾离子占据,而较小的孔道则没有被占据。
晶体中的K离子只有一个独立原子位置,它同时与9个邻近的氧原子有微弱的相互作用,这些原子构成了很不规则的配位多面体。
孔道中K+离子的Zigzag分布同第一个报道具有离子交换通道的Na2Co2B12O21中Na+的分布非常类似。
图1 a)配位多面体表示的KZnB3O6晶体沿[0 1⎺1]方向的投影,其中ZnO4四面体为深黑色,BO4四面体和BO3三角形为浅灰色。
b) 在(⎺1 1 1)晶面上[B6O12]6-基团和[Zn2O6]8-基团相互连接的细节c) [B6O12]6-基团以及它的配位环境可以发现,[B6O12]6-基团由两个BO4四面体和四个BO3三角形组成,基团中的BO4四面体通过共边连接,而余下的四个端点则进一步同BO3三角形共顶点连接(图1c)。
晶体中出现的BO3三角形使得该晶体与其它在高压下获得的共边硼酸盐晶体有着显著的不同,高压下获得的共边硼酸盐晶体只含有BO4四面体。
利用Huppertz等研究者建议的表示共边BO4四面体的符号‘’,该晶体的FBB可以表示为:4Δ2□: <2Δ>=<2Δ>[17]。
虽然就合成条件和硼氧基团的配位环境而言,我们所获得的晶体和之前报道的高压共边晶体间存在巨大的差别,但共边BO4四面体的几何参数则非常相近,似乎很少受到这些情况的影响。
我们分析了目前所有已知的共边硼酸盐晶体中共边BO4结构的关键几何参数,结果显示它们具有高度的一致性。
作为一个普遍的规律,共边连接的多面体中阳离子的电荷较多时,同性电荷间的斥力将使得两个阳离子的间距拉大,以降低整个体系的能量。
因此,我们看到在所有的共边BO4结构中,B2O2环内的B-O-B键角都显著的缩小了,与此同时,环内的硼氧键长也较平均值有所增加,使得d BB的数值较变形前大幅增加。
图2中给出的是由密度泛函理论计算得到的该晶体的差分电荷密度图(DCD map)[18]。
从三维差分电荷密度图中(图2a)我们可以较明显的指出该晶体的成键特点:B-O键是典型的共价键,表现在B-O原子成键区域存在显著的电荷转移;K-O键则是典型的离子键,在0.1 eÅ-3的尺度上成键区的电荷转移几乎不可见;同时,Zn-O键处于两者之间,属于部分共价键。
从图中还可以看出,B2O2和B3O3这共边和共顶点的环内,B-O-B的成键形式是类似的:它们两者都在硼氧原子间形成了一对σ键;B3O3环内在反键区形成了大量的电子聚集(这是在氧的p电子成键时的典型特点),类似的,B2O2环内则在类似区域形成了Zn-O键。
图2b-c分别给出了B2O2和B3O3两个环差分电荷密度的纵切面。
从图中可看出,共边的B2O2环上成键强度远不及共顶点的B3O3环上的成键强度,预示着共边区域的潜在的不稳定性。
图2 a) [B6O12]6-和邻近的Zn原子的差分电荷密度在±0.1 eÅ-3水平上的三维等值面图,深色表示电荷聚集的成键区,浅色表示电荷转移区 b)对B2O2环上的差分电荷密度进行剖面显示的共边区成键细节 c) 对B3O3环上的差分电荷密度进行剖面的结果,b)和c)所用标尺的单位为eÅ-3其他研究者们在报道高压合成的共边硼酸盐时,已经注意到这些物相是常压下的非稳相,加热后随即发生相变。
与这些已知的高压非稳共边晶体不同,KZnB3O6是目前唯一能稳定到熔点的共边型硼酸盐。
我们使用联立的DSC-TGA热重仪对样品进行了热力学检测,结果可见于图3a。
如图所示,在加热到接近800℃熔点之前,差热曲线没有出现任何明显的吸热峰和放热峰,热重曲线也一直保持不变。
从热分析中我们可以确认KZnB3O6晶体为同成分熔化化合物,这也和我们自发形核的实验结果相吻合。
此外,因为硼酸盐体系中大量出现了不同温度下的相变,我们对KZnB3O6粉末样品进行了变温XRD分析,以确定共边的结构构型是否为某个更稳定基态构型的高温相。
检测结果表明(图3b),共边的结构框架在低到30K时依然没有变化,在试验过程中只是发现晶胞尺寸随温度下降有了不同程度的缩小。
为了进一步分析KZnB3O6这一独特共边结构的稳定性和对不同尺寸元素的兼容性,我们对该体系进行了元素替代实验。
元素替代的形式为X'Y'B3O6,其中X'=Li, Na, K, Rb, Cs,Y'=Zn,Cd。
实验的结果表明,任何形式的元素取代都不能形成该共边结构。
并且除了KCdB3O6这个新相外,其它形式的样品都没有成相。
KCdB3O6结晶成一个单斜晶胞,FBB为硼酸盐中很常见的B3O6集团,表现出与KZnB3O6晶体很大的不同。
共顶点的KCdB3O6结构虽然没有新奇性,但恰好为我们提供了一个KZnB3O6可能采取的普通结构形式。
我们使用总能量计算软件包CASTEP(剑桥系列总能计算软件包)和GGA(PEB)赝势形式,对KZnB3O6可能采取的这种结构进行了几何优化和总能量计算,以探讨看似具有更高体系能量的共边连接结构在KZnB3O6中保留下来的原因。
图3 (a) KZnB3O6样品的DSC-TGA测试结果,样品约在802℃同成分熔化 (b) KZnB3O6样品的低温原位粉末X射线衍射谱,测试温度分别为30K,120K,210K和297K计算的初始模型非常简单,即将KCdB3O6晶胞中的Cd原子换成Zn原子(见图4 a)。
然后我们对所得的初始模型进行结构优化(晶胞尺寸也随优化而变化),以降低系统的能量,直到系统能量变化低于某个阀值为止。
随后的优化过程很耗机时,但最终很好的收敛了。
同时,因为Zn的配位环境和Cd的配位环境有很大区别(Zn与O通常为四配位,并且较之Cd-O有较小的键长),在优化过程中晶体的结构逐渐从初始结构演化至图4b。
计算的同时也给出了该虚拟结构的总能,通过与实际晶体的理论计算值进行比较,我们发现共边连接结构在能量上是有优势的。
分析原因,由图4b中结构我们可以看到,KZnB3O6在共顶点连接时,不可能像KCdB3O6那样由CdO5链和B3O6环组成稳固的晶体结构,而是具有若干不稳定接合面(仅以微弱的K-O键相联系)。