晶体管共射极单管放大器实验报告

合集下载

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告一、实验目的:1.掌握晶体管共射极单管放大器的工作原理;2.通过实验验证晶体管共射极单管放大器的放大特性。

二、实验仪器与器件:1.功能发生器;2.直流稳压电源;3.2N3904NPN型晶体管;4.脉冲发生电路;5.负载电阻;6.示波器等。

三、实验原理:四、实验步骤与过程:1.搭建晶体管共射极单管放大器电路,根据实验原理连接好各个器件与仪器;2.将直流稳压电源的正极接入收集端,负极接入基极,并合理调节稳压电源的电压和电流;3.通过功能发生器向基极注入正弦信号,调节发生器频率和幅值;4.同时连接示波器,观察输入信号与输出信号的波形;5.改变输入信号的频率和幅值,记录输出信号的变化;6.对比输入信号与输出信号,确定放大倍数。

五、实验数据记录与分析:1.在不同频率下,记录输入信号与输出信号的幅值,并计算放大倍数;2.提取数据,绘制频率与放大倍数的关系曲线;3.分析曲线特点,讨论晶体管放大器的工作频率范围;4.对比不同输入信号幅值下的输出信号,分析并解释放大器的失真情况。

六、实验结果与结论:1.经过实验数据的分析和计算,可以得出晶体管共射极单管放大器在一定频率范围内具有较好的放大效果;2.放大倍数随频率的增加而下降,且存在失真现象;3.实验结果与理论相符,验证了晶体管共射极单管放大器的放大特性。

七、实验心得与体会:通过本次实验,我深入了解了晶体管共射极单管放大器的工作原理和特性,并且掌握了实验操作技巧。

实验中遇到了一些问题,如输出信号失真、调节电源电压等,但通过耐心地调试和思考,最终取得了满意的实验结果。

通过这次实验,我不仅提高了对电路放大器的理解,还锻炼了实验操作和数据分析能力。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的组成及工作原理。

2、学习静态工作点的调试方法,研究静态工作点对放大器性能的影响。

3、掌握放大器电压放大倍数、输入电阻、输出电阻的测量方法。

4、观察放大器输出波形的失真情况,了解产生失真的原因及消除方法。

二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极电阻、集电极电阻、发射极电阻和耦合电容等组成。

输入信号通过耦合电容加到晶体管的基极,经晶体管放大后,从集电极输出,再通过耦合电容加到负载电阻上。

2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。

合适的静态工作点可以保证放大器在输入信号的作用下,输出信号不失真。

静态工作点的设置主要通过调整基极电阻和集电极电阻的阻值来实现。

3、放大器的性能指标(1)电压放大倍数:是指输出电压与输入电压的比值,反映了放大器对信号的放大能力。

(2)输入电阻:是指从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。

(3)输出电阻:是指从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。

三、实验仪器及设备1、示波器2、信号发生器3、直流稳压电源4、万用表5、实验电路板6、晶体管、电阻、电容等元件四、实验内容及步骤1、按图连接实验电路仔细对照电路图,在实验电路板上正确连接晶体管共射极单管放大电路,注意元件的极性和引脚的连接。

2、静态工作点的调试(1)接通直流稳压电源,调节电源电压至合适值。

(2)用万用表测量晶体管各极的电压,计算静态工作电流。

(3)通过调整基极电阻的阻值,改变静态工作点,观察输出电压的变化,使输出电压不失真。

3、测量电压放大倍数(1)将信号发生器的输出信号接到放大器的输入端,调节信号发生器的频率和幅度,使输入信号为正弦波。

(2)用示波器分别测量输入信号和输出信号的峰峰值,计算电压放大倍数。

4、测量输入电阻(1)在放大器的输入端串联一个已知电阻。

《模拟电子线路实验》实验二 晶体管共射极单管放大器

《模拟电子线路实验》实验二 晶体管共射极单管放大器

模拟电子线路实验实验二晶体管共射极单管放大器【实验名称】晶体管共射极单管放大器【实验目的】1.学习单管放大器静态工作点的测量方法。

2.学习单管放大电路交流放大倍数的测量方法。

3.了解放大电路的静态工作点对动态特性的影响。

4.熟悉常用电子仪器及电子技术实验台的使用。

【预习要点】1.复习课件中有关单管放大电路工作点稳定问题的内容。

2.放大电路输出信号波形在哪些情况下可能产生失真?应如何消除失真?【实验仪器设备】【实验原理】实验电路图如图2-1所示。

温度的变化会导致三极管的性能发生变化,致使放大器的工作点发生变化,R和射极电阻影响放大器的正常工作。

图2-1所示电路中通过增加下偏置电阻B2R来改善直流工作点的稳定性,其工作原理如下:E图2-1 分压偏置共射极放大电路①利用B1R 和B2R 的分压作用固定基极电压V B 。

当B1R 、B2R 选择适当,满足I B1>> I B 时,有B2B CC B1B2R V V R R =+式中B1R 、B2R 和CC V 都是固定的,不随温度变化,所以基极电位V B 基本上为一定值。

②通过E R 的负反馈作用,限制C I 的改变,使工作点保持稳定。

具体稳定过程如下:CT ︒I电容C 1、C 2有隔直通交的作用,C 1滤除输入信号的直流成份,C 2滤除输出信号的直流成份。

射极电容C E 在静态时稳定工作点;动态时短路R E ,增大放大倍数。

当流过偏置电阻B1R (b1R 和电位器W R 的阻值和)的电流I B1远大于晶体管的基极电流B I (一般5~10倍),基极电压V B 远大于V BE 时,它的静态工作点可用下式估算B1B CC B1B2R V V R R =+B BEC E E=V V I I R ≈- CE CC C C E =(+)V V I R R -当放大器的输入端加交流输入信号i v 后,基极回路便有交流输入b i 产生,经过放大在集电极回路产生β倍的c i ,同时在负载输出o c L 'v i R =,从而实现了电压放大。

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告实验报告:晶体管共射极单管放大器摘要:本实验通过搭建晶体管共射极单管放大器电路,研究其放大特性和工作原理。

通过测量输入输出特性曲线和计算放大倍数,得出合适的工作点、负载电阻和偏置电压,以实现较大的放大倍数和线性放大的目标。

【关键词】晶体管、共射极、放大特性、工作点、负载电阻、偏置电压、放大倍数、线性放大一、引言晶体管是一种重要的电子器件,在电子电路中广泛应用于放大、开关等功能。

共射极单管放大器是一种常见的放大器电路,具有简单、灵活及放大效果较好等特点。

本实验旨在通过搭建共射极单管放大器电路,研究其放大特性和工作原理,并通过实际测量及计算,确定合适的工作参数,实现最佳的放大效果。

二、实验原理共射极单管放大器由晶体管、负载电阻、输入电阻、偏置电阻和耦合电容等组成。

输入信号经耦合电容C1传递到基极,与偏置电阻R1和R2形成偏置电压,控制晶体管的工作状态。

负载电阻RL连接于集电极,输出信号从集电极提取。

三、实验步骤2.给定直流电源VCC和VE,通过调节R1和R2,使得基极电压为合适的偏置电压。

3.连接信号发生器,设置正确的输入信号频率和信号幅度。

4.连接示波器,分别测量输入和输出信号波形,并记录幅度。

5.逐步调节负载电阻RL,测量不同负载情况下的输出信号波形和幅度。

6.分析实验数据,计算放大倍数。

四、实验结果3. 放大倍数:利用实验数据计算放大倍数Av=Vout/Vin。

五、讨论与总结通过实验搭建晶体管共射极单管放大器电路,并测量了输入输出特性曲线。

根据实验结果,我们可以得出以下结论:1.在合适的工作点和偏置电压下,共射极单管放大器可以实现较大的放大倍数。

当输出信号达到晶体管的饱和区时,放大倍数会有所下降。

2.负载电阻的选择对放大倍数和线性放大效果有较大影响。

较大的负载电阻可以得到较大的放大倍数,但也会降低线性放大效果。

3.输入特性曲线的斜率代表输入电阻,输出特性曲线的斜率代表输出电阻,可以通过斜率计算电阻值。

实验三晶体管共射极单管放大器 (1)

实验三晶体管共射极单管放大器 (1)

实验二晶体管共射极单管放大器预习部分一、实验目的L学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2.掌握放大器主要性能指标及其测试方法。

3.熟悉示波器、函数发生器、交流亳伏表、直流稳压电源及模拟实验箱的使用。

二、实验原理1.静态工作点对放大器性能的影响及调试1)静态工作点当放大电路未加输入信号(为=0)时,在直流电源作用下,晶体管基极和集电极回路的直流电流和电压用/BQ、UBEQ、I CQ、UCEQ表示,它们在晶体管输入和输出特性上各自对应一个点,称为静态工作点。

放大器静态工作点Q的位置对放大器的性能和输出波形有很大影响。

以NPN型三极管为例,如工作点偏高(如图2-2・1中的Ql点),放大器在加入交流信号以后易产生饱和失真, 此时儿的负半周将被削底;如工作点偏低(如图2-2-1中的Qz点)则易产生截止失真,即〃”的正半周被缩顶(一般截止失真不如饱和失真明显这些情况都不符合不失真放大的要求。

所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的加,检查输出电压〃〃的大小和波形是否满足要求。

如不满足,则应调节静态工作点的位置。

图2-2-1静态工作点不合适产生波形失真最后还要申明电笔上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。

所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。

若要获得最大的不失真输出电压,静态工作点最好尽量靠近交流负载线的中点,如图2-2-2中的Q点。

图2・2-3共射极单管放大器2)静态工作点的调试和测量方法静态工作点由偏置电路设置。

放大电路常用的偏置电路有固定和分压式偏置电路。

固定偏置电路仅由一个基极电阻构成,要求电阻在兆欧数量级上,Q点易受晶体管参数变化和基极电阻值误差的影响。

图2-2-3所示是分压式偏置的共射极放大电路。

偏置电路由两个千欧数量级的基极电阻RBl和R B2构成,并添加射极电阻,也称射极偏置。

晶体管共射极单管放大器 实验报告(仅供借鉴)

晶体管共射极单管放大器  实验报告(仅供借鉴)

实验二 晶体管共射极单管放大器一、实验目的1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3、 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算CCB2B1B1B U R R R U +≈CE BEB E I R U U I ≈+-≈1F RU CE =U CC -I C (R C +R E +R F1)电压放大倍数1)1(F R // β++-=be LC V r R R βA输入电阻R i =R B1 // R B2 // [ r be +(1+β)R F1 ]输出电阻R O ≈R C图2-1 共射极单管放大器实验电路由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。

而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。

2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。

3.低成本:CE放大器成本低,是很多电路应用的实用设计。

二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。

2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。

3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。

4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。

5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。

三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。

2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。

3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。

四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

广州大学学生实验报告
图1
在右图电路中,当流过基极偏置电阻的电流远大于晶体管的基极电流时(一般5~10倍),则它
(a) (b)
图2.静态工作点对u O波形失真的影响
R C、R B(R B1、R B2)都会引起静态工作点的变化,如图
的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

图3. 电路参数对静态工作点的影响
最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。

所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。

如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

图4 输入、输出电阻测量电路
测量时应注意下列几点:
两端没有电路公共接地点,所以测量R两端电压 U R时必须分别测出
U R值。

的值不宜取得过大或过小,以免产生较大的测量误差,通常取R与
应将静态工作点调在交流负载线的中点。

为此在放大器
,用示波器观察
)时,说明静态工作点已调在交流负载线的中点。

然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出U O(有
理论值中,;而在实际放大倍数中,序号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档