PKPM梁柱超筋调整

合集下载

PKPM超筋处理

PKPM超筋处理

PKPM超筋处理1、PKPM 中框架柱在什么情况下超筋?超筋后如何处理?具体方法?为什么上层结构传到柱顶的荷载比其他柱小很多,但其他柱不超筋,柱顶荷载小的柱反而超筋?网友采纳:柱超筋的原因是偏心距大。

而偏心距=弯矩/轴力。

所以很显然,柱子受到的轴力越小,偏心距越大。

如果顶层的主梁跨度很大,而刚度又比较小,那么顶层柱顶会受到很大的弯矩。

弯矩很大,又没什么轴力来压住,就不难理解为什么顶层的柱子容易超筋了。

最简单的解决办法,当然是增大柱子截面,但估计建筑不让吧。

你可以试着加大与柱子连接的主梁的截面高度,尤其是超筋的方向主梁,增大了梁的刚度,梁的变形小,柱子受到的弯矩也就小了。

还可以减小梁端弯矩调幅系数。

也可以通过设置次梁的方法,例如增加与主梁平行的次梁,从而减小相关主梁的受荷面积,也能有效减小弯矩。

追问:超筋的柱子是底层边框柱回答:总之就是受到的轴力越小,就越容易超筋。

解决方法我上面说了。

不过底层边柱加大截面应该可以没啥不可以吧,你在超筋的那个方向加大一些吧。

其他2条回答这个很明显不是因为竖向承载力引起的配筋超,8度区,二级抗震,应该是一个多层框架结构把?风震影响基本上可以忽略,你这个超应该是由于地震引起的~你首先看看在点取了刚性楼板假定的情况下,各个参数是否已经调过去了~然后在考虑其柱子的配筋问题把2、PKPM板超筋了怎么办我做PKPM的时候,发现板超筋了,哪个高手帮我解决提问者采纳1、板厚不够,板厚取大(短跨3900~4200取110厚,4200~4500取120厚)2、地下室时,取二级钢试试3、如果是人防荷载影响,则按塑性板计算3、PKPM中梁的裂缝出现红字有什么方法解决?提问者采纳计算参数里面有一个按照裂缝配筋,先选这个,如果裂缝还超限的话,看看超过多少,因为pkpm的裂缝计算不太准确,是从柱中算的,实际应该从柱边,所以我一般是看裂缝超多少,如果在10%以内就不管了,例如限值0.3mm,实际0.33mm是可以的,当然还要看实际情况。

多层框架梁、柱配筋电算人工调整

多层框架梁、柱配筋电算人工调整

多层框架梁、柱配筋电算结果的人工调整结构设计人员在使用PKPM进行多层框架计算,可免去大量人工计算,加快出图速度,但通过多项多层框架工程的设计后发现,多层框架的电算结果需要进行人工调整,有些梁、柱的最后配筋要凭设计人员的经验而定。

这种不确定性造成有的设计调整放大过于保守,有的不调整时又严重不足。

为此,就多层框架电算结果的人工调整问题进行探讨,并且提出建议。

一、梁、柱截面尺寸的调整结构设计人员根据教科书建议的梁、柱截面尺寸的取值范围,结合自己的经验先对所有构件的大小初步确定一个尺寸。

此时须注意尽可能使柱的线刚度与梁的线刚度的比值>1。

这是为了实现在罕遇地震作用下,让梁端形成塑性铰时,柱端仍可处于非弹性工作状态而没有屈服,但节点还处于弹性工作阶段的目的。

即“强柱弱梁、强节点”。

将初步确定的尺寸输入计算机进行试算,一般可得到下述三种结果:1)部分梁柱仅为构造配筋。

此时可根据电算显示的梁的裂缝宽度和柱的轴压比大小适当减小梁、柱的截面尺寸再试算。

2)部分梁显示超筋或裂缝宽度>0.3mm,部分柱的轴压比超限或配筋过大(试算时可控制柱的配筋率不大于3%)。

此时可适当放大这部分梁、柱的截面尺寸再试算。

3)梁、柱的截面尺寸均合适,勿需调整,此时要进一步观察梁、柱的配筋率是否合适。

二、梁、柱的适宜配筋率原则:掌握配筋率“适中”为宜。

这个“适中”指在规范规定的区域内取中间段,其值约相当于定额含钢量。

规范规定框架梁的纵向受拉钢筋最小配筋率0.2%,最大配筋率为2.5%;框架柱的纵向钢筋配筋率区间为0.6%~5%。

建议:对于框架梁,其纵向受拉钢筋的配筋率取0.4%~1.5%较适宜。

对于框架柱,其全部纵向受力钢筋的配筋率取1%~3%较适宜。

梁、柱配筋率的上限在试算阶段宜留有一定余地,因为下一步梁、柱配筋的调整还需要一定空间。

PKPM的SATWE中如何把梁柱配筋和轴压比调到最佳

PKPM的SATWE中如何把梁柱配筋和轴压比调到最佳

新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。

如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。

以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。

1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。

但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。

这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。

(1)振型组合数是软件在做抗震计算时考虑振型的数量。

该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。

《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。

振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。

具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。

必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。

例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。

pkpm超限解决方案

pkpm超限解决方案

以我给的标题写文档,最低1503字,要求以Markdown 文本格式输出,不要带图片,标题为:pkpm超限解决方案# PKPM超限解决方案## 简介PKPM(People’s Republic of China Weight and Plane Method)是中国研制的一种用于建筑结构计算的标准软件。

由于国内建筑设计行业中广泛使用PKPM进行结构计算和分析,因此在使用过程中会遇到一些超限问题。

本文将介绍PKPM超限问题的常见原因和解决方案。

## 常见超限问题及原因### 超限问题一:承载力超限承载力超限是指结构对荷载的承载能力不足,无法满足设计要求。

承载能力超限的原因主要有以下几点:1. 材料强度选择不合理:在PKPM中,用户需输入材料的强度参数。

如果用户输入的材料强度参数不准确或未按规范要求选择合适的强度等级,就会导致承载力超限。

2. 钢筋配筋不合理:在PKPM中,用户需要输入钢筋的配筋参数。

如果用户的配筋参数设置不合理,如梁柱钢筋过少或过多,就可能造成结构的承载能力不足。

3. 荷载计算错误:在PKPM中,用户需要输入结构的荷载参数。

如果用户在荷载计算中存在错误,如荷载重量计算不准确或荷载组合设置错误,就可能导致结构承载能力超限。

### 超限问题二:变形超限变形超限是指结构在荷载作用下的变形超过规范要求。

变形超限的原因主要包括以下几点:1. 变形计算错误:在PKPM中,用户需要输入结构的构件参数和荷载参数,并进行变形计算。

如果在变形计算中存在错误,如跨度计算错误或梁柱刚度设置不合理,就可能导致结构变形超限。

2. 结构刚度不足:结构刚度不足是导致变形超限的另一个重要原因。

如果结构的刚度设计不合理或者施工质量不达标,就可能导致变形超限。

## 解决方案### 方案一:优化材料和配筋参数1. 合理选择材料强度参数:在进行结构计算时,根据实际应力水平和材料的强度等级要求,合理选择材料的强度参数。

可以参考设计规范中的相关要求。

怎样把梁柱配筋和轴压比调到最佳

怎样把梁柱配筋和轴压比调到最佳

怎样把梁柱配筋和轴压比调到最佳结构 2009-06-11 14:46 阅读28 评论0字号:大中小新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。

如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。

以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。

1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。

但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。

这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。

(1)振型组合数是软件在做抗震计算时考虑振型的数量。

该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。

《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。

振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。

具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。

必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。

PKPM梁配筋调整

PKPM梁配筋调整

1 请问下用PKPM生成梁配筋图后,梁的截面和配的钢筋如何优化?梁的截面优化,说白了就是通过调整梁的截面大小让钢筋的配筋率处于一个合理的范围内。

按照我的经验,梁一侧受力纵筋的配筋率在1%~1.5%是比较经济的,超出这个范围越多,就越不经济,要么用的混凝土偏多,要么钢筋用的太多。

以PKPM生成的施工图为基准,钢筋的优化余地不大,因为这个施工图基本上就是满足配筋量的最小配筋方案了,要优化也只能在一些风格习惯上修改。

只有悬挑梁上部钢筋应该加强一下,个人认为在计算配筋量的基础上增加40%~100%比较安全。

关于铰接的问题,那是偷懒的做法。

次梁一旦和主梁铰接,主梁自然就不会因次梁产生扭矩了。

而主梁一旦和柱或者墙铰接,主梁基本上就无法传递地震力,因此产生的剪力和扭矩就会大大减小。

这样一来原本难以调整的模型一下子就变得“顺利”了起来。

但我是不推荐这样设计的,因为这会改变结构的受力计算假定----改的只是假定,而现实则没有改。

所以将会出现计算和实际情况不符合的现象,可能引发严重或者不严重的问题。

事实上现浇混凝土结构根本不可能做到完全铰接,为了保证计算和实际情况尽量相符,请不要随意设铰。

如果设了铰,尤其主梁设铰,请务必重新计算位移角、位移比和周期。

因为这些都会改变。

配筋时,钢筋库里的种类多,生成的配筋结果就比较多,钢筋库选的种类少,生成的配筋结果又比较不经济,所以最好生成之后自己手动配筋。

把梁支座改成铰接,一般是次梁,或者是不重要的梁,可以允许出现塑性铰。

有一些设计人员习惯在这些位置设置铰接,也可以使设计更加经济。

2 我们都是根据计算出来的钢筋面积自己配筋,程序出的平法只做参考用!3为什么梁配筋出来之后,要对SATWE信息呢?1 不是说梁配筋仅仅是比计算值大就行了PKPM自动生成的配筋不太合理需要合理调整还有项目不一样设计院要求不一样梁钢筋的选筋规则不一样有的设计院要求梁钢筋尽量用大直径钢筋这样施工方便有的设计院要求尽量用小直径钢筋控制裂缝或者省贯通筋PKPM生成的是无法满足以上要求。

pkpm超筋说明(处理方法)

pkpm超筋说明(处理方法)

7. 对钢梁验算并输出
(1) 强度验算
**F1> f,f, (LCase)M,F1=M/(Gb*Wnb)
**F3>fv,fv,(LCase)V,F3=V*S/(I*tw) (跨中)
**F3>fv,fv,(LCase)V,F3=V/Awn
(支座)
(2) 稳定验算
**F2>f,f,(LCase)M,F2=M/(Fb*Wb)
Vx,Vy 分别为控制验算的 X,Y 向剪力
Fvx,Fvy 分别为截面 X,Y 向的抗剪承载力
Ax,Ay 分别为截面 X,Y 向的计算系数
Fc
混凝土抗压强度
B,Bo 截面宽和有效宽度
H,Ho 截面高和有效高度
(4) 稳定验算
** (LCase) N,N>Fn=An*(fc*Ac+fy*As)
** Rs>Rsmax
** Rsh>1.2% 其中:
Rs 墙肢一端暗柱的配筋率或按柱配筋时的全截面配筋率 Rsh 墙水平筋配筋率 Rsmax 规范允许的最大配筋率 (3) 抗剪验算 ** (LCase)V,V>Fv=Av*fc*B*Ho 其中:
LCase 控制剪力的内力组合号
V 控制剪力
Fv 墙肢截面的抗剪承载力
(对和楼板相连的钢梁不作稳定验算)
以上为钢结构和砼结构的过程,其他不适用
LCase — 控制剪力的内力组合号 V — 控制剪力 Fv — 截面抗剪承载力 Av — 截面系数 fc — 混凝土抗压强度 B,Ho — 截面宽和有效高度 (4) 剪扭验算 **(LCase)V,T,V/(B*Ho)+T/Wt>0.25*fc 其中:
LCase — 控制内力的内力组合号

PKPM中的梁和柱优化设计

PKPM中的梁和柱优化设计

基于PKPM软件的结构构件优化设计——框架梁1、框架梁高跨比取1/10~1/12(较小跨度的梁除外),这时对于一般的民用建筑其框架梁纵筋一般不会受混凝土裂缝宽度的控制。

2、梁上部通长筋,应尽量选用较细钢筋,如2 14、2 16或2 18.3、梁纵筋直径,尽量采用较细钢筋,可减少梁的裂缝,并减少钢筋锚固长度。

4、梁纵筋布置,梁下部纵筋尽量采用单排筋(PKPM配筋率宜≤1%,配筋率>1%程序按双排筋计算配筋);梁上部纵筋尽量采用单排或双排筋(PKPM配筋率宜≤1.5%,配筋率>2%梁箍筋的最小直径需提高一级)。

5、梁的构造腰筋,有板一侧现浇板厚100,梁高h≤550,现浇板厚120,梁高h≤600;不设构造腰筋;无板一侧梁高h≤450,不设构造腰筋。

6、梁箍筋间距宜根据大多数梁的高度来确定,对高度较小的梁另行调整。

7、梁的归并系数取≤0.05.过大的归并系数是导致梁钢筋增加的一个重要因素。

8、计算时考虑梁柱节点刚域的影响(刚域对小跨度的梁影响较大,对大跨度的梁影响较小),梁的上部纵筋不予放大,下部纵筋放大5~10%.9.避免宽扁梁,大跨度采用井字梁注意梁端弯矩条幅系数0.85-0.9和中梁刚度放大系数1.8-2.0的选用。

PKPM软件优化设计——框架柱1、柱轴压比,中、边柱宜取0.6~0.8;角柱宜取0.5~0.6.柱截面尺寸主要受轴压比控制,设计时宜适当留有余地;而过小的轴压比会因截面尺寸过大和最小配筋率的控制而增加混凝土和钢筋的用量。

2、柱截面尺寸调整,多层宜2~3层调整一次,高层宜结合混凝土强度的调整每5~8层调整一次。

原因同上。

3、柱纵筋最小直径,柱截面﹤400x400mm取14mm;柱截面≥400x400mm取16mm.可使程序绘出的施工图的柱纵筋配筋率在合适的范围内。

4、柱纵筋配筋率,柱纵筋多为构造配筋,采用HRB335时中柱、边柱1~1.2%,角柱、错层短柱1.2~1.5%;采用HRB400时降低0.1%.5、柱纵筋间距,在不增大柱纵筋配筋率的前提下尽量采用规范上限值,以减少箍筋肢数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档