2019-2020石家庄市中考数学试题及答案
河北省石家庄市2019-2020学年中考数学第二次调研试卷含解析

河北省石家庄市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2) 2.下列等式正确的是( ) A .(a+b )2=a 2+b 2 B .3n +3n +3n =3n+1 C .a 3+a 3=a 6D .(a b )2=a3.到三角形三个顶点的距离相等的点是三角形( )的交点. A .三个内角平分线 B .三边垂直平分线 C .三条中线D .三条高4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3+16.计算﹣2+3的结果是( ) A .1B .﹣1C .﹣5D .﹣67.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .4200.5x +-420x =20B .420x -4200.5x +=20C .4200.5x --420x=20D .420420200.5x x -=- 9.方程x (x -2)+x -2=0的两个根为( ) A .10x =,22x = B .10x =,22x =- C .11x =- ,22x =D .11x =-, 22x =-10.下列事件中,属于不确定事件的是( )A .科学实验,前100次实验都失败了,第101次实验会成功B .投掷一枚骰子,朝上面出现的点数是7点C .太阳从西边升起来了D .用长度分别是3cm ,4cm ,5cm 的细木条首尾顺次相连可组成一个直角三角形 11.一个多边形的每一个外角都等于72°,这个多边形是( ) A .正三角形B .正方形C .正五边形D .正六边形12.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD 的边长为2,分别以A 、D 为圆心,2为半径画弧BD 、AC ,则图中阴影部分的面积为_____.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____.15.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则,y2=_____,第n次的运算结果y n=_____.(用含字母x和n的代数式表示).17.不等式组52130xx-≤⎧⎨+>⎩的解集是__________.18.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?20.(6分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.21.(6分)今年3 月12 日植树节期间,学校预购进A、B 两种树苗,若购进A种树苗3 棵,B 种树苗 5 棵,需2100 元,若购进 A 种树苗 4 棵,B 种树苗10棵,需3800 元.(1)求购进A、B 两种树苗的单价;(2)若该单位准备用不多于8000 元的钱购进这两种树苗共30 棵,求A 种树苗至少需购进多少棵?22.(8分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?23.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。
2019-2020石家庄市第二十三中学中考数学试卷(带答案)

解析:B
【解析】
【分析】
根据平均数的定义进行求解即可得.
【详解】
根据折线图可知该球员4节的得分分别为:12、4、10、6,
所以该球员平均每节得分= =8,
故选B.
【点睛】
本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.
6.D
解析:D
【解析】
【分析】
根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.
(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.
【详解】如图,∵∠1=70°,
摸球实验次数
100
1000
5000
10000
50000
100000
“摸出黑球”的次数
36
387
2019
4009
19970
40008
“摸出黑球”的频率
(结果保留小数点后三位)
0.360
0.387
0.404
0.401
0.399
0.400
根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).
详解:设点A的坐标为(m, ),
∵矩形ABCD的面积为12,
∴ ,
∴矩形ABCD的对称中心的坐标为(m+ , ),
∵对称中心在反比例函数上,
河北省石家庄市2019-2020学年中考数学第一次调研试卷含解析

河北省石家庄市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b22.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=183.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.4.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20195.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.196.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A .1个B .3个C .4个D .5个7.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( )A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<08.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα9.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是( )A .50和48B .50和47C .48和48D .48和4310.估计624的值应在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间11.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是( ) A .中位数不变,方差不变 B .中位数变大,方差不变 C .中位数变小,方差变小D .中位数不变,方差变小12.郑州地铁Ⅰ号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A.1 3B.14C.15D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.三角形两边的长是3和4,第三边的长是方程x2﹣14x+48=0的根,则该三角形的周长为_____.14.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________. 15.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD 的长为________.16.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.17.如图,反比例函数y=kx(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y 轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.5B.2C.42D.518.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.20.(6分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF (点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.21.(6分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.22.(8分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)23.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.24.(10分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.183 1.1.25.(10分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.26.(12分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.27.(12分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A选项:4x3•1x1=8x5,故原题计算正确;B选项:a4和a3不是同类项,不能合并,故原题计算错误;C选项:(-x1)5=-x10,故原题计算正确;D选项:(a-b)1=a1-1ab+b1,故原题计算正确;故选:B.【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.2.B根据前后的时间和是18天,可以列出方程. 【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B 【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程. 3.B 【解析】A 、主视图为等腰三角形,俯视图为圆以及圆心,故A 选项错误;B 、主视图为矩形,俯视图为矩形,故B 选项正确;C 、主视图,俯视图均为圆,故C 选项错误;D 、主视图为矩形,俯视图为三角形,故D 选项错误. 故选:B. 4.C 【解析】 【分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5; ∴x 1+x 2+…+x 7=﹣1∵x 1+x 2+x 3+x 4=1﹣1﹣1+3=2; x 5+x 6+x 7+x 8=3﹣3﹣3+5=2; …x 97+x 98+x 99+x 100=2…∴x 1+x 2+…+x 2016=2×(2016÷4)=1. 而x 2017、x 2018、x 2019的值分别为:1009、﹣1009、﹣1009, ∴x 2017+x 2018+x 2019=﹣1009,∴x 1+x 2+…+x 2018+x 2019=1﹣1009=﹣1,此题主要考查规律型:点的坐标,解题关键在于找到其规律 5.A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 6.B 【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2ba=1,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 1)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 1,故(4)不正确; 根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 1,且x 1<x 1,则x 1<﹣1<x 1,故(5)正确. 正确的共有3个. 故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 1+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 1﹣4ac >0时,抛物线与x 轴有1个交点;△=b 1﹣4ac=0时,抛物线与x 轴有1个交点;△=b 1﹣4ac <0时,抛物线与x 轴没有交点. 7.A 【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②,解不等式①得:x<m , 解不等式②得:x>-1,由于原不等式组无解,所以m≤-1, 故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键. 8.B 【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD ,然后在Rt △BCD 中 cos ∠BCD=CD BC ,可得BC=cos cos CD hBCD α=∠. 故选B .点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 9.A 【解析】 【分析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A.【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.10.C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】-=,56﹣24=562636=54∵49<54<64,∴7<54<8,∴56﹣24的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.11.D【解析】【分析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.12.C【解析】【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为525=15,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.13【解析】【分析】利用因式分解法求出解已知方程的解确定出第三边,即可求出该三角形的周长.【详解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,当x=6时,三角形周长为3+4+6=13,当x=8时,3+4<8不能构成三角形,舍去,综上,该三角形的周长为13,故答案为13【点睛】此题考查了解一元二次方程-因式分解法,以及三角形三边关系,熟练掌握运算法则是解本题的关键.14.【解析】【分析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.15.1【解析】【分析】如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【详解】在Rt△ABC中,由勾股定理.得6436,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴DE AD BC AB=,∴3=610AD , ∴AD=1. 故答案为1 【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED ∽△ACB 是解答本题的关键. 16.11π﹣633. 【解析】 【分析】阴影部分的面积=扇形ECF 的面积-△ACD 的面积-△OCM 的面积-扇形AOM 的面积-弓形AN 的面积. 【详解】解:连接OM ,ON.∴OM=3,OC=6, ∴30ACM ∠=o , ∴33CD AB ==,∴扇形ECF 的面积2120π927π360⋅==;△ACD 的面积2732AC CD =⨯÷=扇形AOM 的面积2120π33π360⋅==;弓形AN 的面积2120π31393333π36022⋅=-⨯⨯= △OCM 的面积1333322=⨯⨯= ∴阴影部分的面积=扇形ECF 的面积−△ACD 的面积−△OCM 的面积−扇形AOM 的面积−弓形AN 的面积2633(21π)cm .4=-故答案为63321π-. 【点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键. 17.A 【解析】 【分析】根据反比例函数图象上点的坐标特征由A 点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB 为等腰直角三角形,所以∠AOB=45°,再利用PQ ⊥OA 可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ ,所以∠BPQ=∠B′PQ=45°,于是得到B′P ⊥y 轴,则点B 的坐标可表示为(-4t ,t ),于是利用PB=PB′得t-2=|-4t |=4t,然后解方程可得到满足条件的t 的值. 【详解】 如图,∵点A 坐标为(-2,2), ∴k=-2×2=-4,∴反比例函数解析式为y=-4x, ∵OB=AB=2,∴△OAB 为等腰直角三角形, ∴∠AOB=45°, ∵PQ ⊥OA , ∴∠OPQ=45°,∵点B 和点B′关于直线l 对称, ∴PB=PB′,BB′⊥PQ ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°, ∴B′P ⊥y 轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t|=4t,整理得t2-2t-4=0,解得t1=15+,t2=1-5(不符合题意,舍去),∴t的值为15+.故选A.【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.18.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1 2 .【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=41 82 =.考点:1.画树状图或列表法;2.概率.20.解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】【分析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB 边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12 AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF∽△CBA.21.(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解析】【分析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人,从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×30100=960(人).【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.22.(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣253)海里.【解析】【分析】(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.【详解】解:(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×12=75(海里).答:B 点到直线CA 的距离是75海里;(2)∵BD =海里,BH =75海里,∴DH 75(海里), ∵∠BAH =180°﹣∠BAC =60°,在Rt △ABH 中,tan ∠BAH =BHAH,∴AH =∴AD =DH ﹣AH =(75﹣(海里).答:执法船从A 到D 航行了(75﹣ 【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键. 23.(1)证明见解析;(2)35. 【解析】 【分析】(1)由于AG ⊥BC ,AF ⊥DE ,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB ,进而可证明△ADE ∽△ABC ; (2)△ADE ∽△ABC ,AD AEAB AC =,又易证△EAF ∽△CAG ,所以AF AE AG AC=,从而可求解. 【详解】(1)∵AG ⊥BC ,AF ⊥DE , ∴∠AFE=∠AGC=90°, ∵∠EAF=∠GAC , ∴∠AED=∠ACB , ∵∠EAD=∠BAC , ∴△ADE ∽△ABC ,(2)由(1)可知:△ADE ∽△ABC , ∴35AD AE AB AC == 由(1)可知:∠AFE=∠AGC=90°, ∴∠EAF=∠GAC , ∴△EAF ∽△CAG , ∴AF AEAG AC=,∴AF AG=35考点:相似三角形的判定24.建筑物AB的高度约为30.3m.【解析】分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE 为矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=AEDE,∴AE=DE•tan30°=34040 1.73223.093⨯=⨯≈.在Rt△DEB中,tan∠BDE=BEDE,∴BE=DE•tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度约为30.3m.点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.25.详见解析.【解析】【分析】(1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC与△CBA中,AD BCCD ABAC CA=⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.26.(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩,解得1xy=-⎧⎨=⎩(舍),614xy=⎧⎨=-⎩,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h=5=5.点M到直线AB的距离的最大值是5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键27.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:8002400×1500=500个.。
河北省石家庄市2019-2020学年中考数学模拟试题(3)含解析

河北省石家庄市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.92.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D3.下列图形中既是中心对称图形又是轴对称图形的是A.B.C.D.4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°5.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是()A.(6,4)B.(4,6)C.(5,4)D.(4,5)6.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A .∠C >∠DB .∠C <∠D C .∠C=∠D D .无法确定7.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16C .14D .128.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )A .9710-⨯B .10710-⨯C .11710-⨯D .12710-⨯9.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯10.如图,点A 、B 、C 是⊙O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF 等于( )A .12.5°B .15°C .20°D .22.5°11.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .312.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A .–999×(52+49)=–999×101=–100899 B .–999×(52+49–1)=–999×100=–99900 C .–999×(52+49+1)=–999×102=–101898 D .–999×(52+49–99)=–999×2=–1998 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:212x x --= .142(3)--+(|﹣3|)0=_____.15.若一个多边形的内角和是900º,则这个多边形是 边形.16.如图,在正六边形ABCDEF 中,AC 于FB 相交于点G ,则AG GC值为_____.17.分解因:22424x xy y x y --++=______________________.18.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读下列材料,解答下列问题:材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a 2+2ab+b 2,可以逆用乘法公式将它分解成(a+b )2的形式,我们称a 2+2ab+b 2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x 2+2ax ﹣3a 2=x 2+2ax+a 2﹣a 2﹣3a 2=(x+a )2﹣(2a )2=(x+3a )(x ﹣a )材料2.因式分解:(x+y )2+2(x+y )+1解:将“x+y”看成一个整体,令x+y =A ,则原式=A 2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题: (1)根据材料1,把c 2﹣6c+8分解因式;(2)结合材料1和材料2完成下面小题:①分解因式:(a ﹣b )2+2(a ﹣b )+1;②分解因式:(m+n )(m+n ﹣4)+3.20.(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.21.(6分)如图抛物线y=ax 2+bx ,过点A (4,0)和点B (6,3,四边形OCBA 是平行四边形,点M (t ,0)为x 轴正半轴上的点,点N 为射线AB 上的点,且AN=OM ,点D 为抛物线的顶点. (1)求抛物线的解析式,并直接写出点D 的坐标;(2)当△AMN的周长最小时,求t的值;(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC 相似时.请直接写出所有符合条件的点M坐标.22.(8分)如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB 的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.23.(8分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.24.(10分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).25.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP=60°,PA=PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB=4,求CE•CP 的值.26.(12分)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过点A 作x 轴的平行线,交函数2(0)y x x =<的图象于B 点,交函数6(0)y x x=>的图象于C ,过C 作y 轴和平行线交BO 的延长线于D . (1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比;(2)如果点A 的坐标为(0,a ),求线段AB 与线段CA 的长度之比;(3)在(1)条件下,四边形AODC 的面积为多少?27.(12分)如图,已知反比例函数y =与一次函数y =k 2x +b 的图象交于A(1,8),B(-4,m).求k 1,k 2,b 的值;求△AOB 的面积;若M(x 1,y 1),N(x 2,y 2)是反比例函数y =的图象上的两点,且x 1<x 2,y 1<y 2,指出点M ,N 各位于哪个象限,并简要说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即52x=-,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即32x=-,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即12x=-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.2.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.3.B【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.4.C【解析】【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.5.D【解析】【分析】过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.【详解】如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,∵O′为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6,∴AC=BC=3,∴OC=8−3=5,∵⊙O′与x轴相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得22-BCO B 225-3=4,∴P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.6.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.7.B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算.8.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000007用科学记数法表示为7×10-1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将360000000用科学记数法表示为:3.6×1.故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.B【解析】【详解】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=12∠BOF=15°故选:B11.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n ,解得:n=1.故选D .【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.B【解析】【分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1. 故选B .【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()34x x +-;【解析】【分析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x 2﹣x ﹣12=(x ﹣4)(x+3).故答案为(x ﹣4)(x+3).14.43【解析】原式141133=+= . 15.七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n-⋅︒=︒,解得7n=.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.16.12.【解析】【分析】由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【详解】∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴AGGC=12;故答案为:12.【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.17.(x-2y)(x-2y+1)【解析】【分析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】22424x xy y x y--++=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)18.1 2【解析】【分析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可. 【详解】∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=61= 122;故答案为:1 2 .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】【分析】(1)根据材料1,可以对c2-6c+8分解因式;(2)①根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;②根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式.【详解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1设a-b=t,则原式=t 2+2t+1=(t+1)2,则(a-b )2+2(a-b )+1=(a-b+1)2;②(m+n )(m+n-4)+3设m+n=t ,则t (t-4)+3=t 2-4t+3=t 2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),则(m+n )(m+n-4)+3=(m+n-1)(m+n-3).【点睛】本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.20.25%【解析】【分析】首先设这两年中获奖人次的平均年增长率为x ,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x 的值,即可求解本题.【详解】设这两年中获奖人次的平均年增长率为x ,根据题意得:48+48(1+x )+48(1+x )2=183,解得:x 1=14=25%,x 2=﹣134(不符合题意,舍去). 答:这两年中获奖人次的年平均年增长率为25%21.(1)y=6x 2﹣3x ,点D 的坐标为(2,﹣3);(2)t=2;(3)M 点的坐标为(2,0)或(6,0).【解析】【分析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D 的坐标;(2)连接AC ,如图①,先计算出AB=4,则判断平行四边形OCBA 为菱形,再证明△AOC 和△ACB 都是等边三角形,接着证明△OCM ≌△ACN 得到CM=CN ,∠OCM=∠ACN ,则判断△CMN 为等边三角形得到MN=CM ,于是△AMN 的周长=OA+CM ,由于CM ⊥OA 时,CM 的值最小,△AMN 的周长最小,从而得到t 的值;(3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,36t2-233t),根据相似三角形的判定方法,当AM MEOC OD=时,△AME∽△COD,即|t-4|:4=|3t2-23t |:43,当AM MEOD OC=时,△AME∽△DOC,即|t-4|:43=|3t2-23t |:4,然后分别解绝对值方程可得到对应的M点的坐标.【详解】解:(1)把A(4,0)和B(6,23)代入y=ax2+bx得164036623a ba b+⎧⎪⎨+⎪⎩==,解得3623ab⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为y=3x2-23x;∵y=36x2-233x =3(x6-2) 2-233;∴点D的坐标为(2,-233);(2)连接AC,如图①,()2246(23)-+,而OA=4,∴平行四边形OCBA为菱形,∴OC=BC=4,∴C(2,3,∴,∴OC=OA=AC=AB=BC ,∴△AOC 和△ACB 都是等边三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC ,OM=AN ,∴△OCM ≌△ACN ,∴CM=CN ,∠OCM=∠ACN ,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN 为等边三角形,∴MN=CM ,∴△AMN 的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM ,当CM ⊥OA 时,CM 的值最小,△AMN 的周长最小,此时OM=2,∴t=2;(3)∵C (2,,D (2,),∴,∵3=,OC=4, ∴OD 2+OC 2=CD 2,∴△OCD 为直角三角形,∠COD=90°,设M (t ,0),则E (t ,6t 2-3t ), ∵∠AME=∠COD ,∴当AM ME OC OD =时,△AME ∽△COD ,即|t-4|:2t |, 整理得|16t 2-23t|=13|t-4|, 解方程16t 2-23t =13(t-4)得t 1=4(舍去),t 2=2,此时M 点坐标为(2,0); 解方程16t 2-23t =-13(t-4)得t 1=4(舍去),t 2=-2(舍去);当AM ME OD OC =时,△AME ∽△DOC ,即|t-4|:3=|6t 2-3t |:4,整理得|16t 2-23t |=|t-4|,解方程16t2-23t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程16t2-23t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.22.(1) AB的解析式是y=-13x+1.点B(3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x 的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-13x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-13x+1.当y=0时,0=-13x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-13x+1=23,P在点D的上方,∴PD=n-23,S△APD=12PD•AM=12×1×(n-23)=12n-13由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=12PD×2=n-23,∴S△PAB=S△APD+S△BPD=12n-13+n-23=32n-1;(3)当S△ABP=2时,32n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C (5,2).第3种情况,如图3,∠PCB=90°,CP=EB ,∴∠CPB=∠EBP=45°,在△PCB 和△PEB 中,{CP EBCPB EBP BP BP=∠=∠=∴△PCB ≌△PEB (SAS ),∴PC=CB=PE=EB=2,∴C (3,2).∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(3,4)或(5,2)或(3,2). 考点:一次函数综合题.23.(1)500, 90°;(2)380;(3)合格率排在前两名的是C 、D 两个厂家;(4)P (选中C 、D )=16. 【解析】试题分析:(1)计算出D 厂的零件比例,则D 厂的零件数=总数×所占比例,D 厂家对应的圆心角为360°×所占比例;(2)C 厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D 厂的零件比例=1-20%-20%-35%=25%,D 厂的零件数=2000×25%=500件;D 厂家对应的圆心角为360°×25%=90°;(2)C 厂的零件数=2000×20%=400件, C 厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.24.见解析【解析】【分析】分别作∠ABC和∠ACB的平分线,它们的交点O满足条件.【详解】解:如图,点O为所作.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).25.(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.26.(1)线段AB与线段CA的长度之比为13;(2)线段AB与线段CA的长度之比为13;(3)1.【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)∵A(0,2),BC∥x轴,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴线段AB与线段CA的长度之比为13;(2)∵B是函数y=﹣2x(x<0)的一点,C是函数y=6x(x>0)的一点,∴B(﹣2a,a),C(6a,a),∴AB=2a,CA=6a,∴线段AB与线段CA的长度之比为13;(3)∵ABAC=13,∴ABBC=14,又∵OA=a,CD∥y轴,∴14 OA ABCD BC==,∴CD=4a,∴四边形AODC的面积为=12(a+4a)×6a=1.27.(1) k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据S△ABC=S△AOC+S△BOC即可求得△AOB的面积;(3)由<可知有三种情况,①点M、N在第三象限的分支上,②点M、N在第一象限的分支上,③ M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可.试题解析:解:(1)把A(1,8),B(-4,m)分别代入,得=8,m=-1.∵A(1,8)、B(-4,-1)在图象上,∴,解得,.(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,∴OC=3∴S△ABC=S△AOC+S△BOC=(3)点M在第三象限,点N在第一象限.①若<<0,点M、N在第三象限的分支上,则>,不合题意;②若0<<,点M、N在第一象限的分支上,则>,不合题意;③若<0<,M在第三象限,点N在第一象限,则<0<,符合题意.考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.。
河北省石家庄市2019-2020学年第三次中考模拟考试数学试卷含解析

河北省石家庄市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.2.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角3.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣34.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB5.下列实数中是无理数的是()A.227B.πC.9D.136.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点B.重心C.内心D.外心7.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.58.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E 处,折痕为BD .则∠BDE 的度数为( )A .76°B .74°C .72°D .70°9.计算(1-1x )÷221x x x-+的结果是( )A .x -1B .11x - C .1x x - D .1x x- 10.下列运算正确的是( ) A .5a+2b=5(a+b ) B .a+a 2=a 3 C .2a 3•3a 2=6a 5D .(a 3)2=a 511.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点D D .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D 12.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°二、填空题:(本大题共6个小题,每小题4分,共24分.) 134= .14.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由»BC,线段CD和线段BD所围成图形的阴影部分的面积为__.15.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.17.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.当x ________ 时,分式xx3有意义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?20.(6分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为,并补全条形统计图;该区今年共种植月季8000株,成活了约株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.21.(6分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.22.(8分)如图,抛物线y=ax 2+bx(a <0)过点E(10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.23.(8分)某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°,乙勘测员在B 处测得点O 位于南偏西73.7°,测得AC=840m ,BC=500m .请求出点O 到BC 的距离.参考数据:sin73.7°≈2425,cos73.7°≈725,tan73.7°≈24724.(10分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?25.(10分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.26.(12分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=22,求⊙O的半径.27.(12分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.2.D【解析】【分析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2=b2,则a=±b,A是假命题;数a,b满足a<0,b<0,则ab>0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键3.A【解析】【分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.4.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.5.B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、227是分数,属于有理数;B、π是无理数;C,是整数,属于有理数;D、-13是分数,属于有理数;故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.7.B【解析】【分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4=;故选:B.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.8.B【解析】【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.【详解】解:∵∠A=56°,∠C=88°,∴∠ABC=180°-56°-88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,∴∠BDE=180°-18°-88°=74°.故选:B.【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.9.B【解析】【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【详解】解:原式=(xx-1x)÷()2x1x-=x1x-•()2xx1-=1x1-,故选B.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.10.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.11.D【解析】【分析】根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB 于点E、F,第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.故选:D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.12.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.【详解】∵22=4,∴4=2. 【点睛】 本题考查求算术平方根,熟记定义是关键. 14.23﹣23π. 【解析】试题分析:根据题意可得:∠O=2∠A=60°,则△OBC 为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=23,OCD 1223232S =⨯⨯=V ,OBC 60423603S ππ⨯==扇形,则2233S π=-阴影. 15.k≥﹣1【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出结论. 详解:∵关于x 的一元二次方程x 2+1x-k=0有实数根,∴△=12-1×1×(-k )=16+1k≥0,解得:k≥-1.故答案为k≥-1.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.16.-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x,k x ),则点A 的坐标为(-x,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 17.2【解析】【详解】如图,过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线1y=x 上,∴四边形AEOD 的面积为1 ∵点B 在双曲线3y=x上,且AB ∥x 轴,∴四边形BEOC 的面积为3 ∴四边形ABCD 为矩形,则它的面积为3-1=218.x≠3【解析】由题意得x-3≠0,∴x≠3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解析】分析:(1)设进价为x 元,则标价是1.5x 元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x ,将标价直降100元销售7辆获利是(1.5x-100)×7-7x ,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x ,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a 元,利润为w 元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x 元,则标价是1.5x 元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x ,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w=(51+20a ×3)(1500-1000-a ), =-320(a-80)2+26460, ∵-320<0, ∴当a=80时,w 最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w 与a 的关系式,进而求出最值.20. (1)72°,见解析;(2)7280;(3).【解析】【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【详解】(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°月季的株数为2000×90%-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为8000×91%=7280(株).故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.∴P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.21.(1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=12x 2-9x+80,根据二次函数的性质,即可得出最短时间. 【详解】 (1)设y 1=kx+b,将(8,18),(9,20),代入y 1=kx+b,得:818,920.k b k b +=⎧⎨+=⎩解得2,2.k b =⎧⎨=⎩所以y 1关于x 的函数解析式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y 1+y 2=2x+2+12x 2-11x+78=12x 2-9x+80=12(x-9)2+39.5. 所以当x=9时,y 取得最小值,最小值为39.5,答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点睛】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x 的取值范围.22.(1)21542y x x =-+;(2)当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)抛物线向右平移的距离是1个单位.【解析】【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,1)代入计算可得;(2)由抛物线的对称性得BE=OA=t ,据此知AB=10-2t ,再由x=t 时AD=21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得.【详解】(1)设抛物线解析式为()10y ax x =-, Q 当2t =时,4AD =,∴点D 的坐标为()2,4,∴将点D 坐标代入解析式得164a -=,解得:14a =-, 抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE OA t ==,102AB t ∴=-,当x t =时,21542AD t t =-+, ∴矩形ABCD 的周长()2AB AD =+()215210242t t t ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦, 21202t t =-++, ()2141122t =--+, 102-<Q , ∴当1t =时,矩形ABCD 的周长有最大值,最大值为412; (3)如图,当2t =时,点A 、B 、C 、D 的坐标分别为()2,0、()8,0、()8,4、()2,4,∴矩形ABCD 对角线的交点P 的坐标为()5,2,Q 直线GH 平分矩形的面积,∴点P 是GH 和BD 的中点,DP PB ∴=,由平移知,//PQ OBPQ ∴是ODB ∆的中位线,142PQ OB ∴==, 所以抛物线向右平移的距离是1个单位.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.点O到BC的距离为480m.【解析】【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.【详解】作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.24.(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x 元,根据题意得: 760.5x +=26x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A 地到B 地油电混合行驶,用电行驶y 千米,得:0.26y+(260.26﹣y )×(0.26+0.50)≤39 解得:y≥74,即至少用电行驶74千米.25.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26. (1)见解析;(2)33 .【解析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=2,得到DF=22,根据勾股定理得到AD=22AF DF+=26,求得AE=6,设⊙O的半径为R,则OE=R﹣3,OA=R,根据勾股定理列方程即可得到结论.详解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分.∵AC=8,tan∠BAC=22,∴AF=4,tan∠DAC=DFAF=22,∴DF=22,∴AD=22AF DF+=26,∴AE=6.在Rt△PAE中,tan∠1=PEAE=22,∴PE=3.设⊙O的半径为R,则OE=R﹣3,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣3)2+(6)2,∴R=332,即⊙O的半径为332.点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.27.(1)10750;(2)220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元. 【解析】【分析】(1)根据“利润=销售总额-总成本”结合两种T 恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【详解】(1)∵甲种T 恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++ ⎪⎣⎦⎝⎭; 故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴==②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤,综上,最大利润为10750元.【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.。
石家庄市2019年中考数学试题及答案

石家庄市2019年中考数学试题及答案本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷总分120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员 将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形为正多边形的是DC B A2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作的个数为 A .+3 B .–3 C .–13 D .+133.如图1,从点C 观测点D 的仰角是A .∠DAB B .∠DCEC .∠DCAD .∠ADC4.语句“x 的18与x 的和不超过5”可以表示为 A .x8+x ≤5 B .x8+x ≥5C .8x +5≤5D .8x +x =55.如图2,菱形ABCD 中,∠D =150°,则∠1=图1水平地面A.30°B.25°C.20°D.15°6.小明总结了以下结论:①a(b+c)=ab+ac②a(b–c)=ab–ac③(b–c)÷a=b÷a–c÷a(a≠0)④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是A.1 B.2 C.3 D.47则回答正确的是A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB 8.一次抽奖活动特等奖的中奖率为15000,把15000用科学记数法表示为A.5⨯10–4 B.5⨯10–5C.2⨯10–4D.2⨯10–59.如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为A.1 B.6 C.3 D.210.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A B C D70°50°50°70°11.某同学要统计本校图书馆最受学生欢迎的图书种类.以下是排乱的统计步骤:图3①从扇形图中分析出最受学生欢迎的各类; ②去图书馆收集学生借阅图书的记录; ③绘制扇形图来表示各个各类所占的百分比; ④整理借阅图书记录并绘制频数分布表. 正确统计步骤的顺序是A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①12.如图4,函数y =⎩⎪⎨⎪⎧1x (x >0)–1x (x >0)的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q13.如图5,若x 为正整数...,则表示(x +2)2x 2+4x +4–1x +1的值的点落在 A .段① B .段② C .段③ D .段④14.图6-2是图6-1中长方体的三视图,若用S 表示面积,且S 主=x 2+2x ,S 左=x 2+x ,则S 俯=A .x 2+3x +2B .x 2+2C .x 2+2x +1D .2x 2+3x15.小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中 一个根是x =–1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根16.对于题目“如图7-1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界.....通过移转图4图5图6-2图6-1正面俯视图(即平移或旋转)的方式,自由地从横放移转到竖放, 求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n . 甲:如图7-2,思路是当x 为矩形对角线长时就可 以移转过去; 结果取n =13.乙:如图7-3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14.丙:如图7-4,思路是当x 为矩形的长与宽之和的22倍时就可移转过去;结果取n =13.下列正确的是A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题有3个小题,共11分.17小题3分,18~19 小题各有2个空,每空2分.把答案写在题中横线上)17.若7–2⨯7–1⨯70,则p 的值为________.18.如图8,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.即4+3=7则(1)用含x 的式子表示m =_________; (2)当y =–2时,n 的值为_________.19.勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图9(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离_________km ;图7-2图7-1图7-3图8(2)计划修一条从C 到铁路AB 的最短公路....l ,并 在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为_________km .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,–,⨯,÷中 的某一个(可重复使用),然后计算结果.(1)计算:1+2–6–9;(2)若1÷2⨯6□9=–6,请推算□的符号;(3)若“1□2□6–9”的□内填入符号后,使计算所得数最小,直接..写出这个最小数.21.(本小题满分9分)已知:整式A =(n 2–1)2+(2n )2,整式B >0. 尝试 化简整式A 发现 A =B 2.求整式B .联想 由上可知,B 2=(n 2–1)2+(2n )2,当n >1时,n 2–1,2n ,B 为直角三角形的 三边长,如图10.填写下表中B 的值:图9(0,-17)1)图10Bn 2–12n22.(本小题满分9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种,从中随机拿出一个球,已知P (一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练. ①所剩的3个球价格的中位数与原来4个球价格的 中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法...(如图11)求乙组两次都拿到8元球的概率.又拿先拿23.(本小题满分9分)如图12,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与 边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心. (1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;图11图12PIEBCAD(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AEC <n °,分别直接..写出m ,n 的值.24.(本小题满分10分)长为300m 的春游队伍,以v (m/s )的速度向东行进.如图13-1和13-2,当队伍 排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m/s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头..与O 的距离为S 头(m ). (1)当v =2时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的 距离为S 甲(m ),求S 甲与t 的函数关系式(不写t 的取值范围);(2)设甲这次往返队伍的总时间为T (s ),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.25.(本小题满分10分)如图14-1和14-2,ABCD 中,AB =3,BC =15,tan ∠DAB =43.点P 为AB 延长线上一点.过点A 作⊙O 切CP 于点P .设BP =x .(1)如图14-1,x 为何值时,圆心O 落在AP 上? 若此时⊙O 交AD 于点E ,直接..指出PE 与BC 的位置关系; 图13-2图13-1尾头图14-1EO DCPB(2)当x =4时,如图14-2,⊙O 与AC 交于点Q ,求∠CAP的度数,并通过计算比较弦AP 与劣弧PQ ⌒长度的大小;(3)当⊙O 与线段..AD 只有一个公共点时,直接..写出x26.(本小题满分12分)如图15,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x –b 与y 轴交于点B ;抛物线L :y =–x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间距离;(4)在L 和a 所围成的封闭图形的边界上...,把横、纵坐标都是整数的点称为“美点”, 分别直接..写出b =2019和2019.5时“美点”的个数. 图15图14-2备用图参考答案11。
2020年河北石家庄中考数学试卷(解析版)

2020年河北石家庄中考数学试卷(解析版)一、选择题(本大题共16小题,共42分)1.如图,在平面内作已知直线的垂线,可作垂线的条数有( ).A.条B.条C.条D.无数条2.墨迹覆盖了等式“”中的运算符号,则覆盖的是( ).A. B. C. D.3.对于①,②,从左到右的变形,表述正确的是( ).A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.图中的两个几何体分别由个和个相同的小正方体搭成,比较两个几何体的三视图,正确的是( ).正面正面A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.单价(元千克)第次第次第次次数如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元千克,发现这四个单价的中位数恰好也是众数,则( ).A.B.C.D.6.如图,已知,用尺规作它的角平分线.如图,步骤如下:第一步:以为圆心,以为半径画弧,分别交射线,于点,;第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点;第三步:画射线.射线即为所求.下列正确的是( ).图第一步第二步第三步图A.,均无限制B.,的长C.有最小限制,无限制D.,的长7.若,则下列分式化简正确的是( ).A.B.C.D.8.如图所示的网格中,以点为位似中心,四边形的位似图形是( ).A.四边形B.四边形C.四边形D.四边形9.若,则( ).A.B.C.D.10.如图,将绕边的中点顺时针旋转.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点而点四边形,处,转到了点处是平行四边形小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形“之间作补充.下列正确的是( ).A.嘉淇推理严谨,不必补充B.应补充:且C.应补充:且D.应补充:且11.若为正整数,则( ).A.B.C.D.个12.如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是( ).东北A.从点向北偏西走到达B.公路的走向是南偏西C.公路的走向是北偏东D.从点向北走后,再向西走到达13.已知光速为千米秒,光经过秒传播的距离用科学记数法表示为千米,则可能为( ).A.B.C.或D.或或14.有一题目:“已知:点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图,由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”下列判断正确的是( ).A.淇淇说的对,且的另一个值是B.淇淇说的不对,就得C.嘉嘉求的结果不对,应得D.两人都不对,应有个不同值15.如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点的个数为;乙:若,则点的个数为;丙:若,则点的个数为.下列判断正确的是( ).xyO()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是,,,,,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积的直角三角形,则选取的三块纸片的面积分别是( ).A.,,B.,,C.,,D.,,最.大.二、 填空题(本大题共3小题,共12分)17.已知:,则 .18.正六边形的一个内角是正边形一个外角的倍,则 .19.如图是个台阶的示意图,每个台阶的高和宽分别是和,每个台阶凸出的角的顶点记作(为的整数),函数的图像为曲线.(1)(2)(3)若过点,则 .若过点,则它必定还过另一点,则 .若曲线使得这些点分布在它的两侧,每侧各个点,则的整数值有 个.三、解答题(本大题共7小题,共66分)(1)(2)20.已知两个有理数:和.计算:.若再添一个负整数,且,与这三个数的平均数仍小于,求的值.(1)(2)21.有一电脑程序:每按一次按键,屏幕的区就会自动加上,同时区就会自动减去,且均显示化简后的结果.已知,两区初始显示的分别是和.如,第一次按键后,、两区分别显示:从初始状态按次后,分别求,两区显示的结果.从初始状态按次后,计算,两区代数式的和,请判断这个和能为负数吗?说明理由.12(1)(2)22.如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.回答下列问题:求证:≌.写出,和三者间的数量关系,并说明理由.备用图若,当最大时,指出与小半圆的位置关系,并求此时(答案保留).直.接.扇形(1)12(2)23.用承重指数衡量水平放置的长方体木板的最大承重量,实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.求与的函数关系式.如图,选一块厚度为厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗)设薄板的厚度为(厘米),.长宽薄板厚板求与的函数关系式.为何值时,是的倍?【注:()及()中的①不必写的取值范围】厚薄薄24.表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.(1)(2)(3)求直线的解析式.请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长.设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.(1)(2)(3)25.如图,甲、乙两人(看成点)分别在数轴和的位置上,沿数轴做移动游戏.西东甲乙每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反.而后根据所猜结果进行移动.①若都对或都错,则甲向东移动个单位,同时乙向西移动个单位;②若甲对乙错,则甲向东移动个单位,同时乙向东移动个单位;③若甲错乙对,则甲向西移动个单位,同时乙向西移动个单位.经过第一次移动游戏,求甲的位置停留在正半轴上的概率.从图的位置开始,若完成了次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值.从图的位置开始,若进行了次移动游戏后,甲与乙的位置相距个单位,写出的值.最.终.直.接.26.如图和图,在中,,,,点在边上,点,分别在,上,且.点从点出发沿折线—匀速移动.到达点时停止;而点在边上随移动,且始终保持.【答案】解析:作已知直线的垂线,应有无数条,故选.解析:由幂的运算规则可知,.故选.解析:(1)(2)(3)(4)图图当点在上时,求点与点的最短距离.若点在上,且将的面积分成上下两部分时,求的长.设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示).在点处设计并安装一扫描器,按定角扫描区域(含边界).扫描器随点从到再到共用时秒.若,请直接写出点被扫描到的总时长.D1.D2.C3.由定义可知,因式分解是把一个多项式化为几个整式乘积的变形,因此①属于因式分解.②是整式乘法运算.故选解析:两个几何体的三视图均为的正方形,均相同.故选.解析:第一步画弧可以选取大于的任意长度.第二步的长度必须要大于的长,否则两弧无法在角内部形成交点.故选.解析:按照位似的作图原理,可以得到的对应点为,的对应点为,的对应点为,的对应点为.故选.解析:利用平方差公式可得,,可求为.故选.解析:∵,,∴四边形是平行四边形.故选:.D 4.B 5.B 6.D 7.A 8.B 9.B 10.解析:,,故选.解析:如图,从点向西走到达,即,从点向北走到达,即,则,且.选项:过作于,,即点向北偏西走到达,故错误;选项:公路的走向是南偏西,故正确;选项:公路的走向是北偏东,故正确;选项:从点向北走后,再向西走到达,即,,故正确.故选.解析:光速为千米秒,,因此传播距离为千米千米,即为千米千米.故选.A 11.个A 12.C 13.解析:分情况讨论:①如图所示,当为锐角三角形时,此时点在内部,∵,∴;②如图所示:当为钝角三角形时,点在外部,∵,∴,则;③如图所示:当为直角三角形时,此时点在的斜边中点处,不合题意舍去.综上所述:的另一个值为.故选.A 14.解析:,二次函数的顶点坐标为,即当时,,因此,当时,点的个数为,故甲正确;当时,点的个数为,故乙正确,当时,点的个数为,故丙错误.故选.解析:中选择的纸片面积:,符合,能够围成直角三角形,其面积为.中选择的纸片面积:,符合,能够围成直角三角形,其面积为.中选择的纸片面积:,不符合,无法围成直角三角形.中选择的纸片面积:,符合,能够围成直角三角形,其面积为.故选.解析:,与原式对照可得,,则.解析:正六边形内角度数为,正边形外角度数为,依题意可得,解得.C 15.B 16.17.18.(1)(2)(3)(1)(2)解析:依题意,得,,,,,,,.若过点,则.若过点,则,而,所以过点.经分析可知,曲线若经过顶点,必定同时经过两个定点,曲线过点和点时,;曲线过点和点时,;曲线过点和点时,;曲线过点和点时,;若曲线两侧各个点,则有,所以共有个可能的整数值.解析:.平均数为:,由题意得,∴,又∵为负整数,∴.解析:(1)(2)(3)19.(1).(2).20.(1)区:;区:.(2)不能为负数,证明见解析.21.(1)(2)12(1)(2)按次后,区:;区:.按次后,区:,区:.两区代数式相加为:.∵,∴不能为负数.解析:在和中,∵,∴≌..∵≌,∴,又∵,∴.与小半圆相切.由已知可知:,,∵与⊙相切,∴,∴.在中,,,12(1)证明见解析.,证明见解析.(2)与小半圆相切,.22.(1)12(2)即,∴,∴,∴.解析:木板称重指数与木板厚度的平方成正比.∴设,当时,,.∴,故与的函数关系式为:.设薄板厚度为,则厚板的厚度为.∴,.∴.又,且.∴.故与的函数关系式为:.当是的倍时,即,∴,.∴,(舍).∴.故,是的倍.扇形(1).12(2).,是的倍.23.薄厚薄厚薄薄薄(1)(2)(3)解析:将,代入得,,解得.所以,的解析式为.的解析式为,联立,可得,解得.与轴的交点坐标.所以,被轴和所截得线段长.设直线与,和轴的交点分别为,,,其中,,解得.则的坐标,同理可得的坐标,的坐标,若其中一个是另两个的中点,则有①若是的中点.即,解得.②若是的中点.即,解得.③若是的中点,即,解得.综上,的值为或或.(1).(2).(3)的值为或或.24.(1)(2)(3)(1)解析:根据题意做表格,括号内部分别对应甲乙的运动方向和距离,左减右加,①记作②记作③记作,甲对 甲错 乙对 乙错若只移动一次,要求甲位于正半轴,则只有一种情况,概率.由题意得,次结果均为一对一错,且观察乙的运动状况即可,设乙猜对次,则猜错次,所以最终停留位置,令,则解得,所以当时,;当时,.综上距离原点最近时,.由题意得,无论①②③哪种情况发生,甲乙二人的距离都会减少(或增加)个单位,所以当移动次之后,两人相距个单位,则,解得或.解析:过作于点,(1).(2),.(3)或.25.(1).(2).(3)时,到直线距离为;时,到直线的距离为.(4).26.(2)(3)∵,∴,∵,∴,在中,,∴,∴,即在运动时,点到点的最短距离为.∵,∴,∵,∴相似于,∴,又,∴,∴,设交于,∵,,∴,在中,,∴.当时,在上运动,过作交延长线于,∵,(4)∴,∵,∴,∴,∵,其中,则,∴,∴,∴,即点到直线距离为,当时,在上运动,过作于点,∵,则,在中,,∴,∴,即点到直线的距离为.①在运动时,,∴,∴,∴,当时,,点开始被扫描到,∴,∵,∴扫描器扫描速度为,当刚开始被扫描时,运动了,在上运动,点被扫描到的时长为,②∵,,∴,又,∴,当最后一刻被扫描时即,则,,设,,则,∴,,,,,在上运动时,点不被扫描到时长为,被扫描时长为,故总时长为.。
河北省石家庄市2019-2020学年中考数学模拟试题含解析

河北省石家庄市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在3,0,-2,-四个数中,最小的数是()A.3 B.0 C.-2 D.-2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×10113.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<24.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④5.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x 6.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣2 7.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+1x=2 C.x2+1=x2﹣1 D.x(x﹣1)=08.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=12,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(52,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )A.②③④B.①②③C.①④D.①②④9.4的平方根是( )A.4 B.±4 C.±2 D.210.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE 等于()A.80°B.85°C.100°D.170°11.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.312.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE∥BC.如果35DEBC,CE=16,那么AE的长为_______14.因式分解:2m2﹣8n2= .15.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.16.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.17.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.18.将数字37000000用科学记数法表示为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解分式方程:33x--1=13-x20.(6分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x+与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.21.(6分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且=AC BD,过点O作OE⊥AC于点E⊙O 的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=12,BG=10,求AF的长.23.(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24.(10分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.25.(10分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)26.(12分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.27.(12分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.2.B【解析】【分析】科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【详解】解:929亿=92900000000=9.29×11.故选B.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.4.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020石家庄市中考数学试题及答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .9 B .8 C .7 D .6 2.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°B .90°C .72°D .60°3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .184.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 25.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 6.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解7.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)8.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒9.下面的几何体中,主视图为圆的是( )A .B .C .D .10.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.15.如图,点A 在双曲线y=4x上,点B 在双曲线y=kx (k≠0)上,AB ∥x 轴,过点A 作AD⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.16.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.17.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算) 19.计算:21(1)211x x x x ÷-+++=________.20.若式子3x +在实数范围内有意义,则x 的取值范围是_____.三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.22.解方程:x21 x1x-= -.23.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.24.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.3.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6. 3+6>6,符合条件.成立. ∴C=3+6+6=15. 故选B .考点:等腰三角形的性质.4.D解析:D 【解析】 由题意得:1212k ky y x x ==-=- ,故选D. 5.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根, ∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键6.D解析:D 【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.7.D解析:D 【解析】 【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 8.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.9.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.D解析:D【解析】【分析】 【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D11.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55ab >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7 【解析】 【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值. 【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0, ∴a ﹣7=0,b ﹣1=0,解得a=7,b=1, ∵7﹣1=6,7+1=8, ∴68c <<, 又∵c 为奇数, ∴c=7, 故答案为7. 【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.4【解析】【分析】【详解】解:连接AC 交OB 于D∵四边形OABC 是菱形∴AC⊥OB∵点A 在反比例函数y=的图象上∴△AOD 的面积=×2=1∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:4解析:4 【解析】 【分析】 【详解】解:连接AC 交OB 于D .∵四边形OABC 是菱形, ∴AC ⊥OB . ∵点A 在反比例函数y=2x的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4 故答案为:415.12【解析】【详解】解:设点A 的坐标为(a )则点B 的坐标为()∵AB ∥x 轴AC=2CD ∴∠BAC=∠ODC ∵∠ACB=∠DCO ∴△ACB ∽△DCO ∴∵OD=a 则AB=2a ∴点B 的横坐标是3a ∴3a=解析:12 【解析】 【详解】解:设点A 的坐标为(a ,4a ),则点B 的坐标为(ak 4,4a), ∵AB ∥x 轴,AC=2CD ,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.16.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300 s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.17.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270180270T T t t --=甲乙, t 乙=2t 甲, ∴180270180135T T --=, 解得T =540. ∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍, ∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 19.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.解:若式子3x 在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.x=.22.2【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;⨯=户(2)①B:100030%3001000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户), 所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元.(ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去. 当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.25.(1)见解析;(2)243.【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12, ∵DF ∥AB ,∴∠FDC=∠A=90°,∴==在Rt △DOF 中,==∴菱形BFDE 的面积=12×EF •BD =12×12× 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。