数学排列与组合
数学排列与组合

小结
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
组合的概念 组合数的概念
性质2
一个口袋内装有大小相同的7个白球和1个黑球. ⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球,有 多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少 种取法?
n1
n
n
证明:
Cmn
Cm1 n
n!
n!
m!(n m)! (m 1)![n (m 1)]!
n!(n m 1) n!m (n m 1 m)n!
m!(n m 1)!
m!(n 1 m)!
(n 1)! m![(n 1) m]!
Cmn1.
.
一、等分组与不等分组问题
例3、6本不同的书,按下列条件,各有多少种不同的分法; (1)分给甲、乙、丙三人,每人两本; (2)分成三份,每份两本; (3)分成三份,一份1本,一份2本,一份3本; (4)分给甲、乙、丙3人,一人1本,一人2本,一人3本; (5)分给甲、乙、丙3人,每人至少一本; (6)分给5个人,每人至少一本; (7)6本相同的书,分给甲乙丙三人,每人至少一本。
变式练习
按下列条件,从12人中选出5人,有多少种不同选法?
(((((12345)))))甲甲甲甲甲、 、 必 、 、乙 须 乙乙 乙、 当 、、 、丙 选 丙丙 丙三 , 三三三人人乙人人必不、只至须能丙有多2当当不一人选选能人当;;当当选选选C;;;33CCC921131CC94943C613032C76985 126
2、从6位同学中选出4位参加一个座谈会,要求张、王两人中
至多有一个人参加,则有不同的选法种数为 9
排列与组合的基本原理与应用

排列与组合的基本原理与应用排列与组合是概率与数学中的重要概念,它们在许多实际问题中都具有广泛的应用。
本文将介绍排列与组合的基本原理以及在实际生活中的应用。
一、排列的基本原理排列是从若干元素中选出若干个元素按一定的顺序排列的方式。
在排列中,元素的顺序非常重要,不同的顺序会得到不同的结果。
1. 排列的定义从n个不同元素中选取m个进行排列,称为从n个不同元素中取出m个元素的一个排列,记作P(n, m)。
2. 排列的计算公式n个不同元素中选取m个进行排列的计算公式为:P(n, m) = n! / (n-m)!3. 排列的实例例如,有3个不同的球,分别编号为1、2、3。
从中选取2个进行排列,则可能的排列结果有:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2),共有6种排列方式。
二、组合的基本原理组合是从若干元素中选出若干个元素按任意顺序组成的方式。
在组合中,元素的顺序不重要,不同的顺序会得到相同的结果。
1. 组合的定义从n个不同元素中选取m个进行组合,称为从n个不同元素中取出m个元素的一个组合,记作C(n, m)。
2. 组合的计算公式n个不同元素中选取m个进行组合的计算公式为:C(n, m) = n! / (m! * (n-m)!)3. 组合的实例例如,有3个不同的球,分别编号为1、2、3。
从中选取2个进行组合,则可能的组合结果有:(1,2)、(1,3)、(2,3),共有3种组合方式。
三、排列与组合的应用排列与组合在实际生活中有许多应用,以下列举几个常见的实例。
1. 赛事排列在体育比赛或其他比赛中,要确定参赛者的出场顺序,可以使用排列的方法。
假设有8名选手参加比赛,按照排列的方法,共有8!种不同的出场顺序。
2. 密码生成在电子设备或网络账号中,为了保护信息安全,常常需要设置密码。
使用排列的方式可以生成各种组合的密码,增加破解的难度。
3. 彩票号码彩票中的号码选择也可以使用组合的方法。
排列与组合的求解方法

排列与组合的求解方法排列与组合是数学中重要的概念和计算方法,广泛应用于各个领域。
在解决问题时,我们经常会遇到需要计算不同元素的排列或组合的情况。
本文将介绍排列与组合的定义、基本性质以及常用的求解方法。
一、排列的求解方法1.全排列法全排列法是求解排列问题最常用的方法之一。
它的基本思想是通过逐个确定某个元素的位置,将问题分解为子问题,并递归求解。
以求解n个元素的全排列为例,首先将第一个位置确定为一个元素,然后将剩余的n-1个元素进行全排列,直到最后一个元素。
2.字典序法字典序法是另一种常用的排列求解方法。
它的基本思想是通过字典序的顺序,依次生成下一个排列。
具体做法是,从右向左找到第一个不满足升序的相邻元素对(i,j),然后从右向左找到第一个大于i的元素(k),将i和k交换位置,最后将j右边的元素按升序排列。
3.逆序对法逆序对法是一种简单而直观的排列求解方法。
它的基本思想是通过计算逆序对的个数,确定排列的位置。
逆序对指的是右边的元素小于左边的元素的情况。
以求解n个元素的全排列为例,全排列总数为n!,每个元素在某一位置上产生逆序对的概率为1/n。
因此,逆序对法可以通过计算逆序对的个数,确定某个排列的位置。
二、组合的求解方法1.穷举法穷举法是求解组合问题最直观的方法。
它的基本思想是通过逐个选择元素,将问题分解为子问题,并递归求解。
以求解从n个元素中选取m个元素的组合为例,首先将第一个元素选择为组合的一部分,然后将剩余的n-1个元素中选择m-1个元素的组合,直到最后一个元素。
2.数学公式法数学公式法是一种快速计算组合数量的方法。
通过使用组合数公式,可以直接计算出从n个元素中选取m个元素的组合数量。
组合数公式为C(n,m) = n! / ((n-m)! * m!),其中n!表示n的阶乘。
根据这个公式,可以直接计算出组合的数量。
3.递推法递推法是一种逐步确定组合元素的方法。
它的基本思想是通过前一步的组合结果,推导出下一步的组合结果。
高等数学中的排列与组合计算

排列与组合是高等数学中的重要概念和计算方法,它们在各个领域的数学问题中扮演着关键角色。
排列与组合既有着共同点,又有着明显的区别,它们的应用领域也有所不同。
首先,我们来看看排列的计算。
排列是指从一组事物中选出几个事物进行排列,其次序有关,即排列中的元素是有区别的。
排列的计算方式可以使用阶乘来实现。
阶乘指的是从1到某个正整数n的所有正整数的乘积,用符号n!表示。
例如,5!表示1x2x3x4x5,其值为120。
那么对于n个不同的元素中,选出m个元素进行排列,数学上可以用P(n,m)表示,其计算方式为n!/(n-m)!。
排列的计算方式非常灵活,可以应用于考察事物排序的各种问题,比如从A、B、C、D四人中选出三人进行排队,那么可能的排列数为P(4,3)=4x3x2=24。
接下来,我们来看看组合的计算。
组合是指从一组事物中选出几个事物进行组合,其次序无关,即组合中的元素是没有区别的。
组合的计算方式可以使用阶乘和除法来实现。
对于n个不同的元素中,选出m个元素进行组合,数学上可以用C(n,m)表示,其计算方式为n!/[(n-m)!x m!]。
组合的计算方式可以应用于考察事物组合可能性的问题,比如从A、B、C、D四人中选出两人进行配对,那么可能的组合数为C(4,2)=4!/[2!(4-2)!]=6。
排列和组合的计算方式在高等数学中有着广泛的应用。
在概率统计中,排列和组合的计算可以帮助我们计算出不同事件发生的概率。
比如投掷一个骰子,计算出两次投掷中6点连续出现的概率可以使用排列和组合的计算方法。
在排列组合理论中,排列和组合的计算可以帮助我们解决各种复杂的问题,如求数学函数的展开式、证明数学定理等。
在图论中,排列和组合的计算可以帮助我们解决路径问题、圈问题等。
总的来说,排列和组合是高等数学中非常重要的计算方法,它们在各个领域的数学问题中都有广泛的应用。
排列和组合的计算方式简单灵活,但在应用中也需要注意灵活变通,结合实际问题进行具体分析,灵活选择适当的计算方式。
高考数学专题:排列与组合

高考数学专题:排列与组合在高考数学中,排列与组合是一个重要的知识点,也是很多同学感到头疼的部分。
但别担心,让我们一起来深入了解它,掌握解题的关键。
首先,我们要明白什么是排列,什么是组合。
排列,简单来说,就是从给定的元素中取出一些,然后按照一定的顺序排成一列。
比如说,从 5 个不同的数字中选出 3 个排成三位数,这就是排列问题。
而组合呢,只关注选取的元素,不考虑它们的顺序。
比如,从 5 个不同的水果中选出 3 个,这就是组合问题。
那为什么要区分这两者呢?因为在计算方法上,它们是不同的。
排列的计算方法是用排列数公式:A(n, m) = n! /(n m)!。
这里的“!”表示阶乘,比如 5! = 5 × 4 × 3 × 2 × 1 。
组合的计算方法是用组合数公式:C(n, m) = n! / m! ×(n m)!。
我们通过一些具体的例子来理解。
比如,有 5 个不同的球,分别标有数字 1、2、3、4、5 。
从中取出 3 个排成一排,有多少种排法?这就是一个排列问题。
第一步,从 5 个球中选 3 个,有 C(5, 3) 种选法;第二步,选出的 3 个球进行排列,有 A(3, 3) 种排法。
所以总的排法就是 C(5, 3) × A(3, 3) = 60 种。
再比如,从 5 个不同的球中选出 3 个组成一组,有多少种选法?这就是组合问题,直接用组合数公式 C(5, 3) = 10 种。
在解决排列组合问题时,有几个重要的原则和方法需要掌握。
一个是分类加法原则。
如果完成一件事情有 n 类不同的办法,在第一类办法中有 m1 种不同的方法,在第二类办法中有 m2 种不同的方法,……,在第 n 类办法中有 mn 种不同的方法,那么完成这件事共有N = m1 + m2 +… + mn 种不同的方法。
举个例子,从甲地到乙地,有 3 条陆路可走,2 条水路可走。
那么从甲地到乙地共有 3 + 2 = 5 种走法。
排列与组合的区别技巧

排列与组合的区别技巧排列和组合是数学中常见的概念,用于计算一定范围内的排列或组合的个数。
尽管这两个概念听起来很相似,但实际上它们有着本质的区别。
在本文中,我们将探讨排列和组合的区别以及如何应用它们。
1. 排列和组合的定义排列是指从n个不同元素中取出m个元素进行排列,其排列数用P(n,m)表示,公式为:P(n,m) = n!/(n-m)!其中n!表示n的阶乘,即n × (n-1) × (n-2) × ... × 1。
P(5,3)就表示从5个元素中取3个元素的排列数,它的计算式为5!/(5-3)! = 5 × 4 × 3 = 60。
C(5,3)表示从5个元素中选出3个元素组成的集合数,它的计算式为5!/(3! × 2!) = 10。
AB AC BA BC CA CB这是因为“AB”和“BA”被视为两种不同的排列方式,因为它们的元素顺序不同。
排列相对于元素的顺序是敏感的。
应用排列与组合的场景非常广泛,例如在密码学、计算机科学、统计学、经济学等多个领域都有着重要的应用。
在密码学中,排列和组合被用于计算密码中可能的排列组合,以及在密码破解时破译密码。
在计算机科学中,排列和组合被用于计算算法的时间复杂度和空间复杂度,以及进行搜索和排序算法等操作。
在经济学中,排列和组合被用于计算市场需求和供应的排列组合,以及进行产业分析和商业决策等操作。
4. 总结与结论排列和组合是数学中常用的概念。
其最大的区别在于元素的顺序是否重要。
排列相对于元素的顺序是敏感的,而组合相对于元素的顺序是不敏感的。
我们可以应用排列和组合计算密码、算法复杂度、统计概率以及进行商业决策等多个领域。
在应用排列和组合时,我们需要根据不同情况选择适当的计算方式。
在实际应用中,我们需要了解排列和组合的特性,并选择适当的计算方式。
下面我们将深入探讨排列和组合的特性及其应用。
1. 排列的特性(1)重复元素:在排列的情况中,如果有重复的元素,其排列数可以用重复因子的方法进行计算。
高考数学总复习考点知识专题讲解8 排列与组合

高考数学总复习考点知识专题讲解专题8 排列与组合知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列相同的条件两个排列相同的充要条件:(1)两个排列的元素完全相同.(2)元素的排列顺序也相同.【例1】判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互打电话.知识点三 排列数的定义从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 知识点四 排列数公式及全排列 1.排列数公式的两种形式(1)A m n =n (n -1)(n -2)…(n -m +1),其中m ,n ∈N *,并且m ≤n .(2)A m n =n !(n -m )!. 2.全排列:把n 个不同的元素全部取出的一个排列,叫做n 个元素的一个全排列,全排列数为A n n =n !(叫做n 的阶乘).规定:0!=1. 【例2】(2023•泰州期末)678910⨯⨯⨯⨯可以表示为()A .410AB .510AC .410CD .510C【例3】(2023•莱州市开学)已知18934x x A A -=,则x 等于() A .6B .13C .6或13D .12【例4】(2023•浑南区期末)12320222232022232022M A A A A =++++,20232023N A =,则M 与N 的大小关系是()A .M N =B .M N >C .M N <D .M N …知识点五“相邻”与“不相邻”问题相邻问题捆绑法,不相邻问题插空法.【例5】3名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法? (1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻.【例6】(2023•香坊区期末)加工某种产品需要5道工序,分别为A,B,C,D,E,其中工序A,B必须相邻,工序C,D不能相邻,那么有()种加工方法.A.24B.32C.48D.64【例7】(2023•沈阳模拟)甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有() A.24种B.48种C.72种D.96种知识点六定序问题用除法对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.【例8】7人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少不同的排列方法?知识点七特殊元素的“在”与“不在”问题分析法对于“在”与“不在”问题,可采用“特殊元素优先考虑,特殊位置优先安排”的原则解决.【例9】(2023•卧龙区月考)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端、丙和丁相邻的不同排列方式有() A .24种B .36种C .48种D .144种【例10】(2023•宜宾月考)“四书”“五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为() A .622622A A A B .6262A A C .622672A A A D .622662A A A【例11】(2023•武强县期中)用数字0,1,2,3,4,5组成没有重复数字的四位数. (1)可组成多少个不同的四位数? (2)可组成多少个不同的偶数?【例12】从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题.(1)甲不在首位的排法有多少种?(2)甲既不在首位也不在末位的排法有多少种? (3)甲与乙既不在首位也不在末位的排法有多少种? (4)甲不在首位,同时乙不在末位的排法有多少种?同步训练(一)1.(2023•宿迁期末)下列各式中,不等于n !的是()A .n n AB .1n n A -C .1n n nA +D .11n n nA --2.(2023•宿迁月考)(1998)(1999)(2021)(2022)(n n n n n N ----∈,2022)n >可表示为()A .241998n A -B .251998n A -C .242022n A -D .252022n A -3.(2023•河南模拟)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a ,b ,共可得到lga lgb -的不同值的个数是()A .6B .8C .12D .164.(2023•揭阳期末)已知甲、乙两个家庭排成一列测核酸,甲家庭是一对夫妻带1个小孩,乙家庭是一对夫妻带2个小孩.现要求2位父亲位于队伍的两端,3个小孩要排在一起,则不同的排队方式的种数为()A.288B.144C.72D.365.(2023•海淀区校级期末)某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.126.(20123•会宁县期中)用0,1,2,3,4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.7.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?知识点八组合及组合数的定义1.组合一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.知识点九排列与组合的关系【例13】(1)某铁路线上有4个车站,则这条铁路线上共需准备多少种车票?(2)把5本不同的书分给5个学生,每人一本;(3)从7本不同的书中取出5本给某个学生.【例14】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?知识点十组合数公式规定:C 0n =1.知识点十一 组合数的性质 性质1:C mn =C n -mn .性质2:C m n +1=C m n +C m -1n .【例15】(2023•朝阳区期末)已知2188m m C C -=,则m 等于() A .1B .3C .1或3D .1或4【例16】(2023•吉水县期末)计算33334562015C C C C ++++的值为()A .42015CB .32015C C .420161C -D .520151C -【例17】(2023•崂山区期末)对于伯努利数()n B n N ∈,有定义:001,(2)nk n n k k B B C B n ===∑….则()A .216B =B .4130B =C .6142B =D .230n B +=【例18】(2023•沙坪坝区模拟)某项活动安排了4个节目,每位观众都有6张相同的票,活动结束后将票全部投给喜欢的节目,一位观众最喜欢节目A,准备给该节目至少投3张,剩下的票则随机投给其余的节目,但必须要A节目的得票数是最多的,则4个节目获得该观众的票数情况有()种A.150B.72C.20D.17【例19】(2023•东湖区期末)某校举行科技文化艺术节活动,学生会准备安排6名同学到两个不同社团开展活动,要求每个社团至少安排两人,其中A,B两人不能分在同一个社团,则不同的安排方案数是()A.56B.28C.24D.12知识点十二分组、分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等,均匀分成n组,最后必须除以n!;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.1 平均分组【例20】(1)6本不同的书,分给甲、乙、丙三人,每人两本,有多少种方法?(2)6本不同的书,分为三份,每份两本,有多少种方法?2 不平均分组【例21】(1)6本不同的书,分为三份,一份一本,一份两本,一份三本,有多少种方法?(2)6本不同的书,分给甲、乙、丙三人,一人一本,一人两本,一人三本,有多少种不同的方法?3 分配问题【例22】6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种不同的方法?【例23】(2022秋•浑南区期末)将6本不同的书分给甲、乙、丙、丁4个人,每人至少一本的不同分法共有种.(用数字作答)【例24】(2022秋•浑南区期末)某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.720【例25】(2023•云南模拟)中国空间站()ChinaSpaceStation的主体结构包括天和核心舱、问天实验舱和梦天实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设中国空间站要安排甲、乙等5名航天员进舱开展实验,其中“天和核心舱”安排2人,“问天实验舱”安排2人,“梦天实验舱”安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有()A.9种B.24种C.26种D.30种知识点十三相同元素分配问题之隔板法隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”,每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法,隔板法专门解决相同元素的分配问题.将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法,可描述为(n-1)个空中插入(m -1)块板.【例26】6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.【例27】(2023•浦东新区期末)10个相同的小球放到6个不同的盒子里,每个盒子里至少放一个小球,则不同的放法有种.【例28】(2023•海淀区期末)没有一个冬天不可逾越,没有一个春天不会来临.某街道疫情防控小组选派7名工作人员到A ,B ,C 三个小区进行调研活动,每个小区至少去1人,恰有两个小区所派人数相同,则不同的安排方式共有() A .1176B .2352C .1722D .1302【例29】(2023•多选•玄武区期末)甲、乙、丙、丁、戊共5位志愿者被安排到A ,B ,C ,D 四所山区学校参加支教活动,要求每所学校至少安排一位志愿者,且每位志愿者只能到一所学校支教,则下列结论正确的是() A .不同的安排方法共有240种 B .甲志愿者被安排到A 学校的概率是14C .若A 学校安排两名志愿者,则不同的安排方法共有120种D .在甲志愿者被安排到A 学校支教的前提下,A 学校有两名志愿者的概率是25【例30】(2023•多选•营口期末)某校的高一和高二年级各10个班级,从中选出五个班级参加活动,下列结论正确的是()A .高二六班一定参加的选法有420C 种B .高一年级恰有2个班级的选法有231010C C 种C .高一年级最多有2个班级的选法为52012C 种D .高一年级最多有2个班级的选法为231451*********C C C C C ++种【例31】(2023•福建模拟)近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A ,B 角色各1人,C 角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A ,B 角色不可同时为女生.则店主共有348种选择方式.【例32】(2023•和平区校级模拟)我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为1,2,3,⋯,1n +的1n +个球的口袋中取出m 个球(0m n <…,m ,)n N ∈,共有1m n C +种取法.在1m n C +种取法中,不取1号球有m n C 种取法;取1号球有1m n C -种取法.所以11m m m n n n C C C -++=.试运用此方法,写出如下等式的结果:323232323142241n n n n n C C C C C C C C ----+⋅+⋅++⋅+=.同步训练(二)8.(多选)下列问题是组合问题的有()A .10个朋友聚会,每两人握手一次,一共握手多少次B .平面上有2 021个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段C .集合{a 1,a 2,a 3,…,a n }中含有三个元素的子集有多少个D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法9.(2023•宣城期中)关于排列组合数,下列结论错误的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .11m m mn n n A mA A -++=10.(2023•多选•朝阳区期末)关于排列组合数,下列结论正确的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .!()!mn n A n m =-11.课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.12.将4个编号为1,2,3,4的小球放入4个编号为1,2,3,4的盒子中.(1)有多少种放法?(2)每盒至多1个球,有多少种放法?(3)恰好有1个空盒,有多少种放法?(4)每个盒内放1个球,并且恰好有1个球的编号与盒子的编号相同,有多少种放法?(5)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法?13.(多选)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数可能为()A.1 B.2 C.3 D.414.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有的4件次品,则这样的不同测试方法数是多少?15.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?16.空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为()A.205 B.110 C.204 D.20017.4名优秀学生全部保送到3所学校去,每所学校至少去1名,则不同的保送方案有______种.18.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)19.(2023•长沙期末)6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有() A .540种B .360种C .180种D .120种20.(2023•多选•罗湖区期末)在10件产品中,有7件合格品,3件不合格品,从这10件产品中任意抽出3件,则下列结论正确的有()A .抽出的3件产品中恰好有1件是不合格品的抽法有1237C C 种 B .抽出的3件产品中至少有1件是不合格品的抽法有1239C C 种 C .抽出的3件产品中至少有1件是不合格品的抽法有1221337373C C C C C ++种D .抽出的3件产品中至少有1件是不合格品的抽法有33107C C -种。
小学数学中的排列与组合

小学数学中的排列与组合在小学数学中,排列与组合是一种重要的数学概念和方法。
它们被广泛应用于解决各种问题,培养学生的逻辑思维和问题解决能力。
本文将介绍排列与组合的基本概念与应用,并探讨它们在小学数学教学中的重要性。
一、排列的概念与应用排列是从一组元素中取出若干个元素进行有序的排列。
在排列中,元素之间具有顺序关系,不同的排列方式会得到不同的结果。
例如,从1、2、3三个数字中,可以有6种不同的排列方式:123、132、213、231、312、321。
在小学数学中,排列通常用于解决带有顺序的问题。
例如,有3个不同的颜色的球,要求将它们排成一列,共有多少种不同的排列方式?这时,可以使用排列的概念进行解答。
我们知道,取第一个位置的颜色有3种选择,取第二个位置的颜色有2种选择,取第三个位置的颜色有1种选择。
所以,总共有3×2×1=6种不同的排列方式。
二、组合的概念与应用组合是从一组元素中取出若干个元素进行无序的组合。
在组合中,元素之间没有顺序关系,不同的组合方式可能得到相同的结果。
例如,从1、2、3三个数字中,可以有3种不同的组合方式:1、2、3;1、3、2;2、3、1。
在小学数学中,组合通常用于解决带有无序的问题。
例如,有3个不同的水果,要求从中选取2个,共有多少种不同的选择方式?这时,可以使用组合的概念进行解答。
我们知道,从3个水果中选取2个的组合数可以表示为C(3, 2)。
根据组合的定义,C(3, 2) = 3。
所以,共有3种不同的选择方式。
三、排列与组合在小学数学教学中的重要性排列与组合作为一种重要的数学概念和方法,在小学数学教学中具有重要的意义。
首先,排列与组合可以培养学生的逻辑思维和问题解决能力。
通过学习排列与组合的概念和应用,学生需要运用逻辑思维进行问题分析和解决。
他们需要思考元素的选择、位置的安排等问题,培养了他们的逻辑推理能力和问题解决能力。
其次,排列与组合可以激发学生对数学的兴趣和学习动力。