浅析计算机数据挖掘技术
数据挖掘技术浅析

偏 差 分 析 就 是 通 过 对 数 据 库 中 的 孤 立 点 数 据 进 行 分 析 . 找 有 价 值 和 意 寻 义的信 息 。
需 要 而 发 展 起来 一 种新 的 信 息 分 析 技
术 . 种 技 术 称 为 数 据 挖 掘 。 数 据 挖 掘 这
预 测 就 是 通 过 对 历史 数 据 的 分 析 找 出 规 律 . 建 立 模 型 . 过 模 型 对 未 并 通
就 是从 大 量 的 、 不完 全 的 、 噪声 的 、 有 模 糊 的 、 机 的 实 际 应 用 数 据 中 。 取 隐 随 提
来数 据 的种类 和特 征进 行 分析 预 测与 分 类 相 似 , 是 分 为 两 个 步 骤 : 是 通 也 一
据 源 、 间数 据 库 、 序数 据 库 、 本 数 空 时 文
数据 信息 。
聚 类 分 析 是 在 没 有 给 定 划分 类 的
据 库和 多媒 体 数据 库 等 . 可 以是 We 情 况 下 . 据 数 据 信 息 的 相 似 度 进 行 数 还 b 根
据 聚 集 的 一 种 方 法 。 聚 类 分 析 中 。 先 首
其 次 将 来 自多 数 据 源 中的 相 关 数 据 组 合 并 : 后 将数 据 转换 为 易 于进 行数 据 然
备。
32 数 据 挖 掘 .
数 据 挖 掘 的 目标 是 从 海 量 的 数 据 度最 小化 。” 的基本 聚类 分析 原则 。 以及 挖 掘 的数 据 存 储 形 式 .这 就 是 数 据 准
数 据 挖 掘 技 术 浅 析
陈 会 果
( 通信 指挥 学院 湖北 武 汉 4 0 1) 3 0 0
摘
数据挖掘的关键技术

数据挖掘的关键技术数据挖掘是指通过大数据中寻找隐藏的、有用的模式和信息的过程。
在当今信息爆炸的时代,数据挖掘已经成为许多领域中不可或缺的关键技术。
本文将介绍数据挖掘的关键技术,包括数据预处理、特征选择、聚类分析、分类与预测、关联规则挖掘等。
一、数据预处理数据预处理是数据挖掘过程中的第一步,其目的是清理、集成和转换数据以供后续分析使用。
数据预处理技术包括数据清洗、数据集成、数据变换和数据归约。
数据清洗主要是对数据中的噪声和异常值进行处理,以保证数据的准确性和一致性。
在这一步骤中,可以使用各种统计学和数学方法来识别和处理异常值。
数据集成是将来自不同数据源的数据进行合并和统一,以便于后续的分析。
在进行数据集成时,需要考虑数据的冗余和一致性,采用适当的数据集成技术进行处理。
数据变换是将原始数据转换为适合进行分析的形式,常用的数据变换技术包括数据规范化、数据离散化、数据聚集和数据抽样等。
数据归约是对数据进行降维处理,以减少数据的维度和复杂性,并保持数据的有效性和信息完整性。
数据归约的常用方法包括主成分分析、因子分析和小波变换等。
二、特征选择特征选择是指从原始数据中选择最具有代表性和重要性的特征,以提高模型的性能和准确性。
特征选择技术主要包括过滤法、包装法和嵌入法。
过滤法是根据特征的某种准则进行选择,如信息增益、相关系数等。
通过计算特征与目标变量的关联性,选择与目标变量高度相关的特征。
包装法是将特征选择看作是一个搜索问题,通过训练具有不同特征子集的模型,并评估其性能来确定最佳特征子集。
嵌入法是在建立模型的同时进行特征选择,通过利用模型的学习能力选择最佳特征。
三、聚类分析聚类分析是一种无监督学习方法,将相似的数据对象进行分组,使得同一组内的对象相似度尽可能高,而不同组之间的相似度尽可能低。
聚类分析技术主要包括层次聚类、划分聚类和基于密度的聚类。
层次聚类是将数据对象逐步划分为不同的层次结构,形成一个聚类树,通过计算相似度来决定聚类的合并和划分。
数据挖掘技术在计算机软件工程中的应用研究

数据挖掘技术在计算机软件工程中的应用研究在当今数字化时代,计算机软件工程的发展日新月异,而数据挖掘技术作为一种强大的数据分析手段,正逐渐在这个领域发挥着至关重要的作用。
数据挖掘技术能够从海量的数据中提取有价值的信息和知识,为计算机软件工程的各个方面提供有力的支持和优化。
数据挖掘技术简单来说,就是从大量的数据中发现潜在的模式、关系和趋势的过程。
它综合运用了统计学、机器学习、数据库技术等多种学科的知识和方法,通过数据预处理、模式发现、评估和解释等步骤,将原始数据转化为有用的信息和知识。
在计算机软件工程中,需求分析是项目开发的关键环节。
传统的需求获取方法往往依赖于用户的描述和开发者的经验,存在信息不完整、不准确的问题。
而数据挖掘技术可以通过对已有类似项目的数据进行分析,挖掘出用户的潜在需求和行为模式,为新软件项目的需求定义提供更全面、更准确的依据。
例如,通过分析用户在使用相关软件时的操作记录、反馈信息等,可以了解用户的习惯和偏好,从而更好地确定软件的功能和界面设计。
软件设计阶段,数据挖掘技术可以对软件的架构和模块划分提供参考。
通过分析大量优秀软件的架构设计数据,发现其中的共性和规律,为新软件的架构设计提供借鉴。
同时,还可以利用数据挖掘来评估不同设计方案的优劣,预测软件的性能和可维护性。
在软件测试阶段,数据挖掘技术更是大显身手。
通过对以往软件测试过程中产生的大量数据进行挖掘,可以发现软件中的潜在缺陷模式和错误规律。
例如,分析测试用例的执行结果,找出容易出现错误的模块和功能点,有针对性地加强测试,提高测试效率和质量。
代码优化也是计算机软件工程中的重要任务。
数据挖掘技术可以帮助开发者分析代码的执行情况和性能数据,找出代码中的性能瓶颈和可优化的部分。
例如,通过对程序运行时的资源消耗、执行时间等数据进行挖掘,发现代码中耗时较长的函数或算法,进行针对性的优化,提高软件的运行效率。
在软件维护方面,数据挖掘技术能够协助维护人员快速定位和解决问题。
什么叫数据挖掘_数据挖掘技术解析

什么叫数据挖掘_数据挖掘技术解析数据挖掘(data mining)是指从大量的资料中自动搜索隐藏于其中的有着特殊关联性的信息的过程。
在全世界的计算机存储中,存在未使用的海量数据并且它们还在快速增长,这些数据就像待挖掘的金矿,而进行数据分析的科学家、工程师、分析员的数量变化一直相对较小,这种差距称为数据挖掘产生的主要原因。
数据挖掘是一个多学科交叉领域,涉及神经网络、遗传算法、回归、统计分析、机器学习、聚类分析、特异群分析等,开发挖掘大型海量和多维数据集的算法和系统,开发合适的隐私和安全模式,提高数据系统的使用简便性。
数据挖掘与传统意义上的统计学不同。
统计学推断是假设驱动的,即形成假设并在数据基础上验证他;数据挖掘是数据驱动的,即自动地从数据中提取模式和假设。
数据挖掘的目标是提取可以容易转换成逻辑规则或可视化表示的定性模型,与传统的统计学相比,更加以人为本。
数据挖掘技术简述数据挖掘的技术有很多种,按照不同的分类有不同的分类法。
下面着重讨论一下数据挖掘中常用的一些技术:统计技术,关联规则,基于历史的分析,遗传算法,聚集检测,连接分析,决策树,神经网络,粗糙集,模糊集,回归分析,差别分析,概念描述等十三种常用的数据挖掘的技术。
1、统计技术数据挖掘涉及的科学领域和技术很多,如统计技术。
统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。
2、关联规则数据关联是数据库中存在的一类重要的可被发现的知识。
若两个或多个变量的取值之I司存在某种规律性,就称为关联。
关联可分为简单关联、时序关联、因果关联。
关联分析的目的是找出数据库中隐藏的关联网。
有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。
3、基于历史的MBR(Memory-based Reasoning)分析先根据经验知识寻找相似的情况,。
计算机科学中的数据挖掘技术应用

计算机科学中的数据挖掘技术应用计算机科学作为现代科技的代表之一,早已成为办公、娱乐、交流等方方面面的支持者。
数据挖掘技术则是计算机科学的一个重要分支,其对于人们实现智能化决策、认知模式的建立等方面都有着不可替代的作用。
下文将就数据挖掘技术在计算机科学中的应用进行深入探讨。
1. 数据挖掘技术概述数据挖掘技术是指从海量、复杂、不规则的数据中,分析出有用信息、发现潜在关联、确定达到预期目标所需的数据模式和规律的技术。
计算机科学中的数据挖掘技术主要包括分类、聚类、关联规则等几种方法。
分类是指根据已知数据属性,将数据分为不同的类别,从而实现对数据的有效分析和处理。
经过分类处理后,用户可以更好地理解数据,同时也可以制定更好的决策方案。
聚类则是以相似性为基础,将同类数据分组,形成“簇”,从而更好地对数据进行处理。
聚类算法主要有K-Means、层次聚类等多种方法。
关联规则则是指根据数据集合中的已知规则,发掘未知的关联规律,从而生成新数据。
关联规则算法主要有Apriori、FP-Growth 等多种方法。
2. 在计算机科学中的应用数据挖掘技术在计算机科学中的应用范围非常广泛,包括财务管理、市场调研、医学、生命科学、环境保护、网站评估等方面。
2.1 财务管理在现代的企业管理中,对数据的分析和处理已经越来越受到重视。
众所周知,财务数据是企业发展中最为重要的数据之一。
计算机科学中的数据挖掘技术能够对企业的财务数据进行深入分析和处理,帮助企业更好地了解自身的经济状况,制定正确的决策方案。
2.2 市场调研市场调研是企业中非常重要的一个环节,它能够让企业更好地了解市场需求、竞争情况等信息。
计算机科学中的数据挖掘技术可以对市场调研数据进行深度挖掘,从中发掘出有用的信息,制定更切实可行的市场营销策略。
2.3 医学在医学领域中,利用计算机科学中的数据挖掘技术来进行疾病分析和治疗方案设计已经成为趋势。
例如,根据病人的医疗记录和检查数据,对病人进行分类,可以更加准确地进行诊断和治疗。
数据挖掘技术及应用研究

数据挖掘技术及应用研究一、引言数据挖掘技术是指从大量数据中提取出有价值的信息,并利用这些信息进行决策、规划等活动的技术。
它涉及多个学科领域,如数据管理、统计学、机器学习等。
随着信息技术的迅速发展,数据挖掘技术在各行各业得到了广泛的应用。
本文将重点介绍数据挖掘技术的基本概念、主要方法和应用领域。
二、数据挖掘技术的基本概念1. 定义数据挖掘技术是指从大量数据中自动发现隐藏在其中的有价值的信息和知识的一种机器学习技术。
2. 特点数据挖掘技术主要具有以下特点:(1)可处理大规模数据;(2)能够自动发现数据中的关联性和趋势;(3)可以处理复杂的数据类型和结构,例如文本、图像等;(4)能自动学习人类难以发现的知识和模式。
三、数据挖掘技术的主要方法1. 关联规则挖掘关联规则挖掘是指从数据集中发现不同数据项之间的关系。
例如,超市销售数据中发现“啤酒”和“尿布”之间存在关联性,即购买尿布的顾客很有可能同时购买啤酒。
关联规则挖掘主要采用Apriori算法。
2. 分类和聚类分类是指将数据对象划分到不同的预定义类别中。
例如,将客户划分为“高消费”、“中等消费”、“低消费”等。
聚类是指将数据对象划分到若干个不同的组中,具有相似特征的对象被划分到同一组中。
3. 决策树和神经网络决策树和神经网络是两种常用的数据挖掘技术。
决策树是一种树形结构,用于对数据集进行分类或预测。
神经网络是一种模拟人脑构造的模型,能够学习从输入到输出的映射关系。
两种方法都需要大量的数据和计算资源。
四、数据挖掘技术的应用领域1. 金融行业数据挖掘技术在金融业中广泛应用。
例如,银行可以利用数据挖掘技术对客户进行分类,识别高风险客户;保险公司可以通过挖掘历史数据,预测赔付金额和风险等级。
2. 零售业数据挖掘技术可以帮助零售企业更好地了解客户需求和购买习惯,以便实施精准营销和促销策略。
例如,超市可以通过分析销售数据,预测客户对某种新产品的需求程度。
3. 医疗行业数据挖掘技术在医疗行业的应用非常广泛。
数据挖掘技术

数据挖掘技术的 算法
聚类算法
K-means算法
层次聚类算法
DBSCAN算法
谱聚类算法
分类算法
决策树算法
朴素贝叶斯算法
K最近邻算法 支持向量机算法
关联规则挖掘算法
应用场景:市场篮子分析、 序列模式发现等
定义:从大量数据中挖掘出 有趣的关系
算法分类:Apriori、FPGrowth等
评估指标:支持度、置信度 等
去除无效或错误数据 填充缺失值 去除噪声数据 数据规范化
数据探索
数据收集:获取需要挖掘的数据集 数据清洗:去除重复、错误或不完整的数据 数据预处理:对数据进行转换或归一化处理,使其更易于分析和挖掘 数据探索:通过可视化、统计等方法探索数据集,发现其中的模式和规律
模型建立
数据预处理:清洗、整理 数据,提高数据质量
掌握数据预处理 和数据清洗的方 法
实践项目,提升 技能
选择合适的数据挖掘工具和平台
根据需求选择工具:考虑需要 解决的问题类型、数据类型、 数据量等因素
选择易用的平台:降低学习成 本,提高效率
考虑平台的可扩展性:随着业 务变化,需要不断扩展工具和 平台的能力
考虑成本效益:根据预算选择 合适的工具和平台
农业环境监测: 通过数据挖掘 技术,实时监 测农业环境的 变化,保障农 业生产的安全
数据挖掘技术的 优势与局限
数据挖掘技术的优势
发现隐藏在大量数据中的有用信息
揭示企业业务的内在规律和模式
自动化决策支持:基于数据挖掘的决策支持系统可以提高决策的效率和准确性
预测未来趋势:通过数据挖掘技术对历史数据进行深入分析,可以预测未来的市场趋势和业务发展 动向。
特征提取:从数据中提取 有用的特征
计算机科学中的数据挖掘与知识发现

计算机科学中的数据挖掘与知识发现数据挖掘与知识发现是计算机科学中一个重要的领域,它通过利用各种技术和方法,从大量的数据中挖掘出有用的模式和知识。
在现代社会中,大数据的快速涌现给我们带来了巨大的机遇和挑战,而数据挖掘与知识发现正是帮助我们应对这些挑战的重要工具。
一、数据挖掘的概念和应用数据挖掘是指从大量的数据中提取隐藏于数据背后的有价值的信息和知识的过程。
它可以帮助我们发现数据中的规律、趋势和关联,从而对未来进行预测和决策。
在计算机科学中,数据挖掘有着广泛的应用。
比如在商业领域中,数据挖掘可以帮助企业进行市场分析、用户行为分析和产品推荐等;在医疗领域中,数据挖掘可以帮助医生进行病情预测和诊断辅助;在金融领域中,数据挖掘可以帮助银行进行风险评估和反欺诈分析。
二、数据挖掘的技术与方法在数据挖掘过程中,我们可以采用不同的技术和方法来挖掘数据中的有用信息。
下面将介绍几种常用的数据挖掘技术和方法。
1.分类与预测分类与预测是数据挖掘中最常见的任务之一。
它可以根据已有的数据对未知的数据进行分类或预测。
常用的分类与预测算法包括决策树、朴素贝叶斯、支持向量机等。
2.关联规则挖掘关联规则挖掘是发现数据集中事物之间的关联性的一种方法。
它通过发现频繁项集和关联规则来揭示数据中的关联关系。
关联规则挖掘在市场篮子分析和推荐系统等领域有着广泛的应用。
3.聚类分析聚类分析是将数据集中的对象划分为多个类别的方法。
它可以帮助我们发现数据中的相似性和差异性,并进行群体分析和特征提取。
常用的聚类算法包括k-means、层次聚类等。
三、数据挖掘的挑战和未来发展虽然数据挖掘在各个领域都有广泛的应用,但是在实际过程中也面临着一些挑战。
首先,数据挖掘需要大量的数据支持。
当前,虽然大数据时代已经到来,但是数据的质量和可用性仍然是一个问题。
如何获取高质量、全面的数据成为了数据挖掘的一个难题。
其次,数据挖掘需要强大的算法和计算能力。
随着数据规模的不断增大,传统的数据挖掘算法可能无法满足实际的需求,因此需要不断研发出更加高效和准确的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析计算机数据挖掘技术
作者:刘艳娇
来源:《中国科技博览》2015年第33期
[摘要]目前,计算机挖掘技术作为一种新兴的不断发展进步的一门新技术,在我们的社会生活、生产中在不同的领域发挥着其重要的作用。
计算机数据挖掘技术不仅仅具有较强的系统性,更是拥有对数据库不同数据的强大处理能力。
本文介绍了数据挖掘的概念、对象、任务、过程、方法、应用领域及其面临的挑战。
[关键词]计算机;数据;挖掘技术
中图分类号:TP31 文献标识码:A 文章编号:1009-914X(2015)33-0244-01
计算机数据挖掘技术的产生是社会的一种进步,了解计算机数据挖掘对我们来说非常的重要,计算机数据挖掘技术对于庞大的数据有着整理分析的作用,这不仅仅对于企业的工作产生了巨大的作用,还对日常工作生活等也提供重要的帮助。
1 计算机数据挖掘的概念及对象
1.1 计算机数据挖掘的概念
计算机数据挖掘是在社会的发展进入了网络信息时代之后产生的网络衍生产品,计算机数据挖掘主要是通过一定的手段对企业内部进行数据挖掘,然后通过一定的分析,对那些通过数据挖掘得到的数据进行整理,进而分析企业的市场以及企业的发展等等问题。
计算机数据挖掘对处于网络信息时代之中的企业来说非常重要,它是处于网络信息时代之中的企业长远发展的助推器,作为处于信息时代的企业要抓住这个促进自己发展的大好契机。
1.2 计算机数据挖掘的对象
计算机数据挖掘具有一定的针对性,计算机数据挖掘的对象(目标数据)并不是所有的数据,它是具有选择性的,计算机数据挖掘的对象主要是指企业中能够揭示一些未发现的隐藏信息和企业中比较有意义和研究价值的数据,明确这一点非常的重要,计算机数据挖掘的对象的选择性是影响计算机数据挖掘效率的主要因素,对于一个没有充分认识计算机数据挖掘对象的选择性的企业来说,它的计算机数据挖掘的效率会比成熟的计算机数据挖掘的企业或者是充分认识到计算机数据挖掘的对象的选择性的企业要低得多。
同时,明确目标数据的类型也非常重要,它直接决定了要使用的数据挖掘技术和方法,大体上数据类型分为三类:记录数据,给予图形的数据和有序的数据。
2 计算机数据挖掘的任务及过程
2.1 计算机数据挖掘的任务
计算机数据挖掘主要是对海量的数据进行挖掘和分析,必须经过计算机数据准备和计算机数据规律寻找的固定过程,在计算机数据挖掘的过程中,计算机数据准备和计算机数据规律的寻找一个都不能少,我们要做好计算机数据挖掘的每一步,计算机数据挖掘的任务主要有对计算机数据挖掘的结果与企业的市场现状进行一个具体的联系、对计算机数据挖掘的结果进行一定的分类,对计算机数据挖掘的结果进行一定的变异分析。
在处理计算机数据挖掘的任务时,我们要完成计算机数据挖掘的每一个任务,首先,对计算机数据挖掘的结果与企业的市场现状进行一个具体的联系是计算机数据挖掘的根本任务,而对计算机数据挖掘的结果进行一定的分类是计算机数据挖掘的主要任务,最后对计算机数据挖掘的结果进行一定的变异分析是计算机数据挖掘的必要任务。
2.2 计算机数据挖掘的过程
计算机数据挖掘的过程具有一定的复杂性,计算机数据挖掘的基本过程:第一,对计算机数据的来源进行一定的分析。
这一步非常的重要,一个完整的计算机数据挖掘的过程必须以这一步为基础,只有对计算机数据的来源进行一定的分析,我们才能够进行下一步的操作;第二,从计算机数据的来源的分析结果中获取一定的信息,然后我们要对计算机数据的来源的分析结果进行研究,在研究的过程中,我们要查阅相关的专业知识和专业的研究数据挖掘的技术,只有具备了相关的专业知识和专业的研究数据挖掘的技术,我们才能够更好地对计算机数据进行挖掘;第三,对计算机数据挖掘的信息进行一定的整合,检查出不太合理的相关信息;第四,数据挖掘的实施。
根据挖掘具体任务选择相应的数据挖掘实施算法;第五,结果评估与整理。
在完成实施阶段后,要对数据挖掘结果进行评估和整理,完成整个数据挖掘的过程。
3 计算机数据挖掘的技术应用挑战
计算机数据挖掘最大的应用领域就是商业领域,它能够为商业机构提供欺诈侦查和客户市场分类等数据。
在这个高速发展的信息时代,网络是商业发展的主要推动因素,我们要使计算机数据挖掘在商业上的应用领域更广。
3.1 在金融企业的应用及重要作用
金融企业是具有一定风险的企业,其重要的就是要对投资的风险做出评估,这样,才能在我们金融企业进行投资时把风险降到最低。
这时,金融企业就利用计算机数据挖掘技术对我们的投资项目进行评估预测。
如:在企业收购股票时,就要根据这只股票历史走向的数据做,从而做出评估,在做出较为精准的判断和选择。
在金融业涉及到借贷款的问题时,企业要根据贷款对象日常的诚信做出调查,然后再进行数据的挖掘统计,从而判断出贷款对象是属于低风险还是高风险。
由此可见,计算机数据挖掘技术对金融企业的投资、贷款有着重要的作用。
3.2 电子商务企业的应用
电子商务企业最注重的便是网站的浏览量和点击率及与客户的成交单子的数量。
企业如何提高网站的浏览量和点击率和用户的交易数量就成了问题的核心。
电子商务企业可以根据用户在浏览网页时的收藏物品的情况、购物车的情况、成交记录的情况进行物品的推荐。
这就需要应用技术数据挖掘技术对用户的一系列情况做出数据的整合。
通过数据的分析推荐的商品,及时客户最终没有购买,也会增加该物品的浏览量,这也使得我们电子商务的浏览量得到提升,从而增加企业在该行业的竞争力。
3.3 企业竞争的应用
社会经济在不断的发展进步,随着而来的相同企业的数量也在不断的增加,如何在众多相同的企业里脱颖而出是所有企业思考的问题。
一个企业除了要具有自己的特色之外,还要充分了解对手的情况,这时,就需要我们的企业利用计算机数据挖掘技术对竞争企业进行系统的分析调差,这样,才能做到充分了解对手。
吸取竞争对手的长处,在看到企业的短处时,也要使自己的企业避免相似的问题出现。
所以,计算机数据挖掘技术在企业相互竞争时起着不可忽视的重大作用。
3.4 计算机数据挖掘技术面临的挑战
数据挖掘技术面临的最大挑战就是隐私的保护和数据的安全性问题。
当数据在不同的抽象级别视角去考察的时候,数据挖掘对隐私和数据安全就构成了威胁。
它威胁到保持数据安全和防止干涉隐私的目标的实现。
4 结语
社会的科技在不断的发展进步,而计算机数据挖掘技术在我们的社会生活中的不同领域都发挥着其最大的作用。
计算机数据挖掘技术将会在各个领域得到广泛的应用,并对人类的活动产生深远的影响。
参考文献
[l] 周碧珍.浅析计算机数据挖掘技术在档案信息管理系统中的应用[J].黑龙江科技信息,2009(01).
[2] 张成霞.基于数据挖掘的煤矿计算机综合管理系统的研究[J].煤炭技术,2013(05).。