多边形扫描转换(简化)

合集下载

扫描线多边形填充算法

扫描线多边形填充算法

扫描线多边形填充算法扫描线多边形填充算法(Scanline Polygon Fill Algorithm)是一种计算机图形学中广泛使用的算法,用于将一个封闭的多边形形状涂色填充。

它通过扫描线的方式,从上到下将多边形内的像素按照预设的填充颜色来进行填充。

本文将详细介绍扫描线多边形填充算法的原理、流程和实现细节。

1.算法原理:扫描线多边形填充算法基于扫描线的思想,在水平方向上扫描每一行像素,并检测多边形边界与扫描线的交点。

通过将扫描线从上到下扫过整个多边形,对于每一行像素,找出与多边形边界交点的水平线段,然后根据填充颜色将像素点进行填充。

2.算法流程:-找出多边形的最小和最大Y坐标,确定扫描线的范围。

-从最小Y坐标开始,到最大Y坐标结束,逐行进行扫描。

-对于每一行,找出与多边形边界交点的水平线段。

-根据填充颜色,为每个水平线段上的像素点进行填充。

3.算法实现:-首先,需要根据给定的多边形描述边界的顶点坐标,计算出每条边的斜率、最小和最大Y值以及每条边的X坐标交点。

-然后,对于每一扫描线,找出与多边形边界交点的水平线段,即找出交点的X坐标范围。

-最后,根据填充颜色,将该范围内的像素点进行填充。

4.算法优化:- 针对复杂多边形,可以使用活性边表(AET,Active Edge Table)来管理边界信息,加快查找交点的速度。

-可以使用桶排序来排序边界事件点,提高扫描速度。

-根据多边形边的特征,对算法进行优化,减少不必要的计算和内存消耗。

5.算法应用:-扫描线多边形填充算法广泛应用于计算机图形学中的图形渲染、图像处理等领域。

-在游戏开发、CAD绘图、虚拟现实等应用中,扫描线多边形填充算法被用于快速绘制和渲染复杂多边形。

总结:扫描线多边形填充算法是一种经典的计算机图形学算法,通过扫描线的方式对多边形进行填充。

它可以高效地处理各种形状的多边形,包括凸多边形和凹多边形。

算法虽然简单,但在实际应用中具有广泛的用途。

计算机图形学——多边形的扫描转换(基本光栅图形算法)

计算机图形学——多边形的扫描转换(基本光栅图形算法)

计算机图形学——多边形的扫描转换(基本光栅图形算法)⼀、多边形扫描转换在光栅图形中,区域是由【相连的】像素组成的集合,这些像素具有【相同的】属性值或者它们位于某边界线的内部1、光栅图形的⼀个基本问题是把多边形的顶点表⽰转换为点阵表⽰。

这种转换成为多边形的扫描转换。

2、多边形的扫描转换与区域填充问题是怎样在离散的像素集上表⽰⼀个连续的⼆维图形。

3、多边形有两种重要的表⽰⽅法:(1)顶点表⽰:⽤多边形的定点序列来表⽰多边形优点:直观、⼏何意义强、占内存少、易于进⾏⼏何变换缺点:没有明确指出那些象素在多边形内,故不能直接⽤于上⾊(2)点阵表⽰:是⽤位于多边形内的象素集合来刻画多边形缺点:丢失了许多⼏何信息(eg:边界、顶点等)但是【点阵表⽰是光栅显⽰系统显⽰时所需的表现形式。

】多边形的扫描转换就是把多边形的顶点表⽰转换为点阵表⽰,即从多边形的给定边界出发,求出位于其内部的各个像素,并将帧缓冲器内的各个对应元素设置相应的灰度或颜⾊。

实际上就是多边形内的区域的着⾊过程。

4、多边形分类⼆、X扫描线算法X扫描线算法填充多边形的基本思想是按扫描线顺序,计算扫描线与多边形的相交区间,再⽤要求的颜⾊显⽰这些区间的象素,即完成填充⼯作。

区间的端点可以通过计算扫描线与多边形边界线的交点获得。

如扫描线y=3与多边形的边界相交于4点(2,3)、(4,3)、(7,3)、(9,3)这四个点定义了扫描线从x=2到x=4,从x=7到x=9两个落在多边形内的区间,该区间内像素应取填充⾊。

算法的核⼼是按x递增顺序排列交点的x坐标序列。

由此可得到扫描线算法步骤如下:算法步骤:1.确定多边形所占有的最⼤扫描线数,得到多边形定点的最⼩最⼤值(y min和y max);2.从y min到ymax每次⽤⼀条扫描线进⾏填充;3.对⼀条扫描线填充的过程分为四个步骤:a)求交点;b)把所有交点按递增顺序排序;c)交点配对(第⼀个和第⼆个,第三个和第四个);d)区间填⾊。

描述多边形扫描转换的扫描线算法的基本步骤

描述多边形扫描转换的扫描线算法的基本步骤

描述多边形扫描转换的扫描线算法的基本步骤多边形扫描转换是计算机图形学中一种常用的算法,用于将输入的多边形进行转换和填充。

其基本步骤包括初始化,活性边表的生成,活性边表的更新和扫描线的处理。

1.初始化首先,需要根据输入的多边形构造一个扫描线填充的边表。

这包括对多边形顶点的排序、计算多边形中的水平线交点,并将边表中的数据初始化为初始值。

2.活性边表的生成活性边表是用来存储和管理与扫描线相交的边的数据结构。

生成活性边表的过程包括两个步骤:-遍历多边形的每一条边,将边与当前扫描线的位置进行比较,如果两者相交,则将这条边添加到活性边表中。

-对活性边表中的边按照交点的水平位置进行排序。

这里可以使用插入排序等算法。

3.活性边表的更新活性边表需要在每次扫描线移动时进行更新。

这包括对活性边表中的边进行更新,以反映新的交点或边的状态的变化。

-对于与当前扫描线相交的边,需要计算其交点,并更新到活性边表中。

-对于已经处理完的边或超出当前扫描线范围的边,从活性边表中移除。

4.扫描线的处理在每次扫描线移动时,需要对当前的活性边表进行处理。

这包括两个子步骤:-将活性边表中的边按照两两成对的方式遍历,找到当前扫描线和这两条边所定义的三角形的上顶点和下顶点。

-将这个三角形的内部填充,并进行显示或存储等处理。

5.继续扫描线的移动在处理完一条扫描线后,需要将扫描线的位置向上移动一个单位,并继续执行第3步和第4步,直到所有的扫描线都被处理完毕。

总结:多边形扫描转换的基本步骤包括初始化、活性边表的生成、活性边表的更新和扫描线的处理。

这个算法通常用于实现对多边形的填充。

在每次扫描线移动时,活性边表需要进行更新,以反映新的交点或变化的边的状态。

扫描线的处理包括遍历活性边表中的边,并根据扫描线和这两条边所定义的三角形的顶点来进行填充。

最后,重复执行扫描线的移动和对活性边表的更新和处理,直到所有的扫描线都被处理完毕。

多边形的扫描转换算法

多边形的扫描转换算法

多边形的扫描转换算法概述多边形的扫描转换算法是计算机图形学中用于将多边形转换为像素的常用算法。

它通过扫描线的方式来确定多边形与像素的相交关系,并将多边形的内部区域填充为指定的颜色。

本文将详细介绍多边形的扫描转换算法的原理、步骤和应用。

原理多边形的扫描转换算法基于扫描线的概念,将多边形的边界线与一条水平线或垂直线进行比较,从而确定多边形的内部和外部区域。

算法的关键在于边界线的处理和内部区域的填充。

步骤多边形的扫描转换算法一般包括以下步骤:1.初始化扫描线的位置和内部区域的填充颜色。

2.遍历多边形的边界线,将其与扫描线比较,确定内部和外部区域。

3.根据内部区域的状态,进行填充颜色。

4.更新扫描线的位置,继续扫描下一条线段,直至完成对所有边界线的处理。

算法详解初始化扫描线在开始进行多边形的扫描转换之前,需要初始化扫描线的位置和内部区域的填充颜色。

一般情况下,扫描线的位置可以从多边形的最低点开始,逐渐向上扫描。

内部区域的填充颜色可以根据具体需求进行选择。

边界线处理多边形的边界线可以由多个线段组成,需要按照一定的顺序进行处理。

一种常用的处理方式是按照边界线的上端点的纵坐标从小到大排序,然后依次处理每条线段。

对于每条线段,通过比较线段的上端点和下端点的纵坐标与扫描线的位置,可以确定线段与扫描线的相交关系。

根据线段的斜率可以进一步确定线段与扫描线的交点。

内部区域填充确定了线段与扫描线的相交关系后,就可以确定内部和外部区域。

一般情况下,内部区域被定义为线段上方的区域,而外部区域被定义为线段下方的区域。

根据内部区域的状态,可以进行填充颜色。

如果内部区域是连续的,则可以使用扫描线的颜色进行填充。

如果内部区域有间隙,则需要采用其他填充算法,如边界填充算法或种子填充算法。

更新扫描线处理完当前线段后,需要更新扫描线的位置,继续扫描下一条线段。

一般情况下,扫描线的位置会逐渐向上移动,直至到达多边形的最高点。

应用多边形的扫描转换算法在计算机图形学中有广泛的应用。

X-扫描线算法

X-扫描线算法

X-扫描线算法多边形的扫描转换(X-扫描线算法)⼀、两种表⽰⽅法把多边形的顶点表⽰转换为点阵表⽰称为多边形的扫描转换。

⼆、X-扫描线算法 图1 图21.步骤a. 求交b. 排序:把所有交点按递增顺序排序为何要进⾏排序?答:按交点x值递增排序,确保交点两两配对时填充区间的正确性。

c. 交点配对:确定填充区间d. 区间填⾊2.交点取舍(当扫描线与多边形顶点相交时,交点如何取舍?)两边只取1,同边0或2。

三、X-扫描线算法的改进1. 三⽅⾯的改进a. 处理⼀条扫描线,仅对与它相交的多边形的边(有效边)进⾏求交运算。

(也就是避免把所有的边都进⾏求交,因为⼤部分的边求交结果为空。

所以设置⼀个表来记录有效边。

即下⾯提到的AET)b. 考虑边的连贯性:当前扫描线与各边的交点顺序与下⼀条扫描线与各边的交点顺序很可能相同或⾮常相似。

c. 多边形的连贯性:当某条边与当前扫描线相交时,它很可能也与下⼀条扫描线相交。

2.数据结构通过引⼊新的数据结构来避免求交运算(1)活性边表a. 活性边表(AET):把和当前扫描线相交的边称为活性边,并把它们按交点x坐标递增的顺序存于⼀个链表中。

b. 结点内容Δx=1/k,y max 是为了知道何时达到边界c. 举例(2)新边表(NET)建⽴AET需要知道与哪些边相交,所以定义NET来存储边的信息,从⽽⽅便AET的建⽴。

a. 构造⼀个纵向链表,长度为多边形占有的最⼤扫描线数。

每个节点(称为吊桶)对应多边形覆盖的⼀条扫描线。

b. 结点内容y max:该边的y最⼤值x min:该边较低点的x坐标c. NET挂在与该边较低端y值相同的扫描线吊桶中此时NET也就记录了6条有效边(3)NET与AET的使⽤流程⾸先我们得明⽩,AET的⽬的是为了使⽤增量⽅法避免求交运算,⽽NET是⽤在构造AET的。

a. 所以第⼀步为构造NET。

⽅法:遍历所有扫描线,把y min = i 的边放进NET[ i ]中,从⽽构造出整个NET。

计算机图形学_ 光栅图形学算法(一)_24 多边形扫描转换X扫描线算法_

计算机图形学_ 光栅图形学算法(一)_24 多边形扫描转换X扫描线算法_

x
d、区间填色:把这些相交区间内的 像素置成不同于背景色的填充色
当扫描线与多边形顶点相交时,交点的取舍问题(交点的个数 应保证为偶数个)
y 12 11 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 101112 x
解决方案:
y
(1)若共享顶点的两条边分别落
12 11
x
算法的核心是按X递增顺序
排列交点的X坐标序列。由 y P7
此,可得到X-扫描线算法步
12 11
骤如下:
10 9
P6
P5
8
(3)对一条扫描线填充的过
7 6
P1
P3
5
程可分为四个步骤:
4 3
2
a、求交:计算扫描线与多边
1
1 2P23 4 5 6 7 8P4 9 101112 x
形各边的交点
b、排序:把所有交点按递增 顺序进行排序
任意两顶点间的连线均在多边形内
(2)凹多边形 任意两顶点间的连线有不在在多边形内
(3)含内环的多边形 多边形内包含多边形
现在的问题是,知道多边形的边界,如何找到多边形内部 的点,即把多边形内部填上颜色
P2
P3
P4
P1 P6
P5
顶点表示
点阵表示
1、X-扫描线算法
X-扫描线算法填充多边形的基本思想是按扫描线顺序,计算 扫描线与多边形的相交区间,再用要求的颜色显示这些区间 的像素,即完成填充工作
区间的端点可以通过计算扫 描线与多边形边界线的交点 获得
扫描线
交点 交点
交点
交点
如扫描线y=3与多边形的边界相 y
交于4点:
11

计算机图形学二、多边形的扫描转换算法

计算机图形学二、多边形的扫描转换算法

2
做一个
E
2
A
C C
2
D
B
2
局部极大或局部极小点, 交点看做是二个
非局部极值点,交点看
2
做一个
E
非局部极值点将这些相
邻边分割开来
2
A
如何计算扫描线与多边形边界线的所有交点?
若扫描线yi与多边形边界线交点的x坐标是xi, 则对下一条扫描线yi+l,它与那条边界线的交点的x 坐标xi+1,可如下求出:
m
yi1 yi xi1 xi
, yi1
yi
1
xi 1
xi
1 m
扫描线与多边形边的交点计算 C
B
yk 1 yk
x AC k 1
xkAC
1 mAC
x BC k 1
xkBC
1 mBC
A
活跃(活性)边:与当前扫描线相交的边 活跃(活性)边表AET:存贮当前扫描线相交的各边的表。
ymax x 1/m next

扫描线5 扫描线6
e2 92 0
e2 92 0
e6 5 13 6/4 λ
e5 11 13 0 λ
9∧
8∧
e3
e4
7
9 7 -5/2
11 7 6/4 λ
e5
6
11 13 0 λ
5∧
e2
e3
4
9 2 0λ
3∧
e2
2∧
e1
e6
1
3 7 -5/2
5 7 6/4 λ
e1
0∧
ymax xmin 1/m
e4 e5
e6 5 111/2 6/4 λ
9∧

多边形扫描转换算法

多边形扫描转换算法

多边形扫描转换算法多边形扫描转换算法是一种计算机图形学中常用的算法,用于将一个多边形转换为一组水平线段,以便进行填充或渲染。

该算法的基本思想是将多边形沿着水平方向进行扫描,找出多边形与水平线段的交点,并将这些交点按照从左到右的顺序进行排序,最终得到一组水平线段。

多边形扫描转换算法的实现过程可以分为以下几个步骤:1. 找出多边形的顶点首先需要找出多边形的顶点,这些顶点可以通过遍历多边形的边来得到。

在遍历边的过程中,需要注意将相邻的边进行合并,以便得到多边形的完整轮廓。

2. 找出多边形与水平线段的交点在进行扫描转换时,需要将多边形沿着水平方向进行扫描,找出多边形与水平线段的交点。

这些交点可以通过遍历多边形的边来得到,对于每条边,需要判断其是否与当前扫描线相交,如果相交,则计算出交点的坐标。

3. 对交点进行排序得到多边形与水平线段的交点后,需要将这些交点按照从左到右的顺序进行排序。

这可以通过对交点的x 坐标进行排序来实现。

如果有多个交点具有相同的 x 坐标,则需要按照其 y 坐标进行排序。

4. 将交点组成线段将交点按照从左到右的顺序进行排序后,就可以将它们组成一组水平线段。

对于相邻的两个交点,可以将它们之间的部分作为一条水平线段。

如果两个交点之间没有其他交点,则可以将它们之间的部分作为一条水平线段。

5. 进行填充或渲染得到一组水平线段后,就可以进行填充或渲染。

对于填充操作,可以使用扫描线算法来实现。

对于渲染操作,可以将每条水平线段转换为一组像素点,并将这些像素点进行绘制。

多边形扫描转换算法的优点是可以处理任意形状的多边形,并且可以得到一组水平线段,方便进行填充或渲染。

但是该算法的缺点是需要进行大量的计算,特别是在多边形较复杂时,计算量会非常大,导致性能下降。

为了提高多边形扫描转换算法的性能,可以采用一些优化技术。

例如,可以使用空间分割技术来减少计算量,将多边形分割成多个小块进行处理。

另外,可以使用并行计算技术来加速计算过程,将多个处理器或计算机同时进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形的扫描转换
图形学中多边形有两种表示方法:多边形的顶点表示与点阵表示。

顶点表示用多边形的顶点序列来刻画多边形;点阵表示则是用位于多边形内的像素的
集合来刻画多边形。

扫描转换多边形或多边形的填充:从多边形的顶点信息出发,求出位于其内部的各个像素,并将其颜色值写入帧缓存中相应单元的过程。

x-扫描线算法
基本思想:如下图所示,按扫描线顺序,计算扫描线与多边形的相交区间,再用要求的颜色显示这些区间的所有像素。

图5-8 x-扫描线算法填充多边形
算法步骤:
(1)确定多边形所占有的最大扫描线数,得到多边形顶点的最小和最大y值(ymin和ymax)。

(2)从y=ymin到y=ymax,每次用一条扫描线进行填充。

填充过程可分为四个步骤:
a.求交:计算扫描线与多边形各边的交点;
b.排序:把所有交点按照递增顺序进行排序;
c.交点配对:交点两两配对,表示扫描线与多边形的一个相交区间;
d.区间填色:将相交区间内的像素置成不同于背景色的填充色。

存在问题:当扫描线与多边形顶点相交时,交点的取舍问题。

如下图所示,在扫描线y=1,y=5和y=7时,扫描线过多边形的顶点,若不加以处理,交点配对时会发生错误。

图5-9 与多边形相交的交点的处理
解决方法:当扫描线与多边形的顶点相交时,若共享顶点的两条边分别落在扫描线的两边,交点只算一个;若共享顶点的两条边在扫描线的同一边,这时交点作为零个或两个。

实际处理时,只要检查顶点的两条边的另外两个端点的Y值,两个Y值中大于交点Y值的个数是0,1,2,来决定取0,1,2个交点。

改进的有效边表算法
由于x-扫描线算法在处理每条扫描线时,需要与多边形所有的边求交,效率很低,因此需要加以改进,形成改进的有效边表算法。

改进原理:
(1)处理一条扫描线时,仅对有效边求交。

(2)利用扫描线的连贯性,即当前扫描线与各边的交点顺序与下一条扫描线与各边的交点顺序很可能相同或非常相似。

(3)利用多边形边的连贯性,即当某条边与当前扫描线相交时,它很可能也与下一条扫描线也相交:若边的直线斜率为k,这样边与两条相邻扫描线的交点有如下关系:xi+1=xi+1/k。

图5-10 与多边形边界相交的两条连续扫描线交点的相关性
有效边(Active Edge):指与当前扫描线相交的多边形的边,也称为活性边。

有效边表(Active Edge Table, AET):把有效边按与扫描线交点x坐标递增的顺序存放在一个链表中,此链表称为有效边表。

有效边表的每个结点为:
x ymax 1/k next
边表:为了方便有效边表的建立与更新,需要构造一个边表(Edge Table)。

(1)首先构造一个纵向链表,链表的长度为多边形所占有的最大扫描线数,链表的每个结点,称为一个桶,则对应多边形覆盖的每一条扫描线。

(2)将每条边的信息链入与该边最小y坐标(ymin)相对应的桶处。

也就是说,若某边的较低端点为ymin,则该边就放在相应的扫描线桶中。

(3)每条边的数据形成一个结点,内容包括:该扫描线与该边的初始交点x(即较低端点的x值),1/k,以及该边的最大y值ymax。

x|ymin ymax 1/k NEXT
(4)同一桶中若干条边按X|ymin由小到大排序,若x|ymin 相等,则按照1/k由小到大排序。

为了解决顶点交点计为1时的情形,可将多边形的某些边缩短以分离那些应计为1个交点的顶点,如下图所示。

图5-11 交点数计为1的顶点的处理
图5-12 多边形P0P1P2P3P4P5P6P0
如上图所示的多边形,构造边表如下,注意P3P2边缩短了。

图5-13 边表
根据建立的边表,改进有效边表的算法步骤如下:
(1)初始化:构造边表,AET表置空;
(2)将第一个不空的ET表中的边与AET表合并;
(3)由AET表中取出交点对进行填充。

填充之后删除y=ymax的边;
(4)y i+1=yi+1,根据x i+1=xi+1/k计算并修改AET表,同时合并ET表中y=y i+1桶中的边,按次序插入到AET表中,形成新的AET表;
(5)AET表不为空则转(3),否则结束。

本算法的主要缺点是对各种表的维持和排序开销太大,适合软件而不适合硬件实现。

边缘填充算法
1. 边缘填充算法
基本思想:按任意顺序处理多边形的每条边。

处理时,先求出该边与扫描线的交点,再对扫描线上交点右方的所有像素取反。

特点:算法简单,但对于复杂图型,每一像素可能被访问多次。

2.栅栏填充算法
栅栏指的是一条过多边形顶点且与扫描线垂直的直线。

它把多边形分为两半。

基本思想:按任意顺序处理多边形的每一条边,但处理每条边与扫描线的交点时,将交点与栅栏之间的像素取反。

特点:这种算法尽管减少了被重复访问像素的数目,但仍有一些像素被重复访问。

3.边标志算法
基本思想:先用特殊的颜色在帧缓存中将多边形的边界勾画出来,然后将着色的像素点依x坐标递增的顺序配对,再把每一对像素构成的区间置为填充色。

操作分为两个步骤:
(1)打标记:对多边形的每条边进行直线扫描转换。

(2)填充:对每条与多边形相交的扫描线,依从左到右的顺序,按“左闭右开”的原则对扫描线上的像素点进行填色。

特点:当用软件实现本算法时,速度与改进的有效边表算法相当,但本算法用硬件实现后速度会有很大提高。

相关文档
最新文档