高中数学- 对数的概念教案

合集下载

苏教版高中数学必修1《对数:对数的概念》教学教案

苏教版高中数学必修1《对数:对数的概念》教学教案

对数的概念【教学目标】1.使学生理解对数的概念,能够进行对数式与指数式的互化。

2.培养学生应用数学的意识.【教学重点】对数的概念【教学难点】对数与指数的互化【教学过程】一.复习引入:某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的的质量是原来的84%,经过多少年这种物质的剩留量为原来的一半?二.新课讲解1. 定义:一般地,如果 ()1,0≠>a a a 的b 次幂等于N , 即 N a b =,那么数 b 叫做 a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数。

N a b = b N a =log【注】(1) 在指数式中 N > 0 (负数与零没有对数);(2) 01log =a 1log =a a(3)对数恒等式: N a N a =log ;b a b a =log(4)常用对数:我们通常将以10为底的对数叫做常用对数。

为了简便,N 的常用对数log 10 N 简记作lg N例如:log 105简记作lg 5 log 103.5简记作lg3.5.(5)自然对数:在科学技术中常常使用以无理数e =2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作ln N 。

例如:log e 3简记作ln3 log e 10简记作ln102. 例题例1 将下列指数式改写成对数式:(1)54=625 (2)2-6=164 (3)3a =27 (4) (13 )m =5.73 解:(1)log 5625=4;(2)log 2 164 =-6;(3)log 327=a ;(4)log 315.73=m例2 将下列对数式写成指数式:(1)log 2116=-4;(2)log 2128=-7;(3)lg0.01=-2;(4)ln10=2.303解:(1)(12 )-4=16;(2)27=128;(3)10-2=0.01;(4)e 2.303=10例3 求下列各式的值:(1) 64log 2 ;271log 3(2) 27log 9; 81log 34解:设 =x 27log 9 则 ,27=x a 3233=x , ∴23=x (3) ()[]81log log log 346(4) ()()32log 32-+(5) 5log 23log 14242-+-+例4 求 x 的值:(1) 43log 3-=x (2) ()()1123log 2122=-+-x x x (3) ()[]0log log log 432=x (4) 872log =x (5) 416log =x解:(1)2713443==-x (2)2,00212123222-==⇒=+⇒-=-+x x x x x x x但必须:⎪⎩⎪⎨⎧>-+≠->-0123112012222x x x x ∴0=x 舍去 2-=x(3) ()1log log 43=x , ∴3log 4=x , 6443==x(4) 787878878722)(2=∴==x x x (5) )(22164舍去或-=∴=x x【课堂小结】(1)定义 (2)互换 (3)求值大家要在理解对数概念的基础上,掌握对数式与指数式的互化,会计算一些特殊对数值。

高中数学对数函数概念教案

高中数学对数函数概念教案

高中数学对数函数概念教案
一、教学目标:
1.了解对数的基本概念和性质;
2.掌握对数函数的定义及其性质;
3.能够运用对数函数解决相关问题。

二、教学内容:
1.对数的概念和定义;
2.对数函数的性质和图像;
3.对数函数的应用实例。

三、教学重点与难点:
1.掌握对数函数的定义和性质;
2.理解对数函数的图像和变化规律。

四、教学方法:
1.教师讲授相结合的方法;
2.示例分析、讨论交流的方法;
3.练习与实践结合的方法。

五、教学过程:
1.导入:通过一个生活中的实例引入对数的概念,引起学生对对数的兴趣;
2.讲解:介绍对数的定义和性质,引导学生理解对数函数的概念;
3.示例:通过具体的例题演示对数函数的计算和图像,让学生掌握对数函数的运用方法;
4.练习:让学生进行相关的练习,巩固对数函数的理解和应用;
5.总结:对本节课所学内容进行总结,强化对数函数的概念。

六、教学反思:
本节课对于对数函数概念的教学,需要结合具体案例进行讲解,引导学生理解对数函数的定义和性质。

同时,通过练习和实践加深学生对对数函数的理解和掌握。

在教学中要注重培养学生的数学思维和解决问题的能力,让学生在实际应用中灵活运用对数函数。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

对数的概念教案最终版

对数的概念教案最终版

对数的概念教案最终版一、教学目标1. 让学生理解对数的定义和性质,掌握对数的基本运算方法。

2. 培养学生运用对数解决实际问题的能力,提高逻辑思维和运算能力。

二、教学内容1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用三、教学重点与难点1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用四、教学方法1. 采用讲授法,讲解对数的定义、性质和运算方法。

2. 运用案例分析法,引导学生运用对数解决实际问题。

3. 利用数形结合法,直观展示对数函数的图像,帮助学生理解对数的概念。

五、教学过程1. 导入新课:通过复习指数函数,引出对数的概念。

2. 讲解对数的定义与性质:解释对数的定义,阐述对数的性质,如对数与指数的关系、对数的换底公式等。

3. 教授对数的运算方法:讲解对数的加减乘除运算规则,举例说明运算方法。

4. 应用练习:布置练习题,让学生运用对数解决实际问题,如计算复合利率、人口增长等。

5. 课堂小结:总结本节课所学内容,强调对数的概念、性质和运算方法。

6. 布置作业:布置课后作业,巩固所学知识。

7. 课后反思:教师对本节课的教学情况进行反思,针对学生的掌握情况,调整教学策略。

六、教学拓展1. 对数与自然底数e:介绍自然底数e的概念,解释e的对数——自然对数,及其在数学和物理中的重要性。

2. 对数与对数函数:讲解对数函数的定义,分析对数函数的性质,如单调性、奇偶性等。

3. 对数在科学计算中的应用:介绍对数在科学计算中的广泛应用,如测量、天文、生物等领域。

七、案例分析1. 利用对数计算复合利率:以存款利息为例,讲解如何利用对数计算复合利率。

2. 利用对数解决人口增长问题:以人口增长模型为例,讲解如何利用对数预测人口增长。

3. 利用对数分析信号传输:以电信行业为例,讲解如何利用对数分析信号传输过程中的衰减。

八、课堂互动1. 小组讨论:分组讨论对数在实际生活中的应用,分享各自的研究成果。

对数教学设计【优秀5篇】

对数教学设计【优秀5篇】

对数教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计【优秀5篇】高中数学对数教学教案有哪些篇一教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题。

高中数学必修一:对数运算的基本概念教案

高中数学必修一:对数运算的基本概念教案

高中数学必修一:对数运算的基本概念教案一、教学目标1、掌握对数的概念、基本性质和运算法则。

2、理解对数与指数的关系及其在实际问题中的应用。

二、教学重点和难点1、重点:对数的概念、基本性质和运算法则。

2、难点:对数的应用及与指数的关系。

三、教学过程1、引入“电子计算机”,这是一种重要的现代科技,我们在日常生活中经常使用。

但是,在没有电子计算机之前,我们是如何进行大规模的计算的呢?(引导学生回忆人类历史上一些重大的计算事件,如“圆周率”计算等。

)我们知道,在没有电子计算机这样的工具的时代,人们需要依靠一些数学工具来进行大规模的计算。

其中,对数就是一种非常重要的工具。

2、讲解1)对数的概念:在数学中,对数是一种数学工具,用来表示一数的乘方。

例如,底数为2,指数为3的乘方表示为2³,意为2的3次方,即2乘以2乘以2,结果为8。

在对数中,8表示为3(记作log₂8)。

2)对数的定义:对数定义是:如果b的x次幂等于a,a以b为底的对数为x,记作logb(a)=x(其中b>0,且b≠1)。

3)对数的特性:①若 a>1 ,则logb(a)> 0②若a=1,则logb(a)= 0③若0< a< 1 ,则logb(a)< 0④若a=b,logb(a)= 1⑤a以b为底的对数函数f(x)= logb(x)的函数图形如下所示:(请在黑板上画出函数图形并帮助学生理解)4)对数的运算法则:对数运算法则包括:①对数的乘法法则(即loga(m*n)=loga(m)+loga(n))②对数的除法法则(即loga(m/n)=loga(m)-loga(n))③对数的幂运算法则(即loga(m^n)=nloga(m))我们可以通过简单的例子来帮助学生更好地掌握这些运算法则。

3、应用对数与指数的关系具有非常密切的联系,常见的将对数转化成指数的方法有两种:一是通过对数法则化简式子,二是通过对数换底公式将对数转化为指数。

《对数的概念》教案、导学案与同步练习

《对数的概念》教案、导学案与同步练习

《第四章 指数函数与对数函数》 《4.3.1对数的概念》教案【教材分析】对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.【教学目标与核心素养】 课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化; 数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质. 【教学重难点】重点:对数式与指数式的互化以及对数性质; 难点:推导对数性质.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。

【教学过程】 一、情景导入已知中国的人口数y 和年头x 满足关系中,若知年头数则能算出相应的人口总数。

反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本122-123页,思考并完成以下问题 1.对数的定义是什么?底数和真数又分别是什么? 2.什么是常用对数和自然对数?13 1.01xy =⨯3.如何进行对数式和指数式的互化?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究 1.对数的概念如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.[点睛] log a N 是一个数,是一种取对数的运算,结果仍是一个数,不可分开书写.2.常用对数与自然对数通常将以10为底的对数叫做常用对数,以e 为底的对数称为自然对数,log 10N 可简记为lg_N ,log e N 简记为ln_N .3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =x .对数恒等式:a log a N =N ;log a a x =x (a >0,且a ≠1). 4.对数的性质 (1)1的对数为零; (2)底的对数为1; (3)零和负数没有对数. 四、典例分析、举一反三 题型一对数式与指数式的互化 例1将下列指数式与对数式互化:(1)lo g 1327=-3; (2)43=64;(3)e -1=1e ; (4)10-3=0.001.【答案】(1)(13)-3=27. (2)log 464=3.(3)ln 1e =-1. (4)lg0.001=-3. 解题技巧:(对数式与指数式的互化)1.(a>0,且a≠1)是等价的,表示a,b,N 三者之间的同一种关系.如下图:2.根据这个关系式可以将指数式与对数式互化:将指数式化为对数式,只需log ba Nb a N ==与将幂作为真数,指数作为对数,底数不变;而将对数式化为指数式,只需将对数式的真数作为幂,对数作为指数,底数不变.跟踪训练一1. 将下列指数式与对数式互化: (1)2-2=14; (2)102=100; (3)e a =16;(4)log 6414=-13; (5)log x y=z (x>0,且x ≠1,y>0).【答案】(1)log 214=-2. (2)log 10100=2,即lg100=2.(3)log e 16=a ,即ln16=a. (4) 64-13=14.(5)x z=y(x>0,且x≠1,y>0).题型二利用对数式与指数式的关系求值 例2求下列各式中x 的值: (1)4x=5·3x; (2)log 7(x+2)=2; (3)lne 2=x; (4)log x 27=32;(5)lg0.01=x.【答案】(1)x=lo g 435(2)x=47(3)x=2(4)x=9(5)x=-2【解析】(1)∵4x=5·3x,∴4x3x =5,∴(43)x=5,∴x=lo g 435.(2)∵,∴x+2=49,∴x=47. (3)∵,∴,∴x=2.(4)∵,∴x 32=27,∴x=2723=32=9. (5)∵lg0.01=x,∴,∴x=-2. 解题技巧:(利用对数式与指数式的关系求值)指数式ax=N 与对数式x=logaN(a>0,且a≠1)表示了三个量a,x,N 之间的同一种关系,因而已知其中两个时,可以通过对数式与指数式的相互转化求出第三个.跟踪训练二1.求下列各式中的x 值:7log (2)2x +=2ln e x =2x e e =3log 272x =2100.0110x -==(1)log 2x=12;(2)log 216=x ;(3)log x 27=3. 【答案】(1)x=√2(2)x=4(3)x=3 【解析】(1)∵log 2x=12,∴x=212,∴x=√2. (2)∵log 216=x,∴2x=16,∴2x=24,∴x=4. (3)∵log x 27=3,∴x 3=27,即x 3=33,,∴x=3. 题型三利用对数的基本性质与对数恒等式求值 例3求下列各式中x 的值:(1); (2);(3)3log 3√x =9. 【答案】(1)x=2(2)x=100(3)x=81【解析】(1)∵,∴,∴x=2. (2)∵,∴lgx=2,∴x=100. (3)由3log 3√x =9得√x =9,解得x=81.解题技巧:(利用对数的基本性质与对数恒等式求值) 1.在对数的运算中,常用对数的基本性质:(1)负数和零没有对数;(2)log a 1=0(a>0,a≠1);(3)log a a=1(a>0,a≠1)进行对数的化简与求值.2.对指数中含有对数值的式子进行化简、求值时,应充分考虑对数恒等式的应用.对数恒等式=N(a>0,且a≠1,N>0)的结构形式:(1)指数中含有对数式;(2)它们是同底的;(3)其值为对数的真数.跟踪训练三1. 求下列各式中x 的值:(1)ln(lg x )=1;(2)log 2(log 5x )=0;(3)32+log 35=x. 【答案】(1)(2)x=5(3)x=45 【解析】(1)∵ln(lgx)=1,∴lgx=e,∴; (2)∵log 2(log 5x )=0,∴,∴x=5. (3)x=32×3log 35=9×5=45. 五、课堂小结让学生总结本节课所学主要知识及解题技巧2ln(log )0x =2log (lg )1x =2ln(log )0x =2log 1x =2log (lg )1x =log a N a 10e x =10e x =5log 1x =六、板书设计七、作业课本126页习题4.3中1题2题 【教学反思】本节主要学习了一类新的数:对数。

对数的概念教案最终版

对数的概念教案最终版

对数的概念教案最终版一、教学目标1. 理解对数的定义和性质2. 掌握对数的运算规则3. 能够应用对数解决实际问题二、教学重点1. 对数的定义和性质2. 对数的运算规则三、教学难点1. 对数的性质的理解和应用2. 对数运算的规则的推导和应用四、教学准备1. 教学PPT2. 练习题五、教学过程1. 引入:通过讲解指数与对数的关系,引导学生思考对数的概念。

2. 讲解:讲解对数的定义,通过对数的性质和运算规则进行讲解,让学生理解对数的概念。

3. 练习:让学生通过练习题,巩固对数的定义和运算规则。

4. 应用:让学生应用对数解决实际问题,加深对对数概念的理解。

6. 作业:布置练习题,巩固对数的定义和运算规则。

7. 板书设计:对数的定义;对数的性质;对数的运算规则。

8. 课后反思:对本节课的教学效果进行反思,对学生的掌握情况进行评估,为下一步的教学做好准备。

9. 教学延伸:讲解对数的进一步应用,如对数函数和对数方程等。

10. 教学评价:通过学生的练习和课堂表现,对学生的学习效果进行评价。

六、教学策略1. 采用问题驱动的教学方法,引导学生通过探索和发现来理解对数的概念。

2. 使用多媒体教学资源,如动画和图表,帮助学生形象地理解对数的概念和性质。

3. 提供丰富的练习机会,让学生在实际操作中掌握对数的运算规则。

4. 鼓励学生进行合作学习,通过讨论和交流,加深对对数概念的理解。

七、教学评价1. 通过课堂提问,观察学生对对数概念的理解程度。

2. 通过练习题的完成情况,评估学生对对数运算规则的掌握程度。

3. 学生课后作业和对数应用题的解决情况,评价学生对对数的应用能力。

4. 综合学生的课堂表现和练习成绩,给予全面评价。

八、教学拓展1. 介绍对数在科学和工程领域中的应用,如地震监测、信号处理等。

2. 探讨对数与指数之间的关系,引导学生深入研究数学的内在联系。

3. 引入对数函数的概念,为后续的数学课程打下基础。

九、教学建议1. 在讲解对数的定义时,要注重与学生已有的数学知识相结合,建立对数与指数的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-对数教案
教学目的:(1)理解对数的概念;
(2)能够说明对数与指数的关系;
(3)掌握对数式与指数式的相互转化.
教学重点:对数的概念,对数式与指数式的相互转化
教学难点:对数概念的理解.
教学过程:
一、 引入课题
介绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性;
二、 新课教学
1.对数的概念
一般地,如果N a x
=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ),记作:
N x a log =
a — 底数,N — 真数,N a log — 对数式 说明:○
1 注意底数的限制0>a ,且1≠a ; ○
2 x N N a a
x =⇔=log
○3 注意对数的书写格式. 思考:○
1 为什么对数的定义中要求底数0>a ,且1≠a ; ○
2 是否是所有的实数都有对数呢? 设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备.
两个重要对数:
○1 常用对数(common logarithm ):以10为底的对数N lg ;
○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数
N ln .
2. 对数式与指数式的互化
x N a =log
⇔ N a x = 对数式
⇔ 指数式 对数底数
← a → 幂底数 对数
← x → 指数 真数
← N → 幂
例1.(教材P 73例1) 巩固练习:(教材P 74练习1、2)
设计意图:熟练对数式与指数式的相互转化,加深理解对数概念.
说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题.
3. 对数的性质
(学生活动)

1 阅读教材P 73例2,指出其中求x 的依据; ○
2 独立思考完成教材P 74练习3、4,指出其中蕴含的结论 对数的性质
(1)负数和零没有对数;
(2)1的对数是零:01log =a ;
(3)底数的对数是1:1log =a a ;
(4)对数恒等式:N a
N a =log ;
(5)n a n a =log . 三、 归纳小结,强化思想

1 引入对数的必要性; ○
2 指数与对数的关系;
○3对数的基本性质.
四、作业布置
教材P82习题2.2(A组)第1、2题,(B组)第1题.。

相关文档
最新文档