中考数学《统计》复习

合集下载

中考总复习数学31- 第一部分 第31讲 统计

中考总复习数学31- 第一部分 第31讲 统计
(3)统计表:一般涉及求频数和频率(百分比).
第31讲
返回思维导图
统计— 考点梳理
返回栏目导航
3.频数和频率
频数
(2)频率=
.
数据总个数
(1)频数:各组中数据的个数.
(3)各组的频率之和为
1
.
4.样本估计总体
用样本估计总体时,样本容量越大,通过样本对总体的估计也就
越精确 .
基本思想:利用样本的特征(平均数、方差等)估计总体的特征(平均数、方差
1
2
3
4
第31讲
返回题型清单
统计— 题型突破
返回栏目导航
2.(原创题)某篮球队10名队员的年龄结构如下表,已知该队队员年龄的
中位数是21.5,则篮球队的年龄的众数为( D )
A.20
年龄/岁
19
20
21
22
24
26
人数/名
1
1
m
n
2
1
B.22
C.24
D.21
1
2
3
4
第31讲
统计— 题型突破
返回题型清单
计算调查的样本容量:综合观察统计图(表),或得到某组的频数,或得到某
组的频数及该组对应的频率(百分比),利用样本容量=各组频数之和或样
某组的频数
本容量=
计算即可.
该组的频率
(1)条形统计图:一般涉及补图,也就是求未知组的频数.
(2)扇形统计图:一般涉及补图,也就是求未知组的百分比或其所占圆心角
的度数.
解析:在这次抽样调查中,共调查的学生数为60÷20%=300(名).
(2)C类所对应扇形的圆心角的度数是
全条形统计图;

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。

以下是对这些知识点的详细梳理。

1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。

概率的计算方法包括:理论概率、几何概率和频率概率。

-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。

-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。

-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。

2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。

统计的主要目的是对研究对象进行客观的描述和分析。

-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。

-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。

-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。

3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。

抽样调查的方法包括概率抽样和非概率抽样。

-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。

-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。

4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。

初三中考数学:《统计》专项练习复习题

初三中考数学:《统计》专项练习复习题

统计专项练习题一、选择题1. 下列调查中,最合适采用全面调查(普查)方式的是()A.对重庆市民知晓“中国梦”内涵情况的调查B.对2021年元旦节磁器口游客量情况的调查C.对全国中小学生身高情况的调查D.对全班同学参加“反邪教”知识问答情况的调查2. 下列调查中,属于抽样调查的是()A.了解某班学生的身高情况B.某企业招聘,对应聘人员进行面试C.检测某城市的空气质量D.乘飞机前对乘客进行安检3. 我市五月份连续五天的最高气温分别为,,,,(单位:),这组数据的中位数和众数分别是()A.,B.,C.,D.,4. 下列一组数据:、、、、的平均数和方差分别是()A.和B.和C.和D.和5. 为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果。

下列调查数据中最值得关注的是()A.平均数B.中位数C.众数D.方差6. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生B.调查七、八、九年级各30名学生C.调查全体女生D.调查全体男生7. 为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()A.2000名学生B.2000 C.200名学生D.2008. 甲乙丙三种糖果的售价分别每千克 6 元、7 元、8 元,若将甲种 8 千克、乙种 10 千克、丙种 3 千克混在一起出售,为确保不亏本售价至少应定为每千克()A.6.8 元B.7 元C.7.5 元D.8.6 元9. 要反映一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布图10. 若数据、、的平均数是3,则数据、、的平均数是 ( ) A.2 B.3 C.4 D.611. 某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是( )A.甲B.乙C.丙D.丁12. 济南某中学足球队的18名队员的年龄如下表所示:这18名队员年龄的众数和中位数分别是( )A.13岁,14岁B.14岁,14岁C.14岁,13岁D.14岁,15岁13. 某市统计部门公布的2016年6~10月份本市居民消费价格指数(CPI)的同比增长分别为2.3%,2.3%,2%,1.6%,1.6%,业内人士评论说:“这五个月的本市居民消费价格指数同比增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”反映的统计量是( )A.方差B.平均数C.众数D.中位数根据上表中的信息判断,下列结论中错误的是().A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分15. 小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080 B.900 C.600 D.10816. 我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差17. 为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量18. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.58,S乙2=0.52,S丙2=0.56,S丁2=0.48,则成绩最稳定的是()A.甲B.乙C.丙D.丁19. 为了了解我市参加中考的 120000 学生的视力情况,抽查了 1000 名学生的视力进行统计分析.样本容量是()A.120000 名学生的视力B.1000 名学生的视力C.120000 D.100020. 某市2021年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析,在这个问题中样本是指( )A.2 000 B.2 000名考生的数学成绩C.4万名考生的数学成绩D.2 000名考生21. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲 B.乙C.丙 D.丁22. 如图是某晚报“百姓热线”一周内接到热线电话的统计图,其中有关环境保护话题的电话最多,共70个,则本周“百姓热线”共接到热线电话有( )A.350个B.200个C.180个D.150个23. 凤江镇有10万人口,随机调查了1000人,其中有20人喜欢看晚间新闻联播,则该镇中喜欢看晚间新闻联播的人数大约有()人.A.1000 B.2000 C.3000 D.400024. 一组数据3、4、x、1、4、3有唯一的众数3,则这组数据的中位数是()A.3 B.2 C.1 D.425. 样本数据3、6、a、4、2的平均数是5,则这个样本的方差是A.8 B.5 C.22D.3二、填空题27. 若数,,,,五个数的平均数为,则的值为________.该小组学生在这次测试中成绩的中位数是_____分.29. 已知某班某次数学成绩中10名同学的成绩分别为89,70,65,89,75,92,88,87,90,86,这10名同学的成绩的中位数、众数分别是_____________。

专题8.1 统计-2022年中考数学第一轮总复习课件(全国通用)

专题8.1 统计-2022年中考数学第一轮总复习课件(全国通用)

考点聚焦 数据的分析---数据的代表据提供的信息,在现实生活中较为常用,但它受 极端值的影响较大. 2.中位数的优点是容易计算,不受极端值的影响.中位数代表了这组数据 值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息. 中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中 位数可能出现在所给数据中,也可能不在所给的数据中出现,当一组数据 中的个别数据变动较大时,可用中位数描述其趋势. 3.众数不易受数据中的极端值影响.众数也是数据的一种代表数,反映了 一组数据的集中程度,众数可作为描述一组数据集中趋势的量.当一组数 据中某些数据多次反复出现时,宜用众数来作为描述数据集中趋势的量, 众数也不受极端值的影响.一组数据的平均数和中位数是唯一的,而众数 则可能有多个.
C.每位考生的数学成绩是个体
D.1000名学生是样本容量
4.株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最
大时间段为( B )A.9:00~10:00 C.14:00~15:00
B.10:00~11:00 D.15:00~16:00
9:00~10:00
进馆人数
50
出馆人数
30
10:00~11:00 24 65
典例精讲
数据的描述
知识点一
【例1-3】某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C
,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,
绘制了如图所示的统计图.已知图中从左到右的五个长 人数
方形的高之比为2:3:3:1:1,据此估算该市80000名九
年级学生中“综合素质”评价结果为“A”的学生约
(记为F´).根据调查结果绘制了如下统计图表。

数学中考二轮复习专题卷---统计附答案解析

数学中考二轮复习专题卷---统计附答案解析

数学中考二轮复习专题卷-统计学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列统计量中,不能..反映一名学生在一学期的数学学习成绩稳定程度的是()A.标准差 B.方差 C.中位数 D.极差2.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.s2甲>s2乙B.s2甲=s2乙C.s2甲<s2乙D.不能确定3.一组数据:0,1,2,3,3,5,5,10的中位数是A.2.5 B.3 C.3.5 D.54.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.55.下列调查中适合采用全面调查的是A.调查市场上某种白酒的塑化剂的含量B.调查鞋厂生产的鞋底能承受弯折次数C.了解某火车的一节车厢内感染禽流感病毒的人数D.了解某城市居民收看辽宁卫视的时间6.若一组数据1、2、3、x的极差是6,则x的值为()A.7 B.8 C.9 D.7或—37.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是A.2013年昆明市九年级学生是总体 B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本 D.样本容量是1000该日最高气温的众数和中位数分别是A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃9.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性:A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定 D.无法确定10.孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)9 8 7 9 6则孔明射击成绩的中位数是A.6 B.7 C.8 D.911.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是A .16人B .14人C .4人D .6人 12.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【 】 A .1.71 B .1.85 C .1.90 D .2.3113.下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|5|-的算术平方根是5;④点P (1,2-)在第四象限,其中正确的个数是【 】 A .0 B .1 C .2 D .314.乐山大佛景区2013年5月份某周的最高气温(单位:0C )分别为:29,31,23,26,29,29。

中考数学总复习考点系统复习第一节 统计

中考数学总复习考点系统复习第一节  统计
所抽取该校七年级学生四月份“读书量”的统计图
第6题图
根据以上信息,解答下列问题: (1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的众数为__3_本_____;
第6题解图
(2)求本次所抽取学生四月份“读书量”的平均数;
(2)∵18÷30%=60(人), ∴x= 1 ×(1×3+2×18+3×21+4×12+5×6)=3(本).
第4题图
根据以上提供的信息,解答下列问题:
(1)求所统计的这组数据的中位数和平均数;
解:(1)∵ 10+11 =10.5(棵); x= 9×1+10×4+11×3+12×2=10.6(棵).
2
10
∴所统计的这组数据的中位数为10.5棵,平均数为10.6棵.(3分)
(2)求抽查的这10个小组中,完成本次植树任务的小组所占的百分比; (2)∵ 4+3+2×100%=90%. 10 ∴在抽查的10个小组中,90%的小组完成了植树任务.(5分)
返回思维导图
概念:一组数据中出现次数 最多 的数据
数 据众 的数 数代 据表 的
特点:表示一组数据中出现次数最多的数据,次数多能够反映一组数 据的集中程度 通用情况:日常生活中“最佳”、“最受欢迎”、“最满意”、“最 受关注”等,与众数有关,它是反映一组数据的集中程度
分 析
数据的
概念:s2= n1[(x1-x)2+(x2-x)2+…+(xn-x)2]
请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图; 解:(1)补全统计图如解图;(2分)
所抽取七年级学生早锻炼时间统计图
第7题解图
(2)所抽取的七年级学生早锻炼时间的中位数落在_2_0_≤_x_<__3_0_(或__填__C__) _区间内;

中考数学复习专题19统计

专题19 统计一、单选题1.(2021·山东聊城市)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( )A .样本为40名学生B .众数是11节C .中位数是6节D .平均数是5.6节 【答案】D【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可.【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确.故选择:D .【点睛】本题考查样本,众数,中位数,平均数,熟练掌握样本,众数,中位数,平均数是解题关键. 2.(2021·湖北随州市)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是( )A .测得的最高体温为37.1℃B .前3次测得的体温在下降C .这组数据的众数是36.8D .这组数据的中位数是36.6【答案】D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1℃,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.3.(2021·湖南常德市)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①【答案】D【分析】根据数据的收集、整理、制作拆线统计图及根据统计图分析结果的步骤可得答案.【详解】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.③按统计表的数据绘制折线统计图;①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;所以,正确统计步骤的顺序是②→④→③→①故选:D.【点睛】本题考查拆线统计图、频数分布表,解答本题的关键是明确制作频数分布表和拆线统计图的制作步骤4.(2021·四川广安市)下列说法正确的是()A.为了了解全国中学生的心理健康情况,选择全面调查B.在一组数据7,6,5,6,6,4,8中,众数和中位数都是6a ”是必然事件C.“若a是实数,则0D .若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则乙组数据比甲组数据稳定【答案】B【分析】根据抽样调查及普查,众数和中位数,随机事件,方差的意义分别判断即可.【详解】解:A 、为了了解全国中学生的心理健康情况,人数较多,应采用抽样调查的方式,故错误; B 、在一组数据7,6,5,6,6,4,8中,众数和中位数都是6,故正确;C 、0a ≥,则“若a 是实数,则0a >”是随机事件,故错误;D 、若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则甲组数据比乙组数据稳定,故错误;故选B .【点睛】此题主要考查了抽样调查及普查,众数和中位数,随机事件,方差的意义,解答本题的关键是熟练掌握各个知识点.5.(2021·云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍 B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍 C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多 【答案】C【分析】分别计算单独生产各型号帐篷的天数,可判断A ,B ,C ,再根据条形统计图的数据判断D 即可. 【详解】解:A 、单独生产B 型帐篷的天数是2000030%1500⨯=4天,单独生产C 型帐篷的天数是2000015%3000⨯=1天,4÷1=4,故错误;B 、单独生产A 型帐篷天数为2000045%4500⨯=2天,4÷2=2≠1.5,故错误;C、单独生产D型帐篷的天数为2000010%1000=2天,2=2,故正确;D、4500>3000>1500>1000,∴每天单独生产A型帐篷的数量最多,故错误;故选C.【点睛】本题考查了条形统计图和扇形统计图综合,解题的关键是读懂题意,明确单独生产某一种帐篷的天数的计算方法.6.(2021·山东泰安市)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h【答案】C【分析】根据众数的定义及所给频数分布直方图可知,睡眠时间为7小时的人数最多,根据中位数的定义,把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,从而可得结果.【详解】由频数分布直方图知,睡眠时间为7小时的人数最多,从而众数为7h;把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,而第25位学生的睡眠时间为7h,第26位学生的睡眠时间为8h,其平均数为7.5h,故选:C.【点睛】本题考查了频数分布直方图,众数和中位数,读懂频数分布直方图,掌握众数和中位数的定义是解决本题的关键.7.(2021·广西玉林市)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环【答案】B【分析】根据中位数的求法可得98822x ++=,然后求解即可. 【详解】解:由题意得:甲乙两人的中位数都为第三次和第四次成绩的平均数, ∴98822x ++=,解得:7x =;故选B . 【点睛】本题主要考查中位数及一元一次方程的应用,熟练掌握中位数的求法及一元一次方程的应用是解题的关键.8.(2021·四川广元市)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】B【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意.故选:B .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键. 9.(2021·江苏宿迁市)已知一组数据:4,3,4,5,6,则这组数据的中位数是( ) A .3 B .3.5C .4D .4.5【答案】C【分析】将原数据排序,根据中位数意义即可求解.【详解】解:将原数据排序得3,4, 4,5,6,∴这组数据的中位数是4.故选:C【点睛】本题考查求一组数据的中位数,熟练掌握中位数的意义是解题关键,注意求中位数时注意先排序. 10.(2021·山西)每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是( )A .27点,21点B .21点,27点C .21点,21点D .24点,21点 【答案】C【分析】根据中位数与众数定义即可求解.【详解】解:将下列数据从小到大排序为15,21,21,21,27,27,30, 根据中位数定义,7个点数位于7+1=42位置上的点数是21点,∴这组数据的中位数是21点, 根据众数的定义,这组数据中重复次数最多的点数是21 点,所以这组数据的众数是21点,故选择C . 【点睛】本题考查中位数与众数,掌握中位数与众数定义是解题关键.11.(2021·山东菏泽市)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是( ) A .中位数是10.5 B .平均数是10.3C .众数是10D .方差是0.81【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9,9,10,10,10,10,11,11,11,12; 位于最中间的两个数是10,10,它们的平均数是10, 所以该组数据中位数是10,故A 选项不正确; 该组数据平均数为:()11211131049210.310⨯+⨯+⨯+⨯=,故B 选项正确; 该组数据10出现次数最多,因此众数是10,故C 选项正确; 该组数据方差为:()()()()222211210.331110.341010.32910.30.8110⎡⎤-+⨯-+⨯-+⨯-=⎣⎦,故D 选项正确;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.12.(2021·湖南长沙市)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,24【答案】C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C.【点睛】本题考查了众数和中位数,熟记定义是解题关键.13.(2021·湖北十堰市)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是()A.8,15B.8,14C.15,14D.15,15【答案】D【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.14.(2021·四川眉山市)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( ) A .80,90 B .90,90C .86,90D .90,94【答案】B【分析】先将该组数据按照从小到大排列,位于最中间的数和出现次数最多的数即分别为中位数和众数. 【详解】解:将这组数据按照从小到大排列:80,86,90,90,94; 位于最中间的数是90,所以中位数是90;这组数据中,90出现了两次,出现次数最多,因此,众数是90;故选:B .【点睛】本题考查了学生对中位数和众数的理解,解决本题的关键是牢记中位数和众数的概念,明白确定中位数之前要将该组数据按照从小到大或从大到小排列,若该组数据个数为奇数,则位于最中间的数即为中位数,若该组数据为偶数个,则位于最中间的两个数的平均数即为该组数据的中位数.15.(2021·江苏苏州市)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kg B .4.8kgC .4.6kgD .4.5kg【答案】C【分析】根据平均数的定义求解即可. 【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.74.65kg =.故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.16.(2021·浙江台州市)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21 s ,则下列结论一定成立的是( )A . x x <1B . x x >1C .s 2>21s D .s 221<s【答案】C【分析】根据平均数和方差的意义,即可得到答案.【详解】解:∵顾客从一批大小不一的鸡蛋中选购了部分大小均匀的鸡蛋,∴21s<s2,x和x1的大小关系不明确,故选C【点睛】本题主要考查平均数和方差的意义,掌握一组数据越稳定,方差越小,是解题的关键.17.(2021·浙江嘉兴市)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33C︒B.众数是33C︒C.平均数是197C7︒D.4日至5日最高气温下降幅度较大【答案】A【分析】根据中位数,众数,平均数的概念及折线统计图所体现的信息分析求解.【详解】解:由题意可得,共7个数据,分别为26;30;33;33;23;27;25从小到大排列后为23;25;26;27;30;33;33 位于中间位置的数据是27,∴中位数为27,故选项A符合题意;出现次数最多的数据是33,∴众数是33,故选项B不符合题意;平均数为(26+30+33+33+23+27+25)÷7=197C7︒,故选项C不符合题意;从统计图可看出4日气温为33℃,5日气温为23℃,∴4日至5日最高气温下降幅度较大,故选项D不符合题意;故选:A.【点睛】本题考查求一组数据的中位数,众数和平均数,准确识图,理解相关概念是解题关键.18.(2021·四川成都市)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【答案】B【分析】根据中位数的意义求解即可.【详解】解:将数据30,40,34,36按照从小到大排列是:30,34,36,40,故这组数据的中位数是3436352+=,故选:B.【点睛】本题考查了中位数,解答本题的关键是明确中位数的含义,求出相应的中位数.19.(2021·浙江宁波市)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∵甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20.(2021·四川资阳市)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.二、填空题1.(2021·浙江丽水市)根据第七次全国人口普查,华东,,,,,A B C D E F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.【答案】18.75%【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.2.(2021·四川乐山市)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)【答案】甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x乙=(5+9+6+7+8)÷5=7(环),2s=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,甲2s=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.三、解答题1.(2021·北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:≤<≤<≤<≤<≤≤):x x x x x68,810,1012,1214,1416b .甲城市邮政企业4月份收入的数据在1012x ≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为2p .比较12,p p 的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)10.1m =;(2)12p p <,理由见详解;(3)乙城市邮政企业4月份的总收入为2200百万元.【分析】(1)由题中所给数据可得甲城市的中位数为第13个数据,然后问题可求解;(2)由甲、乙两城市的中位数可直接进行求解;(3)根据乙城市的平均数可直接进行求解.【详解】解:(1)由题意可得m 为甲城市的中位数,由于总共有25家邮政企业,所以第13家邮政企业的收入作为该数据的中位数,∵68x ≤<有3家,810x ≤<有7家,1012x ≤<有8家,∴中位数落在1012x ≤<上,∴10.1m =;(2)由(1)可得:甲城市中位数低于平均数,则1p 最大为12个;乙城市中位数高于平均数,则2p 至少为13个,∴12p p <;(3)由题意得:200112200⨯=(百万元);答:乙城市的邮政企业4月份的总收入为2200百万元.【点睛】本题主要考查中位数、平均数及统计与调查,熟练掌握中位数、平均数及统计与调查是解题关键. 2.(2021·江苏南京市)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t ,你对它与中位数的差异有什么看法? (2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?【答案】(1)6.6t ;差异看法见解析;(2)1113a ≤<(其中a 为标准用水量,单位:t )【分析】(1)从中位数和平均数的定义和计算公式的角度分析它们的特点即可找出它们差异的原因; (2)从表中找到第75和第76户家庭的用水量,即可得到应制定的用水量标准数据.【详解】解:(1)由表格数据可知,位于最中间的两个数分别是6.4和6.8,∴中位数为:6.4 6.8 6.62+=( t ),而这组数据的平均数为9.2t , 它们之间差异较大,主要是因为它们各自的特点决定的,主要原因如下:①因为平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动;主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。

专题26统计(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学专题26 统计(知识点总结+例题讲解)一、调查收集数据的过程与方法以及统计学基本概念:1.调查方式:(1)普查:为了某一特定目的,而对考察对象进行全面的调查,叫普查;(2)抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况。

2.统计学中的几个基本概念:(1)总体:所有考察对象的全体叫做总体;(2)个体:总体中每一个考察对象叫做个体;(3)样本:从总体中所抽取的一部分个体叫做总体的一个样本;(4)样本容量:样本中个体的数目叫做样本容量;(5)样本平均数:样本中所有个体的平均数叫做样本平均数;(6)总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

【例题1】(2020•安顺)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【答案】C【解析】直接利用调查数据的方法分析得出答案.解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【变式练习1】某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况 B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况【答案】D【解析】根据样本抽样的原则要求,逐项进行判断即可.解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.【例题2】为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查 B.1000名学生是总体C.样本容量是80 D.被抽取的每一名学生称为个体【答案】C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:A、此次调查属于抽样调查,故本选项不合题意;B、1000名学生的视力情况是总体,故本选项不合题意;C、样本容量是80,正确;D、被抽取的每一名学生的视力情况称为个体.故本选项不合题意.故选:C.【变式练习2】为了解500人身高情况,从中抽取50人进行身高统计分析.样本是()A.500人B.所抽50人C.500人身高D.所抽50人身高【答案】D【解析】根据样本的意义得出判断即可.解:在这个问题中,“抽取50人的身高情况”是整体的一个样本,故选:D.二、频数、频率与统计图表:1.频数分布直方图:(1)把每个对象出现的次数叫做频数;(2)每个对象出现的次数与总次数的比(或者百分比)叫频率;频数和频率都能够反映每个对象出现的频繁程度;;频率=频数样本容量(3)频数分布表、频数分布直方图都能直观、清楚地反映数据在各个小范围内的分布情况;(4)频数分布直方图的绘制步骤是:①计算最大值与最小值的差(即:极差);②决定组距与组数,一般将组数分为5~12组;③确定分点,常使分点比数据多一位小数,且把第一组的起点稍微减小一点;④列频数分布表;⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.2.频率分布的意义:在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。

中考复习初中数学概率与统计复习重点整理

中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。

复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。

下面是中考复习初中数学概率与统计的重点内容整理。

一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。

2. 事件间的关系- 互斥事件:两个事件不能同时发生。

- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。

- 独立事件:事件A的发生与事件B的发生没有关系。

3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。

- 排列与组合:计算不同元素的排列和组合个数。

- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。

二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。

2. 数据的收集与整理- 原始数据:未经处理的数据。

- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。

- 统计表与统计图:用于展示统计数据的表格和图形。

3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。

- 中位数:将一组数据从小到大排列,位于中间的数据。

- 众数:出现频率最高的数值。

- 极差:一组数的最大值与最小值的差别。

4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。

- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。

总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。

熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工作经验
5 3 3
电脑操作
5 3 4
社交 工作效率 能力 3 3 4 4 4 5
如果仪表、工作经验、电脑操作、 社交能力、工作效率的原始评分分 别占10%、15%、20%、25%、 30%综合评分,谁将会被聘用?
10、某次体育活动中,统计甲、乙两班学生每分钟跳绳 的次数(成绩)情况如下表,则下面的三个命题中, (1)甲班学生的平均成绩高于乙班学生 的平均成绩; (2)甲班学生成绩的波动比乙班学生成绩的波动大; (3)甲班学生成绩优秀的人数不会多于乙班学生成绩 优秀的人数(跳绳次数≥150为优秀); 则正确的命题是( D ) A、(1) B、(2) C、(3) D、(2)(3) 班级 甲班 乙班 参加人数 55 55 平均次数 135 135 中位数 149 151 方差 190 110
1
方差
15
甲路段
乙路段
综合运用:
频数分布表:
分数段 50~60 60~70 70~80 80~90 90~100 合计
初三(1)班的一次数学测试成绩
频数分布直方图:
频数 2 3 频率 0.05
频数
频数折线图:
15
5
15 15
0.075 0.125
0.375 0.375 1
5 3 2
70 80 90
平均数5.6 众数4 中位数5
若规定中位数5万元为标准奖
5(1)哪段台阶路走起来更舒服?为什么?
(2)为方便游客行走,需要重新整修上山的小路.对于这两段台 阶路,在台阶数不变的情况下,请你提出合理的整修建议.
S2=
[(x1-x)2+ (x2-x)2 +…+ (xn-x)2 ] n
15 14 14 16 16 15 11 18 17 10 19
统计复习
考试内容: 数据,数据的收集、整理、描述和分析。 抽样,总体,个体,样本。 扇形统计图。 加权平均数,数据的集中程度与离散程度,极 差和方差。 频数、频率,频数分布,频数分 布表、直方图、折线图。 样本估计总体,样 本的平均数、方差,总体的平均数、方差。 统计与决策,数据信息,统计在社会生活及 科学领域中的应用。
一、知识框架 1、统计
总体、样本 数据收集 抽样方法
扇形图 统计 数据整理
统计图
条形图 折线图 表示数据集中趋势的 量
表示数据离散程度的 量
特征图
对整体的判断和预测
1.为了解一批显像管的使用寿命,从中抽取了10只进行 试验检查,在这个问题中,总体是________,个体是 ________,样本是_______,样本容量为________.
练一练:
1.某课外兴趣小组为了了解所在地区老年人 的健康状况,分别作了四种不同的抽样调查, 你认为抽样比较合理的是( D ). (A)在公园调查了1000名老年人的健康状况 (B)在医院调查了1000名老年人的健康状况 (C)调查了10名老年邻居的健康状况 (D)利用派出所的户籍网随机调查了该地区 10%的老年人的健康状况
数据处理的基本过程:
收集
我很想了解自己班同学双休日花在学习上的时间是 多少?
全面调查
我很想了解全校同学双休日花在学习上的时间是多 少?
抽样调查 样本要有代表性
数据处理的基本过程:
收集
3 2 3 2 4 2 1 2 5
整理
2 5 1 3 2 4 3 3 2
描述
5 4 3 2 4 1 2 1 2 4 3 4
考试要求: (1)会收集、整理、描述和分析数据,能用计算器处 理较为复杂的统计数据。 (2)了解抽样的必要性,能指出总体、个体、样本。 知道不同的抽样可能得到不同的结果。 (3)会用扇形统计图表示数据。 (4)理解并会计算加权平均数,能根据具体问题,选 择合适的统计量表示数据的集中程度。 (5)会探索如何表示一组数据的离散程度,会计算极 差与方差,并会用它们表示数据的离散程度。 (6)理解频数、频率的概念,了解频数分布的意义和 作用。会列频数分布表,画频数分布直方图和频数折线 图,并能解决简单的实际问题。
时间(时)
7 6 5 4 3 2 1 0 1 2 3 4 5 6 系列1
折线形统计图 7 周 能够显示数据的变化趋势
下列四个统计图中,用来表示同一品种的奶牛 2.下列四个统计图中,用来表示不同品种 1~6个月的产奶量变化趋势最为合适的是( ) 的奶牛的平均产奶量最为合适的是( D )
平均产奶量(升) 30
25Байду номын сангаас
1 2 3 4 5 6
20 15 10 5 0 1 2 3 4 5 系列1
B
6 奶牛品种
A 能够显示部分在总体
40
100
50
60
105
班级 参加人数 平均分 中位数 方差 请结合统计知识对这个班级的成绩做出评述? 40 84.5 85 80.5 (1)班 一个同学为85分,他说:我们班上分数比我高的人不超 过 3 .”他说的对吗?84.5 40 84 10.5 (2)班 4
45
成 绩
1.数据处理的基本过程;
单位:小时
统 计 表
学习时间(时) 1 2 3 4 5 合计
划记
频数(个) 4 10 7 6 3 30
数据处理的基本过程:
收集
人数
整理
描述
12 10 8 6 4 2 0
系列1
120°
1 2 3 4 5
33.3% 2小时
1 2 3 4 5
时间(时)
条形统计图
扇形统计图
折线形统计图
直方图
数据处理的基本过程:
由上面的调查可知,30名学生双休日用在学习 上的平均时间为2.8小时,那么估计全校1500 2.8 名学生的平均时间是_____小时; 由上面的调查可知,30名学生用在学习上的时间 3小时以上的有9人,那么估计全校1500名学生中 450 用在学习上的时间3小时以上的有_____人. 用样本估计总体是统计的基本思想.
收集
学习时间 (时) 1 2 3 4 5 划记
整理
频数 (个) 4 10 7 6 3 数 据 的 代 表
12 10 8 6 4 2 0
描述
人数
分析
系列1
1
2
3
4
5
时间(时)
学生双休日 花在学习上 的时间是多 少?
平均数 众数 中位数
数 据 的 波 动
极差
方差
数据处理的基本过程:
收集 整理 描述 分析
平均产奶量(升) 30
25 20 15 10 5 0 1 2 3 4 5 6 系列1
中所占的百分比
平均产奶量(升) 30
25 20 15 10 7.5 20 17 16 25 18 系列1
C
奶牛品种
5 0
D
能够显示数据的变化趋势
1 2 3 4 5 6 奶牛品种 能够显示每组中的具体数据
3.十位学生的鞋号由小到大分别是20、21、22、22、 22、22、23、23、24、24.这组数据的平均数、中位 数、众数中鞋厂最感兴趣的是( B ) A.平均数 B.众数 C.中位数 D.平均数和中位数
怎样选择适当的统计图来描述数据? 下面是双休日一天时间安排的统计图:
10 9 8 7 6 5 4 3 2 1 0
睡觉 1 学习 2 活动 3 吃饭 4 其他 5
系列1
1 2 3 4 5
学习 8.33%
扇形统计图
能够显示部分在总体 中所占的百分比
条形统计图
能够显示每组中的具体数据
怎样选择适当的统计图来描述数据? 下面是后来几周双休日学习时间的统计图:
收集 整理
制 作 统 计 表
描述
分析
众中平 数位均 数数 极方 差差
抽 样 调 查
全 面 调 查
条扇折 形形线 图图图
直 方 图
2.在统计活动的过程中建立统计观念,是 我们学习统计的方法; 3.用样本估计总体是统计的基本思想.
某公司欲聘请一位员工,三位应聘者A、 B、 C的原始评分如下表:
仪表
A B C 4 4 3
中位数、众数、平均数
2 4 员工人数 月工资(元) 9000 4000
8 2000
20 1500
8 1000
4 700
你认为用哪个数据来代表该公司普通员工的月工资水 平更为合适?
4.银河公司10名销售员,去年完成的销售额情况如 下表: 3 4 5 6 7 8 10 销售额(万元) 1 3 2 1 1 1 1 销售人数(人) (1)求销售额的平均数、众数、中位数. (2)今年公司为了调动员工积极性,提高销售额,准备采 取超额有奖的措施,请根据(1)的结果,通过比较,合理 确定今年每个销售员统一的销售额标准. 若规定平均数5.6万元为标准有奖 若规定众数4万为标准有奖
(7)体会用样本估计总体的思想,能用样本的平均 数、方差来估计总体的平均数和方差。
(8)能根据统计结果做出合理的判断和预测, 体会统计对决策的作用,能比较清晰地表达自 己的观点,并进行交流。 (9)能根据问题查找相关资料,获得数据 信息,会对日常生活中的某些数据发表自己的 看法。 (10)能应用统计知识解决在社会生活及科学 领域中一些简单的实际问题。
2.某市教育局为了解该市2007年九年级学生的身体素 质情况,随机抽取了1000名九年级学生进行检测,身 体素质达标率为95%。请你估计该市12万名九年级学 生中,身体素质达标的大约有_____________万人。 3.为了了解一批电视机的寿命,从中抽取100台电视机 进行试验,这个问题的样本是( ) A.这批电视机; B.这批电视机的寿命; C.抽取的100台电视机的寿命; D.100.
相关文档
最新文档