广州中考数学知识点总结
广东初中数学知识点总结

广东初中数学知识点总结一、数与代数1. 有理数- 有理数的定义与分类:整数、分数、小数- 有理数的四则运算:加、减、乘、除- 有理数的比较大小- 绝对值的概念及性质- 有理数的科学记数法2. 整数- 整数的性质:奇数、偶数、质数、合数- 整数的整除性:因数、倍数、互质- 最大公约数和最小公倍数的求法3. 代数式- 单项式与多项式的定义- 同类项与合并同类项- 代数式的加减运算- 代数式的乘法:分配律、结合律、交换律- 代数式的因式分解:提公因式、公式法4. 一元一次方程与不等式- 一元一次方程的解法:移项、合并同类项、系数化为1 - 不等式的性质与解法- 一元一次方程与不等式的解集表示5. 函数- 函数的概念:定义域、值域、函数关系式- 线性函数、二次函数的图像和性质- 函数的简单运算:函数的和、差、积、商6. 二元一次方程组- 二元一次方程组的解法:代入法、消元法- 方程组的解的判断:唯一解、无解、多组解二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、平行线与对顶角- 三角形的分类与性质:等边、等腰、直角三角形- 四边形的分类与性质:平行四边形、矩形、菱形、正方形- 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 几何图形的计算- 三角形、四边形的面积计算- 圆的周长与面积计算- 规则图形的体积与表面积计算:长方体、立方体、圆柱、圆锥、球3. 几何变换- 平移:点的平移、图形的平移- 旋转:旋转的定义、旋转对称性- 轴对称:对称轴、对称点4. 解析几何- 坐标系的基本概念:直角坐标系、坐标点- 点的位置由坐标确定- 距离公式、中点公式- 直线方程:点斜式、斜截式、一般式三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图的绘制:条形图、折线图、饼图- 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的定义与计算- 等可能事件的概率- 事件的组合与排列以上是对广东初中数学知识点的总结,涵盖了初中数学的主要领域,包括数与代数、几何、统计与概率等。
广东数学中考知识点归纳

广东数学中考知识点归纳广东数学中考涵盖了初中数学的核心知识点,以下是对这些知识点的归纳总结:数与代数1. 有理数:包括正数、负数、零的概念,有理数的四则运算法则。
2. 实数:实数的分类,包括有理数和无理数,以及实数的运算。
3. 代数式:代数式的基本概念,如单项式、多项式,以及它们的加减乘除运算。
4. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。
5. 函数:函数的概念,自变量与因变量的关系,线性函数、二次函数的基本性质。
几何1. 平面图形:点、线、面、角的基本性质,特殊角的计算,平行线的性质。
2. 三角形:三角形的分类,三角形的内角和定理,全等三角形的判定和性质。
3. 四边形:四边形的分类,特殊四边形的性质,如平行四边形、矩形、菱形、正方形。
4. 圆:圆的基本性质,圆周角定理,切线的性质,弧长和扇形面积的计算。
5. 图形的变换:包括平移、旋转、反射等几何变换。
统计与概率1. 数据的收集与处理:数据的收集方法,数据的整理和描述。
2. 统计图表:条形图、折线图、饼图的绘制和解读。
3. 概率:概率的基本概念,事件的独立性,概率的计算方法。
解题技巧1. 审题:仔细阅读题目,理解题意,明确已知条件和求解目标。
2. 画图:对于几何题,画图可以帮助直观理解问题,找到解题思路。
3. 公式运用:熟练掌握各类数学公式,灵活运用于解题中。
4. 逻辑推理:运用逻辑推理能力,分析问题,得出结论。
结束语通过以上的知识点归纳,我们可以看出,广东数学中考不仅要求学生掌握基础的数学知识,还要求具备一定的解题技巧和逻辑思维能力。
希望同学们能够系统复习,查漏补缺,为中考做好充分的准备。
广州初中数学知识点总结

广州初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正有理数、负有理数和零。
- 有理数的运算:加法、减法、乘法、除法、乘方和开方。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的运算:加、减、乘、除、整除、余数、最大公约数和最小公倍数。
3. 分数与小数- 分数的基本性质:分数的基本线、约分和通分。
- 小数与分数的互化:小数化为分数的方法,分数化为小数的方法。
- 四则运算:分数与小数的加、减、乘、除运算。
4. 代数表达式- 单项式与多项式:单项式的概念、多项式的概念及它们的运算。
- 代数式的简化:合并同类项、分配律的应用。
- 代数式的展开与因式分解:完全平方公式、平方差公式、十字相乘法等。
5. 一元一次方程与不等式- 方程与不等式的概念:定义、解的概念。
- 解一元一次方程:移项、合并同类项、系数化为1。
- 解一元一次不等式:基本步骤、不等号的方向变化。
6. 二元一次方程组- 方程组的解法:代入法、消元法、图解法。
- 方程组的解的类型:相容解、矛盾解、无解。
7. 函数及其图像- 函数的概念:定义、函数关系式、自变量与因变量。
- 函数的性质:单调性、奇偶性、反函数。
- 常见函数的图像:一次函数、二次函数、指数函数、对数函数等。
二、几何1. 平面几何- 点、线、面的基本性质:点的位置关系、直线的斜率、平面的基本性质。
- 三角形:三角形的分类、内角和定理、海伦公式、三角形的面积。
- 四边形:四边形的分类、矩形、正方形、平行四边形的性质与计算。
- 圆的基本性质:圆的定义、圆的方程、弦、切线、圆周角。
2. 空间几何- 空间图形的基本概念:点、线、面在空间中的关系。
- 多面体与旋转体:多面体的性质、圆锥、圆柱、球的体积与表面积。
3. 几何变换- 平移:平移的定义、平移后的图形性质。
- 旋转:旋转的定义、旋转对称、旋转后的图形性质。
- 轴对称:轴对称图形的定义、对称轴的确定、对称图形的性质。
202X广州数学中考考点解析

千里之行,始于足下。
202X广州数学中考考点解析
根据历年的广州市中考数学试卷和教学大纲,可以分析出以下可能的考点:
1. 四则运算与分数运算:中考中会涉及到四则运算的基本规则和分数的加减乘除,包括带分数和混合运算等。
2. 数与代数:考察对实数的认识和运用,了解数与代数关系,包括等式、方程和不等式等。
3. 几何图形与测量:涉及几何图形的性质、分类和测量,包括直线、线段、角、三角形、四边形和圆等。
4. 数据与统计:考察对数据的收集、整理和分析能力,包括频数表、统计图和概率等。
5. 函数与图像:了解函数的定义和性质,能够进行函数图像的描绘和分析。
6. 空间与立体几何:考察对立体几何的认识和分析能力,包括立体图形的表示和计算等。
注意,以上仅是对广州数学中考可能的考点进行了简要的概述,具体的考
点还需要根据教学大纲和试卷要求进行具体分析和准备。
建议你加强对这些考
点的理解和掌握,多做一些相关的习题和模拟试题,以提高应试能力。
第1页/共1页。
广州中考数学知识点总结

《广州中考数学知识点总结》数学作为中考的重要科目之一,对于广州的考生来说,掌握好数学知识点至关重要。
本文将对广州中考数学的知识点进行全面总结,帮助考生更好地复习备考。
一、数与代数1. 实数(1)实数的分类:有理数和无理数。
有理数包括整数和分数,无理数是无限不循环小数。
(2)实数的运算:加、减、乘、除、乘方、开方。
运算顺序为先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
(3)实数的性质:相反数、绝对值、倒数。
(4)科学记数法:把一个数表示成a×10ⁿ的形式,其中1≤|a|<10,n 为整数。
2. 代数式(1)整式:单项式和多项式统称为整式。
整式的运算包括加减、乘除。
- 幂的运算:同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
- 整式的乘法:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加;多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
- 整式的除法:单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
(2)分式:形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变。
分式的运算包括加减、乘除。
- 分式的加减:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减。
- 分式的乘除:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
广州中考数学难点归纳总结

广州中考数学难点归纳总结数学作为中考科目之一,经常被许多考生视为难点和挑战。
广州中考数学试卷通常涵盖了各个知识点和难度级别,因此掌握数学的难点是提高分数的关键。
本文将对广州中考数学的难点进行归纳总结,在题型、考点和解题技巧等方面提供帮助和指导。
一、整数与有理数整数与有理数是广州中考数学重点和难点之一。
在整数与有理数的计算中,考生容易出现错位运算、符号迷失以及正负号的混淆等问题。
此外,涉及到最大公约数、最小公倍数、约数倍数等概念时,考生也常常感到困惑。
对于整数与有理数的计算,考生需要掌握加减乘除法则,并注意正负号的运用。
同时,掌握最大公约数、最小公倍数的求解方法,可以通过列举法、质因数分解法或辗转相除法等方式进行求解。
二、代数式与方程代数式与方程是中考数学的重中之重,也是考生容易出错的地方。
在解代数式与方程的过程中,考生常常忽略符号、计算错误、运算步骤不清晰,导致答案错误或无法得出结论。
解决代数式与方程的难点,考生可以通过以下步骤进行:1. 仔细阅读题目,理解问题的含义与要求。
2. 根据题目给出的条件和要求,设立未知数,建立方程。
3. 运用代数运算规则和等式性质,进行方程的变形和求解。
4. 检查解的合理性,判断是否满足题意。
三、几何与图形几何与图形是广州中考数学的难点之一。
在几何证明和图形运算中,考生容易遇到条件理解错误、计算混乱、步骤不清晰等问题。
为了应对几何与图形的难点,考生应该做到:1. 认真阅读题目,理解题意,分析几何关系。
2. 灵活使用几何定理和性质,合理选取几何方法进行证明或计算。
3. 注意几何关系之间的转化与推理,严谨地推导证明过程。
4. 确保计算准确,各步骤清晰明了。
四、概率与统计概率与统计也是广州中考数学的难点之一。
在概率与统计的计算与分析中,考生容易出现搞混概念、计算错误、未按要求解答等问题。
为了应对概率与统计的难点,考生应该掌握以下技巧:1. 理解概率和统计的基本概念,熟悉相关术语和计算方法。
广东中考数学九年级知识点

广东中考数学九年级知识点在广东省中考数学中,九年级的学生将面临一项重要考试,这个考试涵盖了多个数学知识点。
在本文中,我们将深入探讨这些知识点,并向学生们介绍如何准备和应对这个考试。
第一个知识点是整式运算。
整式是由常数项、x 的各次幂及它们的积和商组成的代数式。
整式的加减法和乘法是我们需要掌握的运算法则。
此外,学生们还需要了解整式除法的相关概念和方法,学会使用余式定理和因式定理等解决问题。
第二个知识点是分式运算。
分式是两个整式的比值,其中分母不能为零。
在解决分式运算问题时,我们需要掌握分式的加减法、乘除法等基本运算法则,同时要注意约分和通分的相关方法。
接下来是一元一次方程与方程组的应用。
这部分内容涉及到方程的基本概念和解题方法。
学生们需要掌握通过列方程、解方程的方法来解决实际问题,并注意解方程过程中的运算步骤和合理性。
另一个重要的知识点是一元二次方程。
学生们需要了解一元二次方程的一般形式以及解方程的方法,例如配方法、公式法等。
此外,对于二次函数的图像和性质,学生们也需要有基本的了解。
几何部分对于考生来说同样重要。
学生们需要掌握平面图形的性质和计算,例如三角形的内角和、正多边形的面积、圆的面积和弧长等。
此外,对于空间几何的学习也是必不可少的,学生们需要了解空间中各种几何体的性质和计算公式。
另外,概率统计是中考数学中的一个较为新颖的知识点。
学生们需要掌握概率的基本概念和计算方法,例如事件的概率、排列组合、条件概率等。
在统计学方面,学生们需要了解数据的收集和整理方法,以及如何通过图表和统计量进行数据分析和阐释。
除了上述知识点,在中考数学中还有许多其他重要的内容,例如函数、立体几何、比例与相似等。
对于学生们来说,充分理解和掌握这些知识点是提高数学成绩的关键。
如何备考呢?首先,学生们应该详细阅读教材,并重点关注习题和例题,做到理论联系实际。
其次,通过做大量的练习题,巩固知识点并提升解题能力。
此外,参加模拟考试和习题集训练习对于提高应试能力也很有帮助。
2024中考数学知识点总结

2024中考数学知识点总结一、数与式1. 数的分类与立法运算- 自然数、整数、有理数、无理数的概念及相互关系。
- 自然数、整数、有理数的加减法、乘除法的规则。
- 无理数的定义及有理数与无理数的运算。
2. 数的积、商和负数- 实数的积的符号规定及实数的乘法运算律。
- 正数和负数的乘法及除法。
- 负数的概念及运算。
3. 数轴及整式的定义和四则运算- 数轴的概念与表示法。
- 整数的概念及整式的定义。
- 整式的加减法和乘法。
4. 一元一次整式方程- 整式方程的概念和解一元一次整式方程的方法。
- 一元一次整式方程的实际应用。
二、图形与运算1. 基本图形、圆与弦- 正方形、长方形、平行四边形、等腰三角形、直角三角形、等边三角形等基本图形的性质与判断。
- 圆的概念、圆心角、弧与弧长的关系。
2. 平移、旋转与镜像- 平面上的平移、旋转和镜像的概念及判断。
- 图形的平移、旋转和镜像的性质及判断。
3. 直线、角、三角- 直线的概念及判断。
- 角的概念、相邻角、对顶角、对角线等性质及判断。
- 三角形的分类、判断和性质。
4. 相交线与平行线- 平行线与相交线的性质及判断。
- 平行线与平行线的性质及判断。
5. 不等式、区间与正数幂- 不等式的概念及解不等式的方法。
- 区间的概念及判断。
- 正数指数与幂以及具体问题的表示与计算。
三、函数与图像1. 函数的概念与运算- 函数的定义及函数与方程的关系。
- 函数的运算规则。
- 函数的自变量与因变量的关系。
2. 一次函数和二次函数- 一次函数的定义、图象及特征。
- 一次函数的性质及应用。
- 二次函数的定义、图象及特征。
3. 方程与函数- 方程与函数的关系及解方程的基本思路。
- 一次方程、二次方程的定义、方法及应用。
4. 极大极小值- 极大极小值的概念、条件。
- 一元二次函数的极大极小值的应用。
5. 图像的平移与缩放- 图像平移的概念、规律及图示。
- 图像缩放的概念、规律及图示。
6. 函数的定义域和值域- 函数定义域的概念及计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州中考数学知识点总结篇一:广州初中数学知识点总结第一章实数考点一、实数的概念及分类(3分)1、实数的分类正有理数零有限小数和无限循环小数实数负有理数正无理数无限不循环小数负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,2等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8等; 3(3)有特定结构的数,如?等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“?2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a?0) a”。
a?0a2?a? ;注意a的双重非负性:-a(a 3、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:?a??a,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数(3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做?a?10的形式,其中1?a?10,n是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较(3分)1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,na?b?0?a?b, a?b?0?a?b,a?b?0?a?b(3)求商比较法:设a、b是两正实数,aaa?1?a?b;?1?a?b;?1?a?b; bbb(4)绝对值比较法:设a、b是两负实数,则a?b?a?b。
(5)平方法:设a、b是两负实数,则a?b?a?b。
考点六、实数的运算(做题的基础,分值相当大)1、加法交换律a?b?b?a2、加法结合律(a?b)?c?a?(b?c)3、乘法交换律ab?ba4、乘法结合律(ab)c?a(bc)5、乘法对加法的分配律a(b?c)?ab?ac6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
22第二章代数式考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4a2b,这种表示就是错误的,应写成?13132ab。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3?5a3b2c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:a?a?amnm?n(m,n都是正整数)(a)?anmnmn(m,n都是正整数)n(ab)?ab(n都是正整数) (a?b)(a?b)?a?b (a?b)?a?2ab?b (a?b)?a?2ab?b 整式的除法:a?a?a mnm?n22222222n(m,n都是正整数,a?0)注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)a0?1(a?0);a?p?1(a?0,p为正整数) ap(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
考点三、因式分解(11分)1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法(1)提公因式法:ab?ac?a(b?c) (2)运用公式法:a?b?(a?b)(a?b)a?2ab?b?(a?b)a?2ab?b?(a?b)(3)分组分解法:ac?ad?bc?bd?a(c?d)?b(c?d)?(a?b)(c?d) (4)十字相乘法:a?(p?q)a?pq?(a?p)(a?q)3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。
考点四、分式(8~10分)1、分式的概念一般地,用A、B表示两个整式,A÷B就可以表示成222222222AA的形式,如果B中含有字母,式子就叫做BB分式。
其中,A叫做分式的分子,B叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则acacacadad??;????; bdbdbdbcbcanan()?n(n为整数); bbaba?b??; cccacad?bc??bdbd考点五、二次根式(初中数学基础,分值很大) 1、二次根式式子a(a?0)叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1)(a)?a(a?0)a(a?0)(2)a22?a??a(a?0)(3)ab?a?(a?0,b?0)(4)aa(a?0,b?0) b5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
篇二:广州中考数学经典分析+知识点汇总近几年来广州市中考数学科试卷特点通过对近几年来广州市中考数学科试卷分析,我认为具有如下特点:1、试题覆盖面广,涵盖了主要知识点,对初中必考的基础知识一般以选择题、填空题的形式进行考查,对初中知识的核心、主干内容以解答题的形式加以考查,以重点知识为主线组织全卷内容。
2、注重基础知识、基本技能的考查,难易安排有序,层次合理,有助于考生较好地发挥思维水平。
3、重视思想方法、数学能力的考查,包括对数形结合、归纳概括、转化思想、分类思想、函数与方程思想等内容的考查,很好地突出了试题的选拔功能。
4、重视从题目中获取信息能力的考查,通过阅读图表或从文字信息中识别出数学问题的背景,把各种数学语言有机地融合,恰当地转换,从而解决问题。
5、强化应用意识、创新思维的考查,体现在试题内容着力加强与社会实际和学生生活的联系,注重考查学生在具体情境中运用所学知识分析和解决问题的能力。
突出对应用问题的考查,从学生熟悉的生活背景和广州市当年发生的重大事件入手,让学生深切地感受到“数学就在身边”。
根据以上分析,我们在复习备考中要做到下面几个要求:1、重视基本知识和基本技能的训练,重视概念问题的教学,把各个概念的各种“变式题”训练到位,多收集新题型,与现在的教育改革接轨。
2、坚持教学方法的改进,课堂上多运用“启发式”、“探究式”、“讨论式”等教学方法,多设计和提出适合学生发展水平的具有一定探究性的问题,创设问题情境,进行“一题多解”、“一题多变”的训练,培养学生的发散思维和创新意识。
3、以学生为主体着眼于能力的提高,多让学生动手操作,积极引导和鼓励学生大胆思维,勇于发表自己观点,让学生拥有更多的参与思考、讨论交流的机会。
教学中尽量避免包办代替式的单纯模仿式的教学,重视学生个性发展,培养学生创造能力。
4、注重数学思想方法的教学,要求学生不要用单一的思维方式去思考问题,应多方位、多角度、多层次地进行思考,形成一定的数学思维。
5、强化过程意识,避免让学生死记硬背公式、定理,重视数学概念、公式、定理的提出、形成、发展过程,让学生真正理解所学知识。
6、重视实际应用性问题的教学,联系社会生活实际和学生的生活实际,选取有时代性的地方特色的复习教材、资料,让学生在“做数学”的过程中,领悟数学的实际意义,最终提高学生的数学应用意识和学习的自学性。