高分子表面材料改性论文
高分子材料的表面改性与性能

高分子材料的表面改性与性能在当今科技飞速发展的时代,高分子材料凭借其优异的性能和广泛的应用领域,已经成为材料科学领域的重要组成部分。
然而,高分子材料的表面性能往往限制了其在某些特定场合的应用。
为了拓展高分子材料的应用范围,提高其性能,表面改性技术应运而生。
高分子材料的表面改性是指在不改变材料本体性能的前提下,通过物理、化学或生物等方法对材料表面的化学组成、微观结构和物理性能进行调整和优化。
其目的是改善高分子材料的表面润湿性、黏附性、耐磨性、耐腐蚀性、生物相容性等性能,以满足不同领域的应用需求。
物理改性方法是表面改性中较为常见的一类。
其中,等离子体处理是一种高效的技术手段。
等离子体中的高能粒子能够与高分子材料表面发生碰撞和反应,引入新的官能团,增加表面粗糙度,从而改善表面的亲水性和黏附性。
例如,经过等离子体处理的聚乙烯薄膜,其表面能显著提高,与油墨、涂料的结合力增强,印刷和涂装效果得到明显改善。
另一种物理改性方法是离子束注入。
通过将高能离子注入到高分子材料表面,可以改变表面的化学组成和结构,进而改善其性能。
比如,将氮离子注入到聚四氟乙烯表面,可以显著提高其耐磨性和耐腐蚀性。
化学改性方法在高分子材料表面改性中也具有重要地位。
化学接枝是一种常用的化学改性手段。
通过在高分子材料表面引入活性基团,然后与其他单体进行接枝反应,可以在表面形成一层具有特定性能的接枝聚合物层。
例如,将丙烯酸接枝到聚丙烯表面,可以使其具有良好的亲水性和生物相容性。
表面涂层也是一种常见的化学改性方法。
在高分子材料表面涂覆一层具有特定性能的涂层材料,如金属涂层、陶瓷涂层或聚合物涂层,可以显著改善其表面性能。
比如,在塑料表面涂覆一层金属涂层,可以赋予其良好的导电性和电磁屏蔽性能。
除了物理和化学改性方法,生物改性方法在近年来也受到了广泛关注。
生物改性主要是通过在高分子材料表面固定生物活性分子,如蛋白质、酶、抗体等,赋予材料特定的生物功能。
高分子材料改性课程论文聚丙烯的亲水性改善研究

高分子材料改性课程论文专业:材料科学与工程学生姓名:学号:导师:聚丙烯的亲水性改善研究摘要:聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,其与极性聚合物、无机填料及增强材料等相容性差,其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广应用。
本文利用聚丙烯固相接枝丙烯酸(AA)、聚丙烯与乙烯-丙烯酸共聚物(EAA)共混和聚丙烯中空纤维膜的表面活性剂浸渍处理,三个途径分别对聚丙烯进行亲水改性研究。
关键词:聚丙烯;亲水性;接触角;共混改性;因为PP不含任何极性基团而难以和金属"玻璃粘结,难以和其他许多高聚物"无机填料相容; 也难于进行印刷染色等!这些缺点限制了聚丙烯在某些领域中的应用!表面接枝法可以将强极性的亲水基团引入薄膜的表面,并且由于接枝链与基体薄膜以化学键相联! 改性后的表面具有极性和亲水性,从根本上改变现有的塑料薄膜印刷技术!PP接枝改性产物还可经压膜" 磺化"碱洗等工艺制得亲水性较好的离子交换膜,与亲水性差的膜相比具有容量大"高洗脱率"高再生率的特征!聚丙烯(PP) 材料作为第三大通用塑料,具有机械性能、耐腐蚀性及电绝缘性优良,无毒性、易加工及价格低廉等优点,受到广大学者及工业领域的极大青睐。
其薄膜、纤维、非织造布、片材及各种制品在日常生活中被大量应用。
其中,聚丙烯微孔膜主要用于锂离子电池隔离膜[1]、废水处理、气体分离等领域。
但是由于聚丙烯表面没有极性基团,其表面能很小,临界表面张力只有( 31 ~34) ×10–5 N/ cm,所以它的表面润湿性和亲水性很差,这不仅导致聚丙烯微孔膜的水通量小,而且导致其表面和溶质:之间存在憎水性相互作用,进一步导致膜污染现象。
膜污染将导致在水处理过程中膜清洗的次数和维护费用增加,甚至会产生不可逆的破坏,降低膜的使用寿命,从而限制了其在工业中的应用。
高分子材料的表面修饰和性能控制

高分子材料的表面修饰和性能控制高分子材料是一类重要的材料,在各个领域都有广泛的应用。
然而,由于其特殊的结构和性质,高分子材料的表面往往具有一定的缺陷和不稳定性,这限制了其在某些领域的应用。
为了改善高分子材料的性能,科学家们进行了大量的研究,发展了各种表面修饰和性能控制的方法。
一种常见的表面修饰方法是物理方法,如等离子体处理和激光刻蚀。
等离子体处理是利用等离子体的化学反应和能量转移来改变高分子材料表面的化学组成和形貌。
通过等离子体处理,可以在高分子材料表面形成一层致密的氧化层,从而提高其耐热性和耐腐蚀性。
激光刻蚀则是利用激光的高能量和高浓度来刻蚀高分子材料表面,从而改变其形貌和表面粗糙度。
这种方法可以用于制备具有特殊形貌和表面结构的高分子材料,如微纳米结构和光学薄膜。
另一种常见的表面修饰方法是化学方法,如表面改性和涂覆。
表面改性是通过在高分子材料表面引入新的化学基团,改变其表面性质和化学活性。
常用的表面改性方法包括化学修饰、原子层沉积和化学吸附等。
化学修饰是在高分子材料表面引入新的官能团,从而改变其表面化学性质和亲水性。
原子层沉积是利用化学气相沉积技术在高分子材料表面沉积一层原子尺度的薄膜,从而改变其表面结构和电学性能。
化学吸附是利用高分子材料表面的化学反应活性吸附特定的分子,从而改变其表面性质和分子识别能力。
涂覆是将一层特定的材料涂覆在高分子材料表面,从而改变其表面性质和功能。
常用的涂覆材料包括聚合物、金属和陶瓷等。
通过涂覆,可以在高分子材料表面形成一层致密的保护层,从而提高其耐磨性和耐腐蚀性。
除了表面修饰,高分子材料的性能控制也是一个重要的研究方向。
高分子材料的性能主要包括力学性能、热学性能和电学性能等。
力学性能是指高分子材料的强度、韧性和硬度等。
热学性能是指高分子材料的热稳定性、导热性和热膨胀系数等。
电学性能是指高分子材料的导电性、介电性和电化学性能等。
为了控制高分子材料的性能,科学家们采用了多种方法,如添加剂改性、共聚物合成和纳米填料增强等。
高分子材料的表面性质与应用研究

高分子材料的表面性质与应用研究在当今的材料科学领域,高分子材料凭借其独特的性能和广泛的应用,已经成为了不可或缺的一部分。
高分子材料的表面性质,作为决定其性能和应用的关键因素之一,一直以来都是研究的热点。
高分子材料的表面性质主要包括表面能、表面粗糙度、表面化学组成以及表面的物理形态等方面。
这些性质相互作用,共同影响着高分子材料与外界环境的相互作用和性能表现。
首先,表面能是衡量高分子材料表面活性的重要指标。
表面能较低的高分子材料,如聚四氟乙烯(PTFE),往往具有良好的自润滑性和抗粘性,在不粘锅涂层、管道内衬等领域得到了广泛应用。
而表面能较高的高分子材料,则更容易与其他物质发生相互作用,例如,一些表面能较高的聚合物在胶粘剂和涂层领域表现出色。
表面粗糙度对高分子材料的性能也有着显著的影响。
粗糙的表面可以增加材料的表面积,从而提高其与外界的接触面积和相互作用。
在生物医学领域,具有一定粗糙度的高分子材料表面有助于细胞的附着和生长,有利于组织工程和医疗器械的研发。
例如,人工关节表面的适当粗糙度可以提高其与骨组织的结合强度,延长使用寿命。
表面化学组成则决定了高分子材料的化学稳定性、耐腐蚀性和表面反应活性。
通过对高分子材料表面进行化学修饰,可以引入特定的官能团,从而赋予材料新的性能。
例如,在塑料表面引入羟基或羧基等官能团,可以提高其亲水性和印染性能;对高分子材料进行氟化处理,可以增强其耐腐蚀性和抗污性能。
高分子材料表面的物理形态,如结晶度和取向度,同样会影响其性能。
具有较高结晶度的高分子材料表面通常具有更好的机械强度和耐磨性;而具有特定取向结构的高分子材料表面,则可能表现出各向异性的性能,如光学性能或电学性能。
在实际应用中,高分子材料的表面性质发挥着至关重要的作用。
在包装领域,要求高分子材料具有良好的阻隔性能,以防止气体、水分和溶质的渗透。
这就需要对材料的表面进行处理,降低其表面的渗透性。
通过在高分子材料表面涂覆一层阻隔性能优异的涂层,或者采用多层共挤出技术制备具有特殊结构的高分子复合材料,可以有效地提高包装材料的阻隔性能,延长食品和药品的保质期。
高分子材料表面润湿性改性研究

高分子材料表面润湿性改性研究一、引言高分子材料广泛应用于现代化工、制造、医学等领域,但其表面润湿性常常不足以满足特定需求。
因此,科学家需要改性高分子材料表面润湿性以满足特殊的应用需要。
这篇文章着重从不同角度探讨改性高分子材料表面润湿性的研究进展。
二、润湿性概述表面润湿性是润滑剂、颜料、胶粘剂、涂料、聚合物等材料应用中至关重要的性质,是基于表面形态、表面能量和液体表面张力的互作用原理。
通过表面张力的影响,液体能够黏附在具有亲和力的表面上,从而使材料表现出润湿性。
表面润湿性对于许多应用非常关键,包括生物学、生物医学、纳米技术、涂料等多个领域,因此,高分子材料表面润湿性的改性研究越来越受到重视。
三、改性方法目前,有许多途径来改性高分子材料表面润湿性,除了物理和化学方法之外,在材料平台上,活性涂层、多功能纳米材料和基于生物特征的改性方法受到越来越多的关注。
1. 物理方法物理方法是通过对高分子材料表面进行局部调整改变其润湿性。
典型的方法包括激光纹理加工、电化学阳极氧化、热处理和等离子体处理。
激光纹理加工能够形成非常细致的结构和形态,在改善高分子材料表面润湿性方面具有很大的潜力。
电化学阳极氧化是利用电化学氧化法对金属、高分子等表面进行改性。
热处理包括热压和退火是一种简单有效的方法,通过调节温度和时间来改善润湿性。
等离子体处理可通过工艺参数调节得到不同的表面化学键和化学成分,从而改变表面润湿性。
2. 化学方法化学方法是通过对高分子材料表面进行化学修饰使其具有良好的润湿性。
在化学方法中,活性涂层和多功能纳米材料是当前广受关注的领域。
活性涂层可以在材料表面上形成功能性化合物层,从而获得所需的表面润湿性、切削和摩擦性能。
活性涂层的目的是选择单一或混合高分子材料,利用活性化合物集成表面上的亲水、疏水性,太阳能吸收、电化学、光学、生物响应等。
多功能纳米材料的目标是,通过合成具有多种作用的复合材料,实现材料的优化性质。
多功能纳米材料有多种结构和形态,因此,它们有不同的性质,如增强材料的机械性能、抗氧化和防腐等。
高分子材料表面界面改性研究

高分子材料表面界面改性研究高分子材料是现代材料科学中的热门和重要研究领域之一,是指其分子量可在数十万到数百万之间的材料。
由于高分子材料的优良特性,其广泛应用于医药、食品、电子、建筑、汽车等方面。
但高分子材料表面的性质和特性限制了其应用的范围和效果。
因此,人们对高分子材料表面界面改性的研究日益引起了关注。
高分子材料的表面性质与其它材料不同。
它的表面能较低,比如对于聚合物材料,它的表面能通常只有25-40mJ/m2,比水和玻璃低得多。
这使得其表面易於被污染和附着不易去除的污垢,从而影响材料的物化状态。
通过改善材料表面的可湿性和润湿性,可以提高材料的性能和降低使用过程中的故障率。
高分子材料表面界面改性涉及很多方面。
其中一种方法是物理方法,如可高能离子轰击和激光辐照。
这些方法可提高表面能,增加表面活性,改变材料表面形貌以及介电性和机械性能。
另一种比较重要的方法是应用化学方法,包括化学沉积、电沉积、离子交换以及化学修饰等。
化学修饰是一种采用化学方法改变材料表面的化学性质的方法。
通过表面处理或修饰,可以形成新的化学键,改变其表面化学性质,从而实现高分子材料的表面性能的控制和调整。
这些表面修饰分为随机修饰和定向修饰两种。
随机修饰方法是改变表面化学性质的最基本方法之一。
他们通过改变材料表面的化学特性,来自地址材料的特殊要求。
通常采用的方法包括辐射接枝、等离子体聚合、交联及改性等技术,这些技术可形成随即的化学功能分子,本质上是将化学功能分子或聚合物链接到基体材料表面。
一种比较典型的随机修饰方法是离子交换。
离子交换材料(IEM)是具有正离子交换组分的高分子材料,其中的正离子置换了材料的原子基。
离子交换的机理是通过离子与基体中的离子进行交换,从而改变表面性质。
例如,切尔西蓝(chelseablue)离子能够与聚乙烯亚胺(PEI)的氮原子进行电荷转移,产生基础上的化学反应,并与PEI交换,从而改变了材料的表面性质。
定向修饰方法是一种更为高级的表面修饰方法,通过修饰材料表面的化学键制备定向功能材料。
高分子材料的界面改性及应用研究

高分子材料的界面改性及应用研究一、介绍高分子材料是一种重要的工程材料,在工业生产、医疗卫生、能源领域等方面都有广泛的应用。
然而,由于高分子材料表面的缺陷和自由基等缺陷,使其在使用过程中容易出现劣化、老化以及化学反应等问题。
所以界面改性技术的应用升级已变得越发重要。
二、高分子材料界面改性的方法界面改性技术是通过在高分子材料表面附加一种或多种化学物质的方式,改变高分子材料表面的化学和物理性质以及结构,从而达到优化物体性能的目的。
界面改性主要有以下几种方法:1.表面包覆法表面包覆法是在高分子粒子表面生成一层包裹。
主要应用于高分子材料的稳定性和物理力学性能的提高以及抗氧化性能的改善。
常见的包覆材料有硅酸盐、钛酸盐等。
2.气相沉积法气相沉积法是把目标材料的气体原子或分子通过蒸发、溅射等方式冲击到高分子材料表面上去。
它可用于制备高分子涂层、表面修饰。
3.表面活性改性法表面活性改性法是通过在高分子材料表面改变表面活性基团的方式,从而改变其物理和化学性质的方法。
常见的表面活性基团有羟基、胺基、羰基等。
4.离子注入法离子注入法是利用加速器将目标离子加速到高速度,在高分子材料表面形成一层薄层,从而实现界面改性的方法。
常见的离子有氮、氩等。
三、高分子材料界面改性的应用研究界面改性技术对高分子材料性质的改善,使其在各种领域得到广泛应用。
下面以几个示例介绍其应用研究:1.在医疗方面,通过界面改性技术,增加了不同颜色的荧光纳米包被物质的吸附能力,使比色比荧光更具选择性信号,有望在癌症早期筛查和诊断中得到广泛应用。
2.在电力行业,通过界面改性技术,制备出耐高温、防辐照的电线、电缆等,提升了电线电缆的使用寿命。
3.在机械工程方面,通过界面改性技术,可以制备出具有耐磨、耐冲击、抗静电等特性的高分子材料,从而提高机械设备的使用寿命和安全性。
四、结论高分子材料界面改性技术作为先进的表面改性技术,在材料科学与技术领域具有重要的应用前景。
高分子材料的表面性质与性能优化研究探讨

高分子材料的表面性质与性能优化研究探讨在现代材料科学的领域中,高分子材料凭借其独特的性能和广泛的应用,已经成为了不可或缺的一部分。
高分子材料的表面性质对于其在实际应用中的性能表现有着至关重要的影响。
因此,深入研究高分子材料的表面性质,并探索有效的性能优化方法,具有重要的科学意义和实际应用价值。
高分子材料的表面性质是一个复杂而多样的概念,它涵盖了多个方面的特性。
首先,表面能是一个关键因素。
表面能的大小决定了材料表面与其他物质之间的相互作用强度,例如粘附性、润湿性等。
低表面能的高分子材料通常表现出良好的防水、防油性能,而高表面能的材料则更容易与其他物质发生相互作用。
表面粗糙度也是影响高分子材料表面性质的重要因素之一。
粗糙的表面往往会增加材料的表面积,从而影响其与外界环境的接触和相互作用。
在某些应用中,如需要增强摩擦力的场合,较高的表面粗糙度是有益的;而在需要减少阻力或提高光洁度的情况下,则需要降低表面粗糙度。
此外,表面化学组成同样对高分子材料的性能有着显著影响。
通过在材料表面引入特定的官能团,可以改变其化学性质,从而赋予材料新的功能。
例如,引入亲水官能团可以提高材料的亲水性,使其在生物医学领域有更好的应用前景;引入抗菌官能团则可以使材料具有抗菌性能。
了解了高分子材料的表面性质后,我们来探讨一下如何对其性能进行优化。
表面改性是一种常用的方法。
物理改性包括等离子体处理、激光处理等。
等离子体处理可以在材料表面引入极性基团,从而改变其表面能和化学性质。
激光处理则可以通过精确控制激光的能量和作用区域,实现对表面粗糙度的调控。
化学改性也是优化高分子材料表面性能的重要手段。
例如,通过表面接枝反应,可以在材料表面引入特定的聚合物链,从而改变其表面性质。
这种方法具有较高的改性效率和针对性,可以根据实际需求精确地调整材料的性能。
除了表面改性,表面涂层技术也是一种有效的性能优化方法。
在高分子材料表面涂覆一层具有特定性能的涂层,可以显著改善其表面性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2014-2015学年第一学期)《高分子材料改性》课程论文题目:纳米粒子增韧聚氯乙烯研究新进展*名:**学院:材料与纺织工程学院专业:高分子材料与工程班级:高材121 班学号: ************ 任课教师:兰平教务处制2014年12月30日纳米粒子增韧聚氯乙烯研究新进展摘要通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势, 而将纳米粒子作为填料来填充改性聚合物, 是获得高强高韧复合材料有效方法之一。
本文对近年来纳米增韧PVC 的制备方法, 增韧机理和发展趋势进行了说明。
关键词: 聚氯乙烯纳米材料增韧一.研究背景随着科学技术的发展, 人们对材料性能的要求越来越高。
聚氯乙烯作为第二大通用塑料, 具有阻燃、耐腐蚀、绝缘、耐磨损等优良的综合性能和价格低廉、原材料来源广泛的优点, 已被广泛应用于化学建材和其他部门。
但是, 聚氯乙烯在加工应用中, 尤其在用作结构材料时也暴露出了抗冲击强度低、热稳定性差等缺点。
纳米技术的发展及纳米材料所表现出的优异性能, 给人们以重大的启示。
人们开始探索将纳米材料引入PVC 增韧改性研究中, 并发现增韧改性后的PVC 树脂具有优异的韧性, 刚度及强度得到显著改善, 而且热稳定性、尺寸稳定性、耐老化性等也有较大提高, 纳米复合材料已经成为PVC增韧改性的一个重要途径。
本文主要介绍了近几年来纳米复合材料在PVC 增韧改性方面的研究现状和发展趋势[1]。
二.纳米CaCO3 增韧PVC碳酸钙是高分子复合材料中广泛使用的无机填料。
在橡胶、塑料制品中添加碳酸钙等无机填料, 可提高制品的耐热性、耐磨性、尺寸稳定性及刚度等,并降低制品成本, 成为一种功能性补强增韧填充材料, 受到了人们的广泛关注。
2.1 纳米CaCO3 增韧对PVC 力学性能的影响魏刚等[ 2]研究指出, 用CPE 包覆后纳米CaCO3填充PVC 的冲击强度均要比未包覆处理填充体系的略低, 而拉伸强度则相反。
特别是在包覆小份量CaCO3( 2 份) 时, 所得复合材料的冲击强度甚至比PVC/ CPE( 8 份) 基体的低12%, 而拉伸强度则出现最大值, 比基体的高8. 9% 左右, 如图2-1 所示。
熊传溪、王涛等[3]研究发现两种粒径的纳米晶PVC 均能起到显著的增韧和增强作用, 且粒径小的纳米晶PVC 作用更明显, 而且偶联剂用量对试样的拉伸强度和冲击强度也有很大的影响。
对CPE/ACR共混增韧PVC力学性能的影响2.2 纳米CaCO3如图2-2所示,为CPE/ACR共混物对PVC冲击强度的影响。
从图2-2中可以看出当CPE/ACR/PVC为10/2/100时,共混体系的冲击强度达到最大,明显优于单一CPE或单一ACR对PVC的增韧效果。
这是由于10mpr的CPE在PBC基体相中可能已经形成了完整的网络结构,这种网络结构可以吸收部分冲击能量而赋予共混体系一定的冲击强度,而在此基础上再添加2phr ACR后,由于核壳ACR在PVC基体相以及CPE网络中呈颗粒状分布,它们诱发基体产生大量的剪切带和银纹而图2-1 两种填充方法对复合材料力学性能的影响图2-2 CPE/ACR共混物对PVC冲击性能的影响使材料的冲击强度得到进一步提高,较之单一增加CPE的用量有更好的改性效果,表现出明显的协同增韧作用[9]。
图2-3 PVC/CPE/改性纳米碳酸钙复合材料的SEM照片古菊、贾德民等发现改性纳米碳酸钙与CPE互配,可以对PVC实现良好的协同增韧增强的效果,改性纳米碳酸钙的加入不仅有效地提高PVC/CPE体系的韧性和强度,还可提高材料的耐热性能及可加工性能。
刚性的改性纳米碳酸钙与弹性体氯化聚乙烯之间表现出良好的协同增韧效果。
所制得的PVC/CPE/R-CaCO3复合材料避免了常规的弹性体增韧聚氯乙烯所带来的强度、刚度下降,耐热性能降低、加工性能变差的弊端[4][5]。
2.3纳米碳酸钙填充型粉末丁苯橡胶增韧改性聚氯乙烯张周达、陈雪梅将冲击试样的断面喷金,在S4800型冷场电子显微镜发射电子显微镜(SEM)上观察断口的形貌及CaCO3/SBR粒子在PVC基体中的分布时[6]CO3/SBR量比为15:100时,随着CaCO3/SBR改性剂中纳米碳酸钙含量的提高,PVC冲击强度先升后降,当纳米碳酸钙质量分数为70%击强度达到最大。
说明在复合改性剂制备过程中,纳米碳酸钙和丁苯胶乳存在一个最佳配比,在此配比下的增韧效果较好。
苏新清认为,复合改性剂中纳米碳酸钙和丁苯橡胶形成的50nm 米碳酸钙粒子包藏于丁苯橡胶颗粒的结构内。
据此可知,当复合改性剂中纳米碳酸钙和丁苯橡胶的的质量比为7:3苯橡胶相刚好对纳米碳酸钙粒子进行有效包覆,实现橡胶弹性体和纳米粒子的协同增韧[7]。
2.4聚丙烯酸酯/纳米碳酸钙复合增韧PVC 的研究马治军,杨景辉[8]备了复合增韧改性剂聚丙烯酸酯/纳米CaCO3( PA-C) ,并将其用于硬质聚氯乙烯( PVC) 中,(观察表1)加复合改性剂PA-C 后,其缺口冲击强度大幅度提高,并且添加10份达到最大值88. 64kJ /m2,较添加未改性纳米CaCO3的PVC 复合材料的冲击强度提高了7 倍多。
弯曲模量随PA-C 添加量的增加明显增大,拉伸强度仅稍微降低,说明PA-C 能较好分散在PVC 基体材料中,既起到较好的增韧效果,又起到一定的补强作用。
这是由于PMMA 与PVC 溶解度参数相同,二者具有较好的相容性。
纳米CaCO3表面包覆有一定含量的PMMA,有效地改善了PVC 基体与纳米CaCO3之间的相容性,而且聚丙烯酸酯聚合物中含有一定量的柔性单体聚丙烯酸丁酯,其在CaCO3粒子与基体间形成过渡层,利于能量吸收,而纳米CaCO3为刚性粒子,其添加提高了复合材料的刚性和硬度。
三.炭黑填充增韧PVC导电炭黑是一种永久性抗静电剂, 添加后材料不会因水洗、磨损等原因在长期使用中丧失抗静电性能。
炭黑还具有高的比表面积和高的表面能, 能吸收润滑剂, 与PVC 界面结合良好。
炭黑的填充还能使PVC的熔体粘度大大提高。
陈克正、张言波等[10]研究了纳米导电纤维( nano-F) 和华光炭黑(HG-CB) 填充硬质PVC 复合材料的电性能以及温度对复合材料体积电阻率的影响及伏安特性, 发现随填料用量的增加, 材料的电阻率逐渐降低。
当nano-F、HG-CB的填充量分别达到20、10 份时, 电阻率急剧下降。
这说明此时导电填料在PVC 基体中已基本形成导电网络, 填充量继续增加电阻率下降不大。
nano-F 填充PVC 复合材料特性曲线均呈直线性, 即其伏安特性为欧姆性, 而HG-CB填充PVC 复合材料特性曲线偏离欧姆性。
四. SiO2 增韧改性PVC为了改善PVC 糊的流变性能及存放性能, 陈兴明等[11]采用纳米级SiO2填充到PVC糊中, 当其用量达到一定值(12份) 时可以赋予PVC 糊以明显的切力变稀性能, 而普通超细SiO2则不能给予PVC 糊以明显切力变稀性能。
填充纳米级SiO2的PVC 糊, 其切力变稀性能可持久地保持, 而填充普通超细SiO2的PVC 糊,其切力变稀性能不能持久保持。
4.1 纳米粒子复合ACR 改性聚氯乙烯王锐兰、王锐刚等[12]采用纳米SiO2粒子作为种子进行聚丙烯酸酯的原位乳液聚合, 用此种聚丙烯酸酯复合物和PVC 树脂共混, 结果用偶联剂MAPS预包覆纳米SiO2再进行原位聚合的ACR, 如表2 所示, 当SiO2含量为10%时的ACR 作PVC 的改性剂,有最高的拉伸强度、断裂伸长率和冲击强度( 即破碎率最低) , 具有优良的力学性能。
4.2 纳米SiO2包覆HMPC接枝共聚宇海银[13]等研究发现, SiO2经SDS 预处理后包覆羟丙基甲基纤维素( HMPC) , 并接枝PMMA, 随着SiO2 /HPMC-PMMA、TiO2/HPMC-PMMA、ZnO/HPMC-PMMA 含量的增加, 冲击强度随之提高。
当复合粒子含量分别为10% 、10% 、20% 左右时, 冲击强度达到最大值61、62、68kJ/ m2。
这比纯PVC 的冲击强度52kJ/ m2分别提高了19.2、25、31% 。
4.3 纳米SiO2添加量对复合材料性能的影响田满红、郭少云[14]通过超声波、振磨等方法对纳米粒子进行表面处理, 以促进纳米粒子在基体中的均匀分散, 大幅度提高复合材料的强度和韧性。
当纳米SiO2的添加量为3% 时, 复合材料的综合力学性能最好, 其拉伸强度、冲击强度和杨氏模量均有较大的提高。
振磨处理时间对纳米粒子改善复合材料性能也有影响。
处理6h 时改善复合材料的冲击性能效果最好。
4.4聚氨酯弹性体/纳米二氧化硅协同改性聚氯乙烯及其力学性能王士财、张晓东[15]等用聚氨酯( PU )弹性体/纳米SiO2复合材料协同改性聚氯乙烯( PVC ), 用反应挤出一步法成型工艺制备了PU 弹性体/纳米SiO2/PVC 复合材料, 对挤出速率和温度进行了考察, 并对复合材料力学性能的影响因素进行了研究。
结果表明, 制备该复合材料的最佳工艺条件是螺杆转速为40~ 50 r/m in、挤出机均化段温度为180~ 190 ℃; 用分散于液化二异氰酸酯中的纳米SiO2制备的复合材料的性能优于用分散于聚醚二元醇中的纳米SiO2;PU 弹性体和纳米SiO2能协同增韧PVC, 两者质量比为5/1时增韧改性的效果最佳。
当PU弹性体/纳米SiO2/PVC (质量比)为5/1/20时, 复合材料的综合力学性能最优, 冲击强度达到45.6 kJ/m2, 拉伸强度为50.3MPa。
五. 纳米黏土填充增韧PVCPVC/纳米黏土复合材料只需少量的纳米黏土即可使PVC的韧性、强度和刚度显著改善。
因PVC分子链的运动受到限制,材料的热稳定性和尺寸稳定性提高,复合材料在二维或三维上均有较好的增韧和增强效果,不同层状黏土可以赋予材料不同的功能。
Mahmood等[16]通过熔融混合制备了有机黏土增强PVC/丙烯腈-丁二烯-苯乙稀(ABS)基体,并研究了纳米黏土对PVC/ABS的形态、流变学和力学性能的影响。
结果表明,加入纳米黏土,使PVC/ABS共混物的增韧效果显著增加。
当纳米黏土的加入量为5%时,共混物的力学性能达到最佳。
此外,添加顺序对黏土在PVC/ABS/黏土纳米复合材料中的分散也有显著影响,通过选择最佳的添加顺序来控制纳米黏土在共混物中的分布。
Shimpi等[17]用常规的双螺杆挤出机进行熔融配共混制备PVC纳米复合材料,并研究了有机物表面改性的蒙脱土(OMMT)对PVC纳米复合材料性能的影响。
从图5-1可以看出,冲击强度随着OMMT含量的增加而提高,当OMMT的质量分数为12%时,PVC复合材料的冲击强度达到最高为4.4KJ/m2,如果OMMT的含量大于12%时,复合材料的冲击强度则会下降。