高分子表面材料改性论文

高分子表面材料改性论文
高分子表面材料改性论文

(2014-2015学年第一学期)

《高分子材料改性》

课程论文

题目:纳米粒子增韧聚氯乙烯研究新进展

姓名:周凯

学院:材料与纺织工程学院

专业:高分子材料与工程

班级:高材121 班

学号: 201254575128 任课教师:兰平

教务处制

2014年12月30日

纳米粒子增韧聚氯乙烯研究新进展

摘要

通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势, 而将纳米粒子作为填料来填充改性聚合物, 是获得高强高韧复合材料有效方法之一。本文对近年来纳米增韧PVC 的制备方法, 增韧机理和发展趋势进行了说明。

关键词: 聚氯乙烯纳米材料增韧

一.研究背景

随着科学技术的发展, 人们对材料性能的要求越来越高。聚氯乙烯作为第二大通用塑料, 具有阻燃、耐腐蚀、绝缘、耐磨损等优良的综合性能和价格低廉、原材料来源广泛的优点, 已被广泛应用于化学建材和其他部门。但是, 聚氯乙烯在加工应用中, 尤其在用作结构材料时也暴露出了抗冲击强度低、热稳定性差等缺点。纳米技术的发展及纳米材料所表现出的优异性能, 给人们以重大的启示。人们开始探索将纳米材料引入PVC 增韧改性研究中, 并发现增韧改性后的PVC 树脂具有优异的韧性, 刚度及强度得到显著改善, 而且热稳定性、尺寸稳定性、耐老化性等也有较大提高, 纳米复合材料已经成为PVC增韧改性的一个重要途径。本文主要介绍了近几年来纳米复合材料在PVC 增韧改性方面的研究现状

和发展趋势[1]。

二.纳米CaCO3 增韧PVC

碳酸钙是高分子复合材料中广泛使用的无机填料。在橡胶、塑料制品中添加碳酸钙等无机填料, 可提高制品的耐热性、耐磨性、尺寸稳定性及刚度等,并降低制品成本, 成为一种功能性补强增韧填充材料, 受到了人们的广泛关注。

2.1 纳米CaCO3 增韧对PVC 力学性能的影响

魏刚等[ 2]研究指出, 用CPE 包覆后纳米CaCO3填充PVC 的冲击强度均要比未包覆处理填充体系的略低, 而拉伸强度则相反。特别是在包覆小份量CaCO3( 2 份) 时, 所得复合材料的冲击强度甚至比PVC/ CPE( 8 份) 基体的低12%, 而拉伸强度则出现最大值, 比基体的高8. 9% 左右, 如图2-1 所示。

熊传溪、王涛等[3]研究发现两种粒径的纳米晶PVC 均能起到显著的增韧和增强作用, 且粒径小的纳米晶PVC 作用更明显, 而且偶联剂用量对试样的拉伸强度和冲击强度也有很大的影响。

对CPE/ACR共混增韧PVC力学性能的影响

2.2 纳米CaCO

3

如图2-2所示,为CPE/ACR共混物对PVC冲击强度的影响。从图2-2中可以看出当CPE/ACR/PVC为10/2/100时,共混体系的冲击强度达到最大,明显优于单一CPE或单一ACR对PVC的增韧效果。这是由于10mpr的CPE在PBC基体相中可能已经形成了完整的网络结构,这种网络结构可以吸收部分冲击能量而赋予共混体系一定的冲击强度,而在此基础上再添加2phr ACR后,由于核壳ACR在PVC

基体相以及CPE网络中呈颗粒状分布,它们诱发基体产生大量的剪切带和银纹而

图2-1 两种填充方法对复合材料力学性能的影响

图2-2 CPE/ACR共混物对PVC冲击性能的影响

使材料的冲击强度得到进一步提高,较之单一增加CPE的用量有更好的改性效果,表现出明显的协同增韧作用[9]。

图2-3 PVC/CPE/改性纳米碳酸钙复合材料的SEM照片古菊、贾德民等发现改性纳米碳酸钙与CPE互配,可以对PVC实现良好的协同增韧增强的效果,改性纳米碳酸钙的加入不仅有效地提高PVC/CPE体系的韧性和强度,还可提高材料的耐热性能及可加工性能。刚性的改性纳米碳酸钙与弹性体氯化聚乙烯之间表现出良好的协同增韧效果。所制得的PVC/CPE/R-CaCO

3

复合材料避免了常规的弹性体增韧聚氯乙烯所带来的强度、刚度下降,耐热性能降低、加工性能变差的弊端[4][5]。

2.3纳米碳酸钙填充型粉末丁苯橡胶增韧改性聚氯乙烯

张周达、陈雪梅将冲击试样的断面喷金,在S4800型冷场电子显微镜发射

电子显微镜(SEM)上观察断口的形貌及CaCO

3

/SBR粒子在PVC基体中的分布时

[6]CO

3/SBR量比为15:100时,随着CaCO

3

/SBR改性剂中纳米碳酸钙含量的提高,

PVC冲击强度先升后降,当纳米碳酸钙质量分数为70%击强度达到最大。说明在复合改性剂制备过程中,纳米碳酸钙和丁苯胶乳存在一个最佳配比,在此配比下

的增韧效果较好。苏新清认为,复合改性剂中纳米碳酸钙和丁苯橡胶形成的50nm 米碳酸钙粒子包藏于丁苯橡胶颗粒的结构内。据此可知,当复合改性剂中纳米碳酸钙和丁苯橡胶的的质量比为7:3苯橡胶相刚好对纳米碳酸钙粒子进行有效包覆,实现橡胶弹性体和纳米粒子的协同增韧[7]。

2.4聚丙烯酸酯/纳米碳酸钙复合增韧PVC 的研究

马治军,杨景辉[8]备了复合增韧改性剂聚丙烯酸酯/纳米CaCO

3

( PA-C) ,并将其用于硬质聚氯乙烯( PVC) 中,(观察表1)加复合改性剂PA-C 后,其缺口冲击强度大幅度提高,并且添加10份达到最大值88. 64kJ /m2,较添加未改性纳米CaCO3的PVC 复合材料的冲击强度提高了7 倍多。弯曲模量随PA-C 添加量的增加明显增大,拉伸强度仅稍微降低,说明PA-C 能较好分散在PVC 基体材料中,既起到较好的增韧效果,又起到一定的补强作用。这是由于PMMA 与PVC 溶解度参数相同,二者具有较好的相容性。纳米CaCO3表面包覆有一定含量的PMMA,有效地改善了PVC 基体与纳米CaCO3之间的相容性,而且聚丙烯酸酯聚合物中含有一定量的柔性单体聚丙烯酸丁酯,其在CaCO3粒子与基体间形成过渡层,利于能量吸收,而纳米CaCO3为刚性粒子,其添加提高了复合材料的刚性和硬度。

三.炭黑填充增韧PVC

导电炭黑是一种永久性抗静电剂, 添加后材料不会因水洗、磨损等原因在长期使用中丧失抗静电性能。炭黑还具有高的比表面积和高的表面能, 能吸收润滑剂, 与PVC 界面结合良好。炭黑的填充还能使PVC的熔体粘度大大提高。

陈克正、张言波等[10]研究了纳米导电纤维( nano-F) 和华光炭黑(HG-CB) 填充硬质PVC 复合材料的电性能以及温度对复合材料体积电阻率的影响及伏安特性, 发现随填料用量的增加, 材料的电阻率逐渐降低。当nano-F、HG-CB的填充量分别达到20、10 份时, 电阻率急剧下降。这说明此时导电填料在PVC 基体中已基本形成导电网络, 填充量继续增加电阻率下降不大。nano-F 填充PVC 复合

材料特性曲线均呈直线性, 即其伏安特性为欧姆性, 而HG-CB填充PVC 复合材料特性曲线偏离欧姆性。

四. SiO2 增韧改性PVC

为了改善PVC 糊的流变性能及存放性能, 陈兴明等[11]采用纳米级SiO

2

填充到PVC糊中, 当其用量达到一定值(12份) 时可以赋予PVC 糊以明显的切力变

稀性能, 而普通超细SiO

2

则不能给予PVC 糊以明显切力变稀性能。填充纳米级

SiO

2的PVC 糊, 其切力变稀性能可持久地保持, 而填充普通超细SiO

2

的PVC 糊,

其切力变稀性能不能持久保持。

4.1 纳米粒子复合ACR 改性聚氯乙烯

王锐兰、王锐刚等[12]采用纳米SiO

2

粒子作为种子进行聚丙烯酸酯的原位乳液聚合, 用此种聚丙烯酸酯复合物和PVC 树脂共混, 结果用偶联剂MAPS预包覆

纳米SiO

2再进行原位聚合的ACR, 如表2 所示, 当SiO

2

含量为10%时的ACR 作

PVC 的改性剂,有最高的拉伸强度、断裂伸长率和冲击强度( 即破碎率最低) , 具有优良的力学性能。

4.2 纳米SiO2包覆HMPC接枝共聚

宇海银[13]等研究发现, SiO

2

经SDS 预处理后包覆羟丙基甲基纤维素

( HMPC) , 并接枝PMMA, 随着SiO

2 /HPMC-PMMA、TiO

2

/HPMC-PMMA、ZnO/HPMC

-PMMA 含量的增加, 冲击强度随之提高。当复合粒子含量分别为10% 、10% 、20% 左右时, 冲击强度达到最大值61、62、68kJ/ m2。这比纯PVC 的冲击强度52kJ/ m2分别提高了19.2、25、31% 。

4.3 纳米SiO2添加量对复合材料性能的影响

田满红、郭少云[14]通过超声波、振磨等方法对纳米粒子进行表面处理, 以促进纳米粒子在基体中的均匀分散, 大幅度提高复合材料的强度和韧性。当纳米SiO

2

的添加量为3% 时, 复合材料的综合力学性能最好, 其拉伸强度、冲击强度

和杨氏模量均有较大的提高。振磨处理时间对纳米粒子改善复合材料性能也有影响。处理6h 时改善复合材料的冲击性能效果最好。

4.4聚氨酯弹性体/纳米二氧化硅协同改性聚氯乙烯及其力学性能

王士财、张晓东[15]等用聚氨酯( PU )弹性体/纳米SiO

2

复合材料协同改性聚

氯乙烯( PVC ), 用反应挤出一步法成型工艺制备了PU 弹性体/纳米SiO

2

/PVC 复合材料, 对挤出速率和温度进行了考察, 并对复合材料力学性能的影响因素进行了研究。结果表明, 制备该复合材料的最佳工艺条件是螺杆转速为40~ 50 r/m in、挤出机均化段温度为180~ 190 ℃; 用分散于液化二异氰酸酯中的纳米

SiO

2制备的复合材料的性能优于用分散于聚醚二元醇中的纳米SiO

2

;PU 弹性体

和纳米SiO

2

能协同增韧PVC, 两者质量比为5/1时增韧改性的效果最佳。当PU

弹性体/纳米SiO

2

/PVC (质量比)为5/1/20时, 复合材料的综合力学性能最优, 冲击强度达到45.6 kJ/m2, 拉伸强度为50.3MPa。

五. 纳米黏土填充增韧PVC

PVC/纳米黏土复合材料只需少量的纳米黏土即可使PVC的韧性、强度和刚度显著改善。因PVC分子链的运动受到限制,材料的热稳定性和尺寸稳定性提高,复合材料在二维或三维上均有较好的增韧和增强效果,不同层状黏土可以赋予材料不同的功能。

Mahmood等[16]通过熔融混合制备了有机黏土增强PVC/丙烯腈-丁二烯-苯乙稀(ABS)基体,并研究了纳米黏土对PVC/ABS的形态、流变学和力学性能的影响。结果表明,加入纳米黏土,使PVC/ABS共混物的增韧效果显著增加。当纳米黏土的加入量为5%时,共混物的力学性能达到最佳。此外,添加顺序对黏土在PVC/ABS/黏土纳米复合材料中的分散也有显著影响,通过选择最佳的添加顺序来控制纳米黏土在共混物中的分布。

Shimpi等[17]用常规的双螺杆挤出机进行熔融配共混制备PVC纳米复合材料,并研究了有机物表面改性的蒙脱土(OMMT)对PVC纳米复合材料性能的影响。从图5-1可以看出,冲击强度随着OMMT含量的增加而提高,当OMMT的质量分数为12%时,PVC复合材料的冲击强度达到最高为4.4KJ/m2,如果OMMT的含量大于12%时,复合材料的冲击强度则会下降。

图5-1 PVC纳米复合材料简支梁缺口冲击强度

Li等[17]采用震动磨的固态剪切混合技术制备了PVC/高岭土纳米复合材料。

经该技术制备的纳米复合材料的拉伸强度、断裂伸长率和冲击强度较传统方法制备复合材料的显著提高。PVC和高岭土经震动磨处理后加工制备的复合材料中,PVC和片条状高岭土互相穿插,高岭土在PVC基体中形成均一的分散,对PVC基体起到了较好的增强增韧效果。

Hemmati等[18]用2种方法制备出了有机纳米黏土增强PVC/ABS基体复合材料,并研究了纳米黏土对PVC/ABS的形态、流变学和力学性能的影响。一种方法为先将PVC和ABS在170℃熔融混合5min,再将黏土加入共混物中混合7min;另一种方法是先将ABS和黏土在170℃熔融混合5min,再将PVC加入共混物中混合7min。研究发现,当混入黏土的质量分数为5%时,两种方法所制备的纳米复合材料的悬臂梁冲击强度均达到最大值,且第二种方法制备出的纳米复合材料的悬臂梁冲击强度(65J/m)及断裂伸长率大于第一种方法制备的纳米复合材料(45J/m)。

六.“核-壳”纳米粒子对PVC的增韧

将聚酯增塑剂分子通过化学反应或物理作用固定在无机粒子表面形成“核-壳”结构的粒子,将这种粒子与PVC复合,一方面可限制增塑剂的迁移,另一方面可提高无机粒子的分散性,可同时实现增塑、增强、增韧和提高耐热性的目的。目前用“核-壳”纳米粒子来提高脆性聚合物的韧性和冲击性能已备受重视。

Chen等[20]通过乳液聚合在交联苯乙烯-共丁二烯核上接枝聚苯乙烯和聚丙烯酸丁酯(PBA)合成了一种新颖的“核-壳”改性剂(MOD),并对其增韧PVC

进行了研究。结果表明,MOD对PVC悬臂梁冲击强度的提高有显著作用,其中MOD 中丙烯酸丁酯的含量对PVC/MOD的韧性增强时一个重要的因素;PVC/MOD的悬臂梁冲击强度随着MOD中丙烯酸丁酯的含量的增加而显著提高,当MOD中丙烯酸丁酯的含量为40%时,PVC/MOD的悬臂梁冲击强度达到最大为1200J/m。

Yin等[21]首先对埃洛石?高岭土和二氧化硅纳米填料进行表面改性,再嫁接上

聚己二酸丁二醇酯(PBA)合成了“核-壳”纳米粒子增塑剂,并将其混入PVC中制备了出高强度和韧性的复合材料?结果表明,相比于未改性的纳米填料,用改性的

纳米填料制备的PVC/“核-壳”纳米粒子的强度和韧性都有显著提高?当“核-壳”纳米粒子的含量均为5%时,用未改性的埃洛石?高岭土和二氧化硅纳米粒子嫁接PBA得到的“核-壳”纳米粒子改性PVC制备的PVC/“核-壳”纳米粒子的断裂伸长率分别为5%?5%和7%;改性后的PVC/“核-壳”纳米粒子的断裂伸长率分别为90%?7%和120%?

七. 其他无机纳米粒子对PVC的增韧

硅灰石具有吸湿性小、热稳定性好、表面不易划伤等优点,用其填充聚合物,具有快速分散性和低的黏度,在提高冲击、拉伸和挠曲强度等方面都优于其他无机填料,不足之处是多数硅灰石粉在加工温度下颜色易变灰,从而影响材料的透明度。

杨中文等[22]将硅灰石经硬脂酸稀土改性后,用于填充PVC-U 给水管材,并对

管材性能进行分析,结果表明,改性硅灰石可以提高管材的落锤冲击强度及拉伸

强度,当粒径在3μm 左右的硅灰石,质量份数为25份时,落锤冲击强度达到1%?

同时还使管材的维卡软化温度提高到92.4 ℃,纵向回缩率降低至1.03%,且硅灰

石粒径越小提高越显著?

程博等[23]利用超声作用制备纳米石墨微片(nano-Gs),并采用混酸对其进行表面活化,最后通过熔融共混法制备PVC/nano-Gs复合材料?通过傅里叶红外光谱和SEM 对nano-Gs的结构进行表征,研究了nano-Gs对复合材料导电性能和力学性能的影响?结果表明,随着nano-Gs含量升高,复合材料的拉伸强度及缺口冲击强度均先升高后降低,nano-Gs质量分数为1%时,复合材料的拉伸强度及缺口冲击强度均达到最大值,相比纯PVC分别升高约14%和38%?

凹凸棒土是一种以含水富镁硅酸盐为主的黏土矿,具有特殊纤维状晶体型态的层链状过渡结构?但是凹凸棒土与树脂基体的结合并不好,当材料受到外力时表现出脱黏现象?所以要将纳米凹凸棒土进行改性,改性后的纳米凹凸棒土填充到PVC基体中,能显著改善其力学性能?

郑祥等[24]用钛酸酯偶联剂对凹凸棒土进行表面改性,并研究了经表面处理和未经表面处理的凹凸棒土对PVC/ABS复合材料力学性能的影响,用SEM 观察了PVC/ABS复合材料的冲击断面微观形貌和凹凸棒土的分散情况?从图3可以看出,经表面处理的凹凸棒土添加到PVC/ABS复合材料中缺口冲击强度要好于未改性的,添加10份经表面处理的凹凸棒土可以使复合材料的缺口冲击强度提高到15.48kJ/m2;未经表面处理的凹凸棒土在添加15份时,复合材料的冲击强度达到最高14.31kJ/m2?分析认为,当添加量逐渐增大时,凹凸棒土在PVC/ABS复合材料中的团聚现象严重,此时凹凸棒土在材料中就是明显的缺陷,对材料已没有了增韧作用?

图7-1 凹凸棒土含量对PVC/ABS复合材料缺口冲击强度的影响

八.结语

通过本次的研究调查发现国内纳米粒子填助剂发展已日新月异,例如2011年陈建军等提出纳米高岭土的固相剪切碾磨制备及对PVC的增强增韧,许海燕等提出MWNT-g-PBA的制备及对PVC的改性,等等研究的推陈出新也使得国内高分

)对PVC 子行业呈现生机盎然的形式。国内专家对纳米粒子(最为广泛的是CaCO

3

的弹性体增韧改性机理、有机刚性粒子增韧机理、无机刚性栗子增韧机理、纤维

状填料增韧机理都有深厚的理论基础和实验结果。

纳米粒子增韧改性PVC,由于纳米材料具有尺寸小,比表面积大而且产生量子效应和表面效应等特点,将纳米材料引入到PVC增韧改性研究中,发现改性后的PVC树脂同时具有优异的韧性、加工流动性、尺寸稳定性和热稳定性,特别是近年来,随着纳米粒子表面处理技术的发展,纳米粒子增韧PVC已经成为国内外研究开发的热点。其增韧机理是纳米粒子的存在产生了应力集中效应,引发周围树脂产生微开裂,吸收一定的变形功;纳米粒子在树脂中还可以起到阻止、钝化裂纹的作用,最终阻止裂纹不致发展为破坏性开裂;由于纳米粒子与基体树脂接触面积大,材料受冲击时会产生更多的微开裂而吸收更多的冲击能。

纳米粒子由于其优良的性能,在塑料的高性能化改性中的应用前景非常广阔?纳米粒子增韧改性PVC具有诸多优势,但同时也存在着纳米原料价格昂贵等致

命缺陷?所以发展价格低廉的新型纳米增韧增强剂,寻找更适用?更科学的纳米材料,以获得更好的增韧效果并最终实现工业化生产,是纳米粒子增韧改性PVC研究的一个极其重要的研究方向和努力目标?此外,对于PVC纳米复合材料,还应深入研究其制备方法,探索更加完善的纳米粒子表面改性技术,进一步增加粒子与PVC在纳米尺度上的相容性,并深入研究PVC纳米复合材料的结构与性能,加强理论研究上的深度,使这一新材料能够真正发挥其潜能?

个人认为,纳米材料发展至今,已经步入人民生活的各个方面,对于PVC目前热门的材料改性起到的作用也仍然受到各方面的限制,目前开发工业化比较多的例如CPE、ACR、EVA等这些高分子助剂然后添加纳米粒子的方法使得共混的效果更加好,对增强和增韧也更有利,这些共混体系的缺口冲击强度是未改性PVC 的数倍之多,由此我个人觉得在PVC与其他高分子聚合物共混呈现不相容性时,添加CPE/ACR弹性体(做增溶剂)等方法提高PVC与其他高分子聚合物之间的相容性,从而增加界面黏附强度,对于今后的更多PVC复合材料有极大的意义。

参考文献:

[1] 张琼方,张教强,国际英.纳米粒子增韧聚氯乙烯研究新进展[J].玻璃钢/复

合材料,2005,(1).

[2] 魏刚,黄锐,宋波等. CPE 包覆纳米CaCO3 对PVC/ 纳米CaCO3复合材料结

构与性能的影响[J].中国塑料,2003,17(4):35-38.

[3] 熊传溪,王涛, 董丽杰等.纳米晶PVC 在PVC/ CaCO3 复合材料中的作用[J]

中国塑料, 2003, 17( 7):15-19.

[4] 余剑英,.纳米CaCO_3对CPE/ACR共混增韧PVC力学性能的影响[J]. 高分

子材料科学与工程,2010,(1).

[5] 贾德民,罗远芳,张欣钊,程镕时,. 复合改性纳米碳酸钙/CPE对PVC的协

同增韧增强[J]. 塑料工业,2006,(S1).

[6] 达,陈雪梅,. 纳米碳酸钙填充型粉末丁苯橡胶增韧改性聚氯乙烯[J]. 机

械工程材料,2012,(5).

[7] 高光涛,张勇,.改性纳米碳酸钙增韧PVC研究[J]. 塑料工业,2008,(1).

[8] 马治军,杨景辉,吴秋芳,. 聚丙烯酸酯/纳米碳酸钙复合增韧PVC的研究

[J]. 塑料工业,2011,(3).

[9] 马夫娇,马新胜,杨景辉,.PVC/改性纳米CaCO_3复合材料的制备及性能[J].

塑料,2009,(5).

[10] 陈克正,张言波.纳米导电纤维与导电炭黑填充PVC 复合材料的电性能研

究[J].高分子材料科学与程, 2001,17(5):71-77.

填充PVC 糊的流变性能及存放性能研究[J]. [11] 陈兴明,朱世富.纳米级SiO

2

塑料工业,2002, 30(2):37-38.

[12] 王锐兰,王锐刚,乌卜润德.纳米粒子复合ACR 改性聚氯乙烯的研究[J].浙

江化工,2003, 34(7):12-13.

[13] 宇海银,孙益民,左光汉.无机粒子的有机高分子化及其对PVC填充改性的

研究[J].塑料科技,2003,14(4):1-3.

[14] 田满红,郭少云.纳米SiO

增强增韧聚氯乙烯复合材料的研究[J].聚氯乙

2

稀,2003,(1):26-32.

[15] 王士财,张晓东,楼涛,佘希林,李志国,.聚氨酯弹性体/纳米二氧化硅协同

改性聚氯乙烯及其力学性能[J]. 合成橡胶工业,2010,(5).

[16] Mahmood H, Abdolhosein F, Homeyra S, et al. Effects Of Nanoclay on

Morphology, Rheological, and Mechanical Properties of Polyvinyl Chloride/Acrylonitrile-butadiene-Styrene[J].Polymer Plastics Technology and Engineering,2012, 51 (4): 413-418.

[17] Shimpi N G, Mishra S.Influence of Surface Modification Of

Montomorillonite on Properties of PVC Nanocomposites [J].Journal of Composite Materials November,2011, 45 (23): 2447-2453.

[18] Li K S, Chen Y H, Niu H M, et al. Preparation of PVC / Kaolin

Nanocomposites Through Solid State Shear Compounding Based on

[J].Materials Science Pan-Milling Forum, 2011,694:350-354. [19] Hemmati M, Fereidoon A, Shariatpanahi H, et al.Effects of Nanoclay

on Morphology, Rheological, and Mechanical Properties of Polyvinyl Chloride / Acrylonitrile-butadiene-styrene[J].Polymer Plastics Technology And Engineering,2012,51(4): 413-418.

[20] Chen M ,Zhou C ,Liu Z G, et al. Core shell Particles Designed for

Toughening Poly(vinyl chloride)[J].Polymer International,2010,

59(7):980-985.

[21] Yin B, Hakkarainen M. Core Shell Nanoparticle Plasticizers

for Design of High Performance Polymeric Materials with Improved Stiffness and Toughness[J].Journal of Materals

Chemistry,2011,21(24):8670-8677.

[22] 杨中文,刘西文,陈兴华,等.硅灰石/硬脂酸稀土改性PVC-U给水管材的研

究[J].国外塑料,2008,26(5):77-80.

[23] 程博,齐暑华,何栋,等.纳米石墨微片/聚氯乙烯复合材料的制备与性能

[J].复合材料学报,2012,29(1):8-15.

[24] 郑祥,张凯舟,申建初,等.凹凸棒土对PVC/ABS复合材料性能的影响[J].塑

料科技,2011,39(12):53-56.

NEWPROGRESS IN PVC TOUGHENING WITH

NANOPARTICLES

Abstract: Research and development of general plastics with super properties and high additional values have been an important trend. It

was illustrated the manufacture methods of PVC nano-materials, toughening mechanism and development tendency in this article.

Key words: PVC; nano-materials; toughening

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

实验讲义材料化学

实验 1 功能无机材料的合成 第一部分以高岭石合成4A分子筛及性能分析 1.实验目的 (1)掌握4A分子筛的制备方法。 (2)掌握4A分子筛的基本表征方法。 (3)掌握4A分子筛的性能测试方法。 (4)了解制备反应条件对分子筛性能的影响。 2.实验原理 分子筛又称沸石,是具有均匀的微孔、其直径与一般分子大小相当的一类吸附剂或薄膜类物质。这类材料具有如下特点:①具有均匀的孔径,根据其有效孔径,可用来筛分大小不同的流体分子,这种作用叫做分子筛作用;②具有很大的内表面积和孔体积;③具有离子交换性(如K+、NH4+等交换);④由SiO 和AlO4四面体共享氧原子为基本骨架结构单元,组成短程有序和长程有序的晶体结构。这种结构形成了可为阳离子和水分子 4 所占据的大晶穴,这些阳离子和水分子有较大的移动性,可以进行阳离子交换和可逆的脱水,其化学组成通式为: [M2(Ⅰ),M(Ⅱ)O]·Al2O3·nSiO2·mH2O 式中M(Ⅰ),M(Ⅱ)分别为一价和二价金属(通常为钠、钾、钙、钡等),n为沸石的硅铝比,一般n等于2~10,m=0~9。 4A分子筛是A型分子筛的一种。A型分子筛的结构类似于氯化钠的晶体结构,其理想晶胞组成为:Na96(Al96Si96O384)·216H2O,由于A型分子筛中硅与铝的原子比为1,所以经常使用:Na12(Al12Si12O48)·27H2O作为其晶胞组成式。 4A分子筛具有独特的吸附性、离子交换性、催化性和良好的化学可修饰性。目前绝大部分用作洗涤剂助剂,它正逐步取代当前普遍使用的三聚磷酸钠,有效减少了对环境的污染。洗涤剂用4A分子筛的的生产方法有两种,一种是化学合成法,该法用水玻璃(硅酸钠)、氢氧化铝和氢氧化钠水热合成。另一种为半合成法,该法用天然粘土或天然沸石转化制取。 由于高岭石的Si/Al与4A沸石的Si/Al相同,反应不需要添加铝源和硅源,而且矿物原料来源丰富,所以其在矿物合成4A沸石中,占有重要的地位。一般认为,以高岭石为原料合成分子筛的机理是:偏高岭石在碱溶液中缓慢溶解,形成含有SiO32-、SiOH基团和Al(OH)4-的溶液,逐步缩合为硅铝酸钠凝胶,在进一步晶化为4A分子筛晶粒并通过结构重排而转变成4A分子筛。也有人提出高岭土在NaOH溶液中部分溶解,且迅速转化为偏高岭土,并伴有硅铝酸钠凝胶产生,同时偏高岭土也不断在碱液作用下凝胶化,生成的凝胶再进一步转变成4A分子筛。由上述可见,以天然矿石合成分子筛,反应时矿石先变成无定形硅铝盐。这种盐在水中溶解性不好,所以在晶化时先在其表面形成晶种,再结晶成分子筛。 用高岭土类粘土合成4A分子筛,产品成本低,吨成本为1700元,市售价为每吨2500元左右,因此经济效益很显著。 3.实验仪器和试剂 球磨机,300目筛子,马弗炉,机械搅拌器,加热套,铁架台,铁夹,烧杯1000mL,250mL锥形瓶,500mL容量瓶,抽滤瓶,砂心漏斗,烘箱,干燥器。 高岭石,氢氧化钠,氯化铵,去离子水,pH试纸,钙指示剂,EDTA。 X-射线衍射仪,热分析仪。 4.实验步骤 (1)高岭石的粉碎

天然高分子改性材料及其应用-考场重点资料

变性淀粉在造纸上的应用:1.湿部应用机理技术:提高纸张物理强度,提高细小纤维和填料的留着率,提高滤 层间喷雾机理及技术:提高纸和纸板的挺度,表面强度,环压强度等;3.表面施胶 中的应用技术:增加纸业抗水性、表面强度,提高耐破、耐折等物理强度指示;4.在涂布粘合中的应用技术: 变性淀粉作涂布的优点①具有良好的溶性②具有良好的保水性③能提供刮刀涂布的流变性④有较宽的粘度范 围⑤与合成胶乳具有良好的相容性;5.在涂布白板纸中的协同应用技术;6.纸制品淀粉粘合剂:瓦楞纸、纸袋 纸、瓶标签淀粉、胶粘带淀粉、信封邮票用淀粉。阳离子淀粉在造纸上的应用:1.能改善纸的耐破性,抗张力, 耐折度、抗掉毛性等许多物理性能;2. 4.能提高 各种染料的填料的保留率,从而降低造纸成本;5.作为胶乳,合成树脂,AKD等的固定剂和乳化剂,效果良好; 6.减少废水污染的程度。甲壳素、壳聚糖在造纸上的应用:1.施胶:溶解性差2.增强:氢键3.助流助滤:天然 7.其他助剂。 高分子材料分类:1.来源:天然高分子材料(淀粉、纤维)半合成高分子材料(消化纤维)合成高分子材料(有 2.用途:塑料、橡胶、纤维、涂料、粘合剂、高分子基复合材料 3.组成和功能:有机高 分子(聚乙烯)无机高分子(SiO2)复合高分子(橡胶)生物高分子(蛋白质)4.受热后变化:热固性(聚乙 烯、聚丙烯)、热塑性(酚醛树脂、环氧树脂)。天然高分子材质来源:1.植物:纤维素、半纤维素、木素、树 胶类、果胶、淀粉、蛋白质、天然橡胶、生漆 3. 微生物:①由微生物直接得到,黄原胶、真菌多糖②发酵得到,聚乳酸、聚乙内酯。天然高分子种类:多聚糖 类(淀粉),多聚肽类(蛋白质)遗传信息物质(DNA、RNA。天然高分子材料优 点:价格低,来源广、绿色清洁、可降解可再生。缺点:加工性很差,难以通过常用的塑料加工方法成型,力 学性能、耐环境性存在缺陷,应用范围窄。改性途径:①天然高分子的溶解和熔融②衍生化改性③接枝共聚④ 物理共混⑤互穿聚合物网络 三大热分析差别:1. TGA热重分析影响曲线因素①仪器因素:浮力、试样盘、挥发物的冷凝等②实验条件: 应用:聚合物热稳定性的评价、聚合物组成的剖析、研 热差分析3.DSC示差扫描量热法应用:聚合 物玻璃化转变的研究、聚合物熔融\结晶转变的研究、两相聚合材料结构特征的研究、 用DSC曲线确定加工条件。 布拉格方程(2dsinθ=nλ,θ半衍射角、d晶面距离、λ波长)应用:1.结构分析:用已知λ的X-ray照射晶体, :用已知d的晶体来反射从 样品发射出来的X-ray通过θ测量求得未知X-ray的波长λ。X射线衍射:光遇到障碍物或小孔后,偏离直线传 播,且强度随物质变化,在屏幕上出现明暗条纹。应用:1 积酚比,是体系聚集态结构的清晰表征3测定晶粒尺寸:大量晶粒个别尺寸的一种平均统计。产生X射线方法: 平板照射法、衍射仪法。红外光谱定义:样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐 -转能级从基态跃迁到激发态,而形成的分子吸收光谱,称为红 外光谱。红外光谱仪分类:1色散型红外光谱仪:光源、样品室、单色器、检测器、记录显示装置(利用单色涉作用进行测定,无色散元件) 纤维素改性材料:1纤维素的接枝共聚改性材料(接枝共聚反应的类型:自由基聚合、离子型共聚及缩聚与开 常用的引发方法:辐射引发、光引发、化学引发。应用:高吸水性材料、吸附重金属材料、吸油材料); 2纤维素的交联改性材料(应用:进一步提高纤维及其衍生物的吸水性改变和织物的性质,提高纤维的抗皱性,并可用作色谱柱的填充材料)3纤维素共混改性材料(熔融共混、溶液共混。应用:由于强的氢键作用,可以 得到性能优异的共混材料,不仅有良好的力学性能,还能保持共混组分的功能)4纤维素复合材料(麻纤维和 竹纤维复合有较高的比强度和比刚度。1共混:两种聚合进行混合2复合:采用颗粒,纤维或织物对聚合物进 行增强)纤维材料改性途径:酯化、醚化、交联改性、接枝共聚物、复合改性、共混改性 纤维素的溶解:1.衍生化溶剂:溶解过程中与纤维反应生成部分取代的反应中间体①NaOH/CS2:18%左右的强碱 N-N-二甲配胺2 /N2O4体系:N2O4与纤维素反应生成亚硝酸酯中间衍生物,溶于DMF中③二甲亚砜DMSO/多聚甲醛(PF)体系:PF受热分解产生的甲醛与纤维素的-OH反应生成羟甲基纤维素,羟甲基纤维素溶解在DMSO中。 2.非水相非衍生化溶剂:不与纤维发生反应①N-N-二甲基乙酰化胺(DMAC)体系②N-甲基氧化吗啉(NMMO) N→O上氧原子的两对弧对电子和水分子或纤维素大分子的羟基形成强的 氢键,生成纤维素-NMMO络合物 3.水相非衍生化溶剂①金属络合物:铜氨中的Cu2+可以优先与纤维素的吡喃环C2、C3位的-OH形成五元螯合环,间的相互作用,破坏纤维素分子内和分子间存在的大量氢键。 甲壳素、壳聚糖、纤维素的结构式:(淀粉单体为纤维素右半部分) 物理性能:外观、溶解性、结晶度、黏度(以1%壳聚糖乙酸溶液)>1000x10^-3Pa?S 高黏度100~100中粘度<100 低粘度。脱乙酰度和黏度是壳聚糖的主要性质指标,甲克素的基本单位是乙酰氨基葡萄糖,壳聚糖的基本单位 是氨基葡萄糖。脱乙酰度:乙酰化与脱乙酰化之间的平衡程度,其大小影响甲壳素和壳聚糖的溶解性,影响壳聚 糖溶解度(乙酰度>50%溶解性好)等级55~70%低脱乙酰度壳聚糖70~85%中??80~95%高??95~100%超高??。 造纸工业中的界面作用1氢键:羟基、氨基官能团中的氢与纤维素中的羟基形成氢键2离子键:纸浆纤维-有羧 二者有NH3—OOC结合3共价键:纤维素有醛基和氨基,作用较弱4范德华力: 分子间作用力。造纸中的应用:施胶剂(浆内施胶,表面施蜡),增强剂,主流助滤剂(增加纸浆在纤维上的 留着率),废水处理,特种纸(以壳聚糖为主要材料或配料所制成的食品包装纸、绝缘纸、复印纸、无碳复写 纸)纸张具有吸水性原因:1氢键2纤维间的孔隙造成毛细管现象。

天然高分子材料与可持续发展

高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高 橡胶 分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。

天然高分子材料 与可持续发展 郑州大学水环学院 2008级道桥一班 郑曼丽

高分子材料(macromolecular material)是以高分子化合物为基础的,由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。而高分子材料有可按合成来源分为天然高分子材料和改性高分子材料。其中,天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。 随着科学技术的发展,人们越来越追求绿色环保型技术。因此,以酚醛树脂为代表的不可回收利用高分子材料正准备淡出人们的视线。越来越多的天然的或可回收或可降解的高分子材料进入人们的眼球。“不使用也不产生有害物质,利用可再生资源合成环境友好化学品”已成为国际科技前沿领域。 可再生天然高分子来自自然界中动、植物以及微生物资源,他们是取之不尽、用之不竭的可再生资源。而且,这些材料废弃后很容易被自然界微生物分解成水、二氧化碳和无机小分子,属于环境友好材料。尤其,天然高分子具有多种功能基团,可以通过化学、物理方法改性成为新材料,也可以通过新兴的纳米技术制备出各种功能材料,因此,世界各国都在逐渐增加人力和财力的投入对天然高分子材料进行研究与开发。也因此,而是一些传统工艺得到进化,减轻了对环境的污染,实现了一定程度上的可持续发展。 比如纤维素。纤维素上地球上最古老最丰富的可再生资源,主要来源于树木、棉花、麻、谷类植物和其他高等植物,也可通过细菌的酶解过程产生。长期以来,人们利用传统的粘胶法利用纤维素生产人造丝和玻璃纸,而其中的CS2道之路环境的严重污染。而现在,实验室开发了新一类溶剂NaOHP尿素,NaOHP硫脲、LiOHP尿素水溶液体系,他们在低温下能迅速溶解纤维素得到透明溶液,是一种价廉且无污染的技术。此外,细菌纤维素

第七章 聚合物的表面改性技术介绍

第七章聚合物的表面改性 聚合物表面改性原因:①聚合物表面能低②聚合物表面具有化学惰性难以润湿和粘合③聚合物表面污染及存在弱边界层聚合物表面改性的目的:①改变表面化学组成,引进带有反应性的功能团②清除杂质或弱边界层③改变界面的物理形态④提高表面能,改进聚合物表面的润湿性和黏结性⑤设计界面过渡层 第七章聚合物的表面改性 聚合物的表面改性的方法:电晕、火焰、化学改性、等离子改性、辐照、光化学改性等。这些方法一般只引起10-8~10-4m 厚表面层的物理或化学变化,不影响其整体性质。 7-1 电晕放电处理 电晕放电是聚烯烃薄膜中最常用的表面处理方法。因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。电晕放电处理装置如图 7-1 电晕放电处理 原理:塑料薄膜在电极和感应辊之间通过。当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。 7-1 电晕放电处理 7-1 电晕放电处理 以上两图表明: 1.电晕处理后低密度聚乙烯(LDPE)表面张力的变化:开始表面张力随电晕处理的电流增大而显著提高,当电流超过100 mA 后,表面张力增加速度趋缓2.电晕处理后低密度聚乙烯(LDPE)剥夺力的影响(变化同上) 7-2 火焰处理和热处理 一、火焰处理:1.定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表面发生氧化反应而达到处理的目的。 2.常用可燃气体:采用焦炉煤气或甲烷、丙烷、丁烷、天然气和一定比例的空气或氧气。即焦炉煤气甲烷、丙烷、丁烷、天然气 7-2 火焰处理和热处理 3.常用火焰处理来提高其表面性能的物质(粘接性)聚乙烯、聚丙烯的薄膜、薄片吹塑的瓶、罐、桶等 4.例如:用聚丙烯制作汽车保险杠,用火焰处理来提高其表面的可漆性。 5.原理:火焰燃烧的温度可达1000-2700oC,处理的时间极短(0.01~0.1s内)(以避免工件受高温影响而发生变形、软化甚至熔化) 7-2 火焰处理和热处理 火焰中含有许多激活的自由基、离子、电子和中子,如激发态的O﹑NO﹑OH和NH,可夺取聚合物表面的氢,随后按自由基机理进行表面氧化反应,使聚合物表面生成羰基、羧基、羟基等含氧活性基团和不饱和双键,从而提高聚合物的表面活性。二、热处理1.定义:7-2 火焰处理和热处理 把聚合物暴露在热空气中进行氧化反应,使其表面引进羰基、羧基以及某些胺基和过氧化物,从而获得可润湿性和黏结性。2.热处理的温度只有几百(<500oC)摄氏度,远低于火焰处理的温度,因而处理时间较长。 7-3 化学处理 指用化学试剂浸洗聚合物使其表面发生化学和物理变化的方法。优点:工艺简单,设备投资小,因而应用广泛。一、含氟聚合物1.如聚四氟乙烯(PTFE )、氟化乙烯-丙烯共聚物(FEP )和聚三氟乙烯( PTFE )等

聚合物表界面改性方法

聚合物表界面改性方法概述 摘要:聚合物由于表面能低、表面具有化学惰性、难以润湿和粘合、聚合物表面污染及存在弱边界层,所以要使用一定的方法金星表面改性,提高整体性能。聚合物表面改性通常需要改变表面化学组成,引进带有反应性的功能团;清除杂质或弱边界层;改变界面的物理形态,提高表面能;改进聚合物表面的润湿性和黏结性;设计界面过渡层等。 关键词:聚合物;表面改性;研究进展,应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了常见的改性及最新的研究进展。下面将结合具体聚合物材料详细介绍各种改性方法。 这些方法一般只引起10-8~10-4m厚表面层的物理或化学变化,不影响其整体性质。 一、电晕放电处理 电晕放电是聚烯烃薄膜中最常用的表面处理方法。因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。 原理:塑料薄膜在电极和感应辊之间通过。当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。 二、火焰处理和热处理 ⒈火焰处理 ①定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表

高分子材料改性

1填充改性:在聚合物基体中或在聚合物加工成型过程中加入一系列在组成结构不同固体添加物。 2混杂增强:是一种以上不同品种的增强纤维或其他增强材料匹配在一起用于聚合物得到复合材料。3纤维的临界长度lc:以基体包裹纤维的复合物在顺纤维轴上拉伸。当从整体传到纤维上的应力刚能使纤维断裂时纤维的应有长度。 4IPN:是两种或两种以上的共混聚合物,分子链相互贯穿并至少一种聚合物分子链以化学键的方式交联而形成的网络结构。 5高分子合金:在显微镜下观察可以聚合物共混物具有类似金属合金的相结构(即宏观不分离,微观非均相结构)称为高分子合金。 6相容性:指聚合物彼此互相容纳,形成宏观均匀材料的能力。 7纳米复合材料:指其中至少有一相物质是纳米级(1—100nm)范围内的多相复合材料。 8海-岛结构:是一种两相体系,且一项为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样。 9等粘点:A组分与B组分熔体黏度相等的这一点,称为“等黏点” 问答可能题 1.熔融态化学反应类型及各自的影响因素? 答:类型:交联反应、接枝反应、降解反应、官能团反应。 影响交联因素:1过氧化物的品种与用量2交联时 间与温度3环境气氛4抗氧剂5酸性物质6填充剂 7助交联剂 影响接枝因素:1接枝单体的含量2引发剂3反应 温度4反应时间5交联或降解的控制6共单体 2填料的性质? 答:(1)几何形态特征:球状(加工流动性):玻璃微珠片状(刚性):云母、滑石粉 (2)粒径小,填充效果好(分散均匀) 粒径表示方法:1.平均粒径() 2.目数(每平方英寸筛网上的筛孔数) 3.比表面积()(3)表面形态与性质:光滑(加工流动性)、粗糙(机械互锁、有大量微孔(有一定互锁作用) 3.填料的分散混合过程? 答:大致分四个过程。<1>使聚合物添加剂粉碎。将聚合物和填料加入到体系中,在外界作用下将大块聚合物和添加剂破碎成较小粒子。 <2>使添加剂渗入到聚合物中。聚合物在剪切热和传导热作用下,降到黏流状时,使速度加快,较小粒子克服聚合物内聚力,渗入到聚合物中。、 <3>分散。较小粒子进一步减小,直到粒子大小,固相粒子逐渐分散。 <4>分布均化。分散固相粒子逐渐混合,直至均匀分散到聚合物中。 5增强纤维种类及各有那些常用的表面处理方法?答:玻璃纤维、碳纤维和植物纤维等。 玻璃纤维的表面处理方法:硅烷偶联剂处理、表面接枝处理、酸碱刻蚀处理。 碳纤维表面处理法:气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法。 植物纤维的表面处理方法:热处理法、碱处理法、改变表面张力法、偶联法、表面接枝法。 7纤维状加工过程易碎问题?措施:1.后期加入纤 维 2.提高熔融温度 3.降低剪切力 8简述制造纤维增强材料片材的常用方法? (1)熔融浸渍法。首先将连续纤维或短切纤维制成毡或针刺毡,经预热与挤出机挤出的热塑性树脂薄层,通过浸渍,冷却固化,最后切割。 (2)悬浮沉积法。将纤维和树脂均匀分布在水中,使纤维釜单丝分散,树脂单粒分散,通过流浆箱和成型网加入絮凝剂,凝聚与水分离形成湿片,通过干燥,黏合,压扎成片材。 (3)静电吸附热压法。将热塑性树脂制成薄膜带电,通过短纤维槽时,纤维吸附在薄膜上,然后压合。(4)液态化床法。将一定粒度粉末树脂放在流动床的孔床上,使其带一定量静电荷,并翻腾是树枝附在接地纤维上通过切断器被切成定长再通过热轧区和冷却区而制成片材。 9影响共混物结构形态的因素? 答:1相容性。相容性越好,聚合物越容易扩散而 达到均匀混合。2配比与黏度的综合影响。(P157. 图4-16)3.内聚能密度。内聚能密度大的聚合物,其分子间作用力大,不易分散,因此在共聚物体系 中更趋于分散相。4制备方法不同的制备方法会产 生不同的形态结构。 10提高共混物相容性的方法? 答:(1)对聚合物进行化学改性(2)加入增溶剂(3) 改善共混加工工艺(4)在共混组分间交联(5)共 溶剂法和IPN法。 12.聚合物的填充效果通过哪几方面评价?为什么 答:1聚合物填充改性的经济效果利用填料实现 聚合物的填充改性,其目的是降低成本改善材料的 某些性能。2填充聚合物的力学性能作为材料使 用强度是应用的基础。3填充聚合物的热性能。 12.无机纳米粒子增韧机理? 答1.刚性无机粒子产生应力集中效应,引发周围树 脂产生微开裂,吸引一定的变形功: 2.刚性粒子存在使基体树脂裂纹扩展受阻和钝化, 终止裂纹继续开裂: 3.填料的微细化,例子比表面积增大,产生微开裂, 吸引更多冲击能量阻止材料的断裂: 6界面结合对力学性能的影响? 界面强度高低,对聚合物各方面的影响显著,最突 出的是力学性能。(1)拉伸强度:在平行于取向方 向,拉伸强度提高。垂直于取向方向时,若纤维与 聚合物结合强度比较好时,则强度提高,否则不提 高。当纤维无取向时,则各同性时,各方向强度均 有所提高。(2)韧性与冲击强度:当纤维自身的强 度小于界面强度与摩擦力之和时,即受到作用时, 纤维发生断裂。此时对其冲击性能不利,当纤维自 身的强度大于两者之和时,则会发生脱出,对冲击 作用有吸收作用,提高其冲击强度。 11层状纳米材料的性能? 答:1.力学性能和耐热性 2.高阻隔特性 3.阻燃性 4.导电功能 5.抗菌功能 6.吸波特性 7.各向异性 14什么是混杂增强、是混杂效应?混杂方式有哪 些? 答:增强聚合物复合材料是由两种或两种以上不同 品种的增强纤维或其他增强材料匹配在一起用于 聚合物二得到的材料。混杂效应:混杂效应是由 于多种纤维货增强材料与树脂基体的相互作用产 应的结果,有正效应和负效应。常见的形式:(1) 纤维——纤维混杂 2)纤维——无机离子混杂增强(3)纤维原位混杂 增强如 4填料体积成体的计算?P76 22配比与黏度的综合影响。(P157.图4-16) 高概率填空题 1充母料的理想横型:1填料核2偶联层3分散层4 增混层填充母料的方法1挤出法2密炼法3造粒法 4 开炼法 1改性的分类:物理改性:共混、填充、增强 化学改性:接枝、交联、嵌段、降解 2交联分为:物理交联:结晶或缠结 化学交联:以化学键形成交联 3化学反应形式:溶液形式,熔融形式(多数) 4熔融态化学反应器:密炼机、螺杆挤出机、高校 连续混合机组 5熔融态化学反应类型:交联、接指、断链、能团 反应 7填料的作用:增量,增强,赋予功能 8填料的种类:1.阻燃性的;2.增大硬度,石英 3. 减小硬度,滑石粉 9填料处理的目的:1.增加与聚合物的相容性 2. 提高界面粘合不产生分离 10常用的表面处理剂:1.表面活性剂 2.偶联剂(钛 酸酯,铝酸酯)3.有机高分子处理剂 4.无机物处 理剂 5.其他 11填充改性交联:1.经济效果 2.力学性能 3.热性 能 4.电性能,光学性能,加工性能 12加入纤维的作用:增强 13增强纤维种类:1.玻璃纤维 2.碳纤维 3…. 14纤维表面处理原则:1.极性相近原则 2.界面酸 碱匹配原则 3.形成界面化学键原则 4.引入可塑 界面原则 17共混改性方法:物理方法:机械共混法,干粉共 混法,熔融共混法,溶液共混法,乳液共混法。 化学方法:共聚-共混法,反应共混法,IPN法 18共混物的形态,结构 1.均相结构 2.非结晶聚 合物构成的多相共混体系 3.两相互锁成交错结构 4.相互贯穿的两相连续结果 5.结晶非结晶聚合物 共混物的形态,结构 19增溶剂类型 1.非反应型增溶剂 2.反应型增溶 剂 3.低分子增溶剂 20热塑性弹性体是由塑料和橡胶构成的,其中塑料 是连续的,橡胶是分散的。 21改善共混物透明性的方法 1.使参与共混的分散 相与连续相折射率相同 2.使共混物分散粒径小于 可见光波长 22在硬质PVC中加氯化PE起增韧改性作用:在软 质PVC中加氯化PE起增塑改性作用 23纳米复合材料的制备方法 1.溶胶-凝胶法 2.原 位聚合法 3.插层法 4.共混法 24共混物的形态首先划分为均相体系和两相体系。 两相体系又分:海-岛与海-海结构

高分子材料与工程_就业前景和社会需求

材料工程类属于理工科类,是研究有机及生物高分子材料的制备、结构、性能和加工应用的 高新技术专业。材料工程科学的形成可以追溯到19世纪30年代,但直到20世纪70年代, 才得到全面的发展。目前高分子材料已被广泛应用于生活、生产、科研和国防等各个领域, 成为我国科学研究的一个重点领域。学生毕业后可以到高分子材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。 由于高分子材料发展十分迅速,所以申请这个专业的人数也稍微偏多,竞争相对激烈。在就业方面可以从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作,就业前景很不错。所以美国大学的录取要求相对别的专业都会有所提高。 高分子材料与工程专业就业前景 当今,高分子材料又向着尖端领域发展,新的特殊性能高分子功能材料不断出现, 前 景十分的广阔?市场对高分子人才的需求也日益增加,无论是在日常化工,还是在高精尖端科技,高分子人才都备受欢迎,高分子材料专业的社会需求一直处于化学、材料类专业的前列?随着国际国内对环境保护的重视,印刷包装领域也在不断改进材料,如环保型印刷材料、环保型包装材料和新型数字印刷材料等都是产业发展方向,相信经过四年的学习,在印刷包装材料领域一定大有可为?高分子材料与工程专业就业前景广阔,高分子材料人才可以在绝大多数 工业领域取得发展,因为需要高分子材料的行业多得超乎你的想像?学任何专业,如果立志于毕业后干本行业,专业课是必须要学好的,另外英语也能成为你的一把利器? 高分子材料与工程专业就业前景之课程介绍 高等数学、大学物理、计算机文化基础及语言、近代化学基础(包括无机、有机、分析化学等)、物理化学、仪器分析、工程力学、高分子化学和物理、材料科学与工程基础、工程制图、化工原理、高分子材料成型加工基础、高分子材料成型机械及模具基础、聚合物 共混改性原理、机械设计基础、机械原理及计算机设计、高分子材料加工新技术、模具工程设计、模具CAD/CAE、聚合物成型机械等. 高分子材料与工程专业就业前景之培养目标 本专业培养德、智、体全面发展,掌握高分子材料合成、加工的基本原理,能在高分子材料的合成、共混改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生 产及经营管理、教学等方面工作,并具有开拓创新精神和竞争能力的高级工程技术人才?高分子材料与工程专业就业前景之就业方向 本专业毕业生的择业面很宽,适应能力强.适合于高分子材料合成与加工、复合材料、橡胶、塑料及纤维制品等的生产企业以及研究单位的新产品研发、生产和管理工作,以及高 等院校的教学和科研.主要面向化工、建材、汽车、石油化工、航天航空、电子、家电、包装以及造船等行业. 高分子材料与工程专业就业前景之市场需求 高分子材料与工程专业为当今国内应用广泛,是研究天然及生物有机高分子材料的 设计、合成、制备以及组成、结构、性能和加工应用的充满活力的材料类学科,其工业和研究体系已经成为国民经济发展的支柱产业.高分子材料与工程专业就业前景是众多专业发 展前景好的专业之一.近年来本科毕业生读研比例均在65%以上,一次就业率均超过95%,毕业生深受国内各行业的青睐;学院注重国际化人才培养,除每年招收部分优秀学生进入学校英才班学习,与国际著名大学进行联合培养以外,还与国外多个知名高校合作,选送优秀本科生 进行联合培养;专业拥有高分子化学实验室、高分子物理实验室、功能高分子实验室和多家企业联合

高分子材料改性作业

天津城市建设学院 《高分子材料改性》结课作业 PVC树脂的共混改性 班级:09级材料化学(2)班 学号:09460219 姓名:张玉锐

PVC树脂的共混改性 摘要: PVC树脂由于具有一定的极性,因此与很多极性聚合物相容性很好,如丁腈橡胶、MBS、ABS及CPE等。PVC与非极性聚合物的相容性不好,共混时可以利用加入增容剂的方法来实现。 关键词: 极性 PVC树脂增容剂相容性

正文: 由于PVC树脂分子链中有大量的极性键C—Cl键,分子之间存在着较大作用力,因此PVC树脂比较坚硬,对外显示一定的脆性;另外,其分子中的C—cl键在受热时,特别是在成型加工时,容易脱去HCl分子,在大分子链中引入不饱和键,这就大大影响了树脂的耐老化性能。20世纪中期以后,人们利用物理共混的方法对PVC树脂进行了大量的改性研究。高聚物共混是一种简便而有效的改性方法。一般说来,将两种或两种以上不同的高聚物共混时,可以制备兼有这些高聚物性质的混合物。 聚氯乙烯(PVC)是最早工业化的塑料品种之一,也是产量较大的一种通用塑料,目前产量仅次于聚乙烯,居第二位。聚氯乙烯由氯乙烯(VC)按自由基历程聚合而得,其化学反应式简示为: nCH 2=CHCl—[CH2一CHC]n。 在工业上,聚氯乙烯可按悬浮聚合、乳液聚合、溶液聚合和本体聚合四种方法生产。 聚氯乙烯的共混改性聚氯乙烯(PVC)是最早工业化的树脂品种之一,目前产量仅次于聚乙烯,居第二位。聚氯乙烯是由氯乙烯单体采用悬浮、乳液、溶液或本体聚合方法按自由基历程聚合而成。分子呈无定形线形结构,无支链。分子中氯原子赋予该聚合物较大的极性与刚性,并具有良好的耐化学性、绝缘性和透光性。加入增塑剂可制得柔软曲折的聚氯乙烯制品。 聚氯乙烯的共混是聚合物之间的混合,共混体系的热力学是最重要的影响因素,也就是相容性问题。聚氯乙烯共混改性的应用主要有两种,一种是用作PVC加工助剂,另一种是用作PVC抗冲击改性剂。 (1)PVC加工助剂 ①烯酸酯类聚合物如聚丙烯酸酯类聚甲基丙烯酸酯类,或以MMA为主的共聚物。 ②苯乙烯、甲基丙烯酸酯或丙烯酸酯共聚物。 ③ABS(丙烯腈/丁二烯/苯乙烯)树脂,其苯乙烯含量较高。 ④SAN(苯乙烯/丙烯腈)树脂,苯乙烯含量较高者。 ⑤聚o—甲基苯乙烯(PAMS),线性低分子量均聚物,相容性虽比MMA为主的共聚物差,但价格便宜,另外它还有润滑作用。 (2)PVC抗冲击改性剂 ①氯化聚乙烯(CPE)。采用高密度聚乙烯进行氯化,C1的含量为30%一42%。一般采用PVC与CPE共混;也有将PVC接枝到CPE上。共混物的耐候性好,适于屋子外墙挡雨板,窗框,异型材等。 ②乙烯—醋酸乙烯共聚物(EVA)。PVC/EVA共混物耐低温性能、耐候性及保色性好。此共混物也有粉料与粒料两种。 ③ABS(丙烯腈-丁二烯—苯乙烯共聚物)。一般选用丁二烯含量较高者即低模量ABS。 ④MBS(甲基丙烯酸甲酯—了二烯—苯乙烯共聚物)。制法是将MMA及S接枝到聚丁二烯乳液上或丁苯乳液上。 ⑤MABS(甲基丙烯酸甲酯—丙烯腈—丁二烯—苯乙烯共聚物)MABS可以是MBS与ABS 的共混物,也可以将MMA,AN及S在聚丁二烯或了苯乳液中进行接枝。 ⑥丙烯酸酯类聚合物。通常是将MMA接枝到聚丙烯酸丁酯上或聚丙烯酸异辛酯上,是一种弹性体。这类产品加工性好,耐候性好,与硬PVC片共混,可制得玻璃样透明片,

2020版《高分子材料改性》

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 高分子材料改性是一门要求综合运用高分子材料学科的各种知识课程,具有综合性和实践性较强,及知识前沿性的特点。课程从高分子材料改性的基本原理出发,系统介绍高分子材料的化学改性、填充改性和共混改性等改性方法,展示国内外高分子材料改性研究和应用的新成果。通过课程学习,使学生掌握高分子材料改性的基本概念、改性原理、改性工艺及最新研究进展,能够运用基本方法来设计、制备高分子新材料,解决改性高分子材料实践中遇到的实际问题。 “Modification of polymer materials” requires the comprehensive application of various knowledge of polymer materials. It has the characteristics of comprehensiveness, practicality and knowledge frontier. Starting from the basic principle of modification, this course will systematically introduce the chemical modification, filling modification and blending modification of polymer materials, and show the new achievements of research and application. Through seriously studying the content of this course,students c an systematically and deeply understand the basic concept, principle, modification technology and the latest research progress. More importantly, students will be able to design and prepare new polymer materials by using basic methods, and solve the practical problems in the practice of modified polymer materials. 2.设计思路: 高分子材料因其优越的综合性能、相对简便的成型工艺而得到广泛的应用,然而也有诸多需要克服的缺点,通过材料改性可以使高分子材料的性能大幅度提高,或者被赋予新的功能,进一步拓宽高分子材料的应用领域。通过阐述高分子材料化学改性、填充改性及共混改性的原理、方法和技术,课程不仅讲述各种改性方法的基本原理,更重要的是传授如何运用这些技术手段对已有高分子材料进行改性,可直接指导以后的生产和科研工作,促进高分子材料科学与技术的发展。高分子改性的方法多种多样,各种不同的改性方法直接相互关联、相互依托,这不仅体现在理论范畴,而且体现在应用领域。 3. 课程与其他课程的关系: 先修课程:高分子化学,高分子物理。并行课程:高分子成型加工。高分子材料改性是

SiO2表面改性机理及其对高分子材料性能的影响

SiO2表面改性机理及其对高分子材料性能的影响 (高材11201:瞿启凡;指导老师:肖伟) 该文简要介绍了表面改性机理!对其作为填料改性高分子材料的研究进行了梳理!针对橡胶、塑料、涂料及胶黏剂等进行了一一阐述!并对未来研究内容及方向做出展望。 关键词:刚性SiO2,表面改性,填充,高分子材料 高分子材料具有结构独特易于改性和加工的特点,具有其他材料无可比拟不可取代的许多优异性能。促使其在国民经济建设、国防及科学技术应用等领域具有不可替代的优势,已逐渐发展成为人们生产生活中不可或缺的材料之一。然而,随着时代的发展和科学技术的进步,对高分子材料性能方面提出了更高要求。因此,对高分子材料性能方面的改良研究越来越多,如通过调整高分子材料内在分子结构与其他有机高分子材料进行共混以及采用无机刚性粉体SiO2作为添加剂等手段。其中,通过采用刚性无机材料(如炭黑黏土等)作为添加剂,可以在很大程度上提高高分子材料性能,已成为学者们争相研究的热点。 刚性无机材料具有很高化学稳定性和热稳定性、无毒、无刺激、使用安全、在自然界中分布广泛、对高分子材料改性有着重要作用,但无机刚性粉体SiO2颗粒表面具有很强极性,是典型亲水性材料,与亲油高分子材料物性间存在巨大差异,难以在有机基体中均匀分散,另外作为添加剂颗粒尺寸通常较小甚至为纳米颗粒,颗粒表面氢键的存在极大表面能使其极易发生团聚,以聚集体形式存在,分散效果差。苏瑞彩也从内外表面原子所受力场不同的角度分析了团聚机理,即处于晶体内部原子受力受到来自周围对称价键力和稍远原子的范德华力、受力对称,价键饱和,而表面原子受力来自其临近内部原子的非对称价键力和其他原子的远程范德华力,受力不对称,价键不饱和,易与外界原子键合形成大颗粒团聚体。的这些特性使其极不易分散。因此,要发挥无机刚性粉体SiO2独特作用,必须改善其在高分子材料基体中的分散效果,改善与高分子材料的亲和性、相容性,提高其加工流动性,增强两相间界面结合力,以此来增加其填充量,提高高分子材料性能。 1.SiO2表面改性机理 SiO2表面亲水疏油,在有机质中难以均匀分散,与有机体间结合力差,因此使用前必须对其进行表面改性。SiO2颗粒表面含有大量羟基基团使其呈现为亲水性。该结果已经被大量文献中未改性SiO2红外光谱分析结果中验证。 针对SiO2颗粒表面特性,其在液相中改性机理有3种"即静电作用机理、吸附层媒介作用机理以及化学键键合作用机理! 1.1静电作用机理和吸附层媒介机理 静电作用机理即利用化学键—离子键形成的本质,利用SiO2 颗粒表面具有羟基基团,根据相反电荷在颗粒表面的相互吸引作用完成包覆。其本质是利用静电作用,阴阳离子之间可以作用在任何方向上,方向性差!

对高分子材料改性的认识

对高分子材料改性的认识 高分子材料(macromolecular material)是以高分子化合物为基础的一大类材料的总称,是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。高分子材料在我们生活的用途很广,但纯的高分子材料的品种较少而且性能并不能完全满足人们的需要,对高分子材料的改性增加了高分子材料的品种,完善了高分子材料的性能,使高分子材料尽可能的满足人们的需要。 高分子材料的改性是通过物理、机械和化学等作用使高分子材料原有性能得到改善。改性过程中既可发生物理变化,也可发生化学变化。高分子材料的改性一般分为共混改性;化学改性;表面改性;填充与纤维增强改性。高分子材料改性的依据是高分子材料的结构决定了高分子材料的性能。如果某种高分子材料无法满足实际需求,可以通过对其结构的变化,使其性能发生改变进而满足实际需求。所以研究高分子材料的结构对其性能的影响,对延伸材料的性能有着重要的意义。 共混改性的方法一般有物理共混法;共聚-共混法,互穿高分子网络法。共混改性重点是两种高分子材料的相容性,如果相容性较好,则共混物的性能结合了两种材料的优点,两种材料的缺点得到了改善。例如将超高分子聚乙烯(UHMWPE)掺入聚丙烯(PP)中以提高PP的冲击强度。PP材料由于分子链中有甲基的存在,导致分子链比较刚性,而且PP的分子链比较规整,导致PP 材料的结晶性较好,刚性较好但PP材料较脆,冲击强度较低。而UHMWPE颗粒的加入,使PP材料中出现了应力集中物,当共混的材料受到应力时,能较好的引发应力集中产生银纹,分散共混材料受到的应力,改善PP材料的冲击强度。但影响这种共混材料的因素有UHMWPE颗粒的大小,以及UHMWPE掺杂进去的量和UHMWPE颗粒的分布情况。一般情况掺杂物的颗粒越小,分布越均匀,掺杂量适中则共混材料的性能越好。互穿高分子网络法一般是两种或多种聚合物在聚合反应时,形成的共混物,这种共混材料的分散度很均匀,材料的性能很好,但是对反应的要求较高,成本较高,用途面较为狭窄。但这是一种新型的高分子材料共混改性方式,值得深入研究,改进反应条件,扩大应用面。

相关文档
最新文档