专题突破——极坐标与参数方程专题
极坐标与参数方程考点汇总

专题一极坐标与参数方程考点整合一、极坐标知识点一极坐标系1.极坐标系:如图所示,在平面内取一个定点O,叫作;自极点O引一条射线Ox,叫作;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.极坐标:设M是平面内一点,极点O与点M的距离|OM|叫作点M的,记为ρ;以极轴Ox 为始边,射线OM为终边的角xOM叫作点M的,记为θ.有序数对(ρ,θ)叫作点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.点与极坐标的关系:一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.特别地,极点O的坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.4.极坐标与直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.(2)互化公式:如图所示,设M是坐标系平面内任意一点,它的直角坐标系是(x,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:温馨提示;(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性知识点二 常见曲线的极坐标方程.二、参数方程知识点一 参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫作这条曲线的参数方程,联系变数x ,y 的变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程. 2.参数方程和普通方程的变化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.(3)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.易误提醒 在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性. 知识点二 常见曲线的参数方程 1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的普通方程是y -y 0=tan_α(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为 (t 为参数),若点P 对于的参数为t ,则有||PM = . 2.圆的参数方程如图所示,设圆O 的半径为r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,设M (x ,y ),则⎩⎪⎨⎪⎧x =r cos θy =r sin θ(θ为参数).这就是圆心在原点O ,半径为r 的圆的参数方程.其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.圆心为(a ,b ),半径为r 的圆的普通方程是(x -a )2+(y -b )2=r 2,它的参数方程为: . 3.椭圆的参数方程中心在原点O ,焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),其参数方程为 (φ为参数).其中参数φ称为离心角;中心在原点O ,焦点在y 轴上的椭圆的标准方程是y 2a 2+x 2b2=1(a >b >0),其参数方程为⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ(φ为参数),其中参数φ仍为离心角,通常规定参数φ的范围为φ∈[0,2π). 温馨提示 (1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x 、y 有范围限制,要标出x 、y 的取值范围.典例分析一、t 的几何意义【例1】.在极坐标系中,曲线C 的方程为2cos29ρθ=,点6P π⎛⎫⎪⎝⎭.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系.(1)求直线OP 的参数方程的标准式和曲线C 的直角坐标方程; (2)若直线OP 与曲线C 交于A 、B 两点,求11PA PB+的值.【变式1】在直角坐标系xOy 中,直线l的参数方程为2{x t y =-+=(t 为参数),若以该直角坐标系的原点O 为极点, x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ+=. (Ⅰ)求直线l 与曲线C 的普通方程;(Ⅱ)已知直线l 与曲线C 交于,A B 两点,设()2,0M -,求11MA MB-的值.二、ρ的几何意义【例2】(2011新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为:2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【变式2】在平面直角坐标系中,曲线122:x cos C y sin αα=+⎧⎨=⎩(α为参数)经伸缩变换2x x y y⎧=⎪⎨⎪='⎩'后的曲线为2C ,以坐标原点O 为极点, x 轴非负半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程; (2),A B 是曲线2C 上两点,且3AOB π∠=,求OA OB +的取值范围三、面积【例3】.在直角坐标系xOy 中,曲线C 的参数方程是35cos 35sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程; (2)设12:,:,63l l ππθθ==,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB的面积.【变式3】【2015高考新课标1,文23】选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C M N ∆ 的面积. 四、交点【例4】已知直线l 的参数方程为:2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=-.(Ⅰ)求曲线C 的参数方程; (Ⅱ)当4πα=时,求直线l 与曲线C 交点的极坐标.【变式4】【2013课标全国Ⅰ,文23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).五、轨迹【例5】(2013全国Ⅱ卷)已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【变式5】在直角坐标系xOy 中,已知圆C : 2{2x cos y sin θθ== (θ为参数),点P 在直线l :40x y +-=上,以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系.(I )求圆C 和直线l 的极坐标方程;(II )射线OP 交圆C 于R ,点Q 在射线OP 上,且满足2OP OR OQ =⋅,求Q 点轨迹的极坐标方程六、参数方程的应用【例6】(2014课表全国Ⅰ)已知曲线22:149x y C +=,直线2:22x t l y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【变式6】(2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线1C 的参数方程为1:sin x C y αα⎧=⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin()4πρθ+=。
极坐标与参数方程专题复习

OM的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为
点M的极坐标.ρ称为点M的 极径 ,θ称为点M的极角
.
一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极
点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的
例、将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原
来的2倍,得到曲线C.求曲线C的标准方程;
2.极坐标系
(1)极坐标与极坐标系的概念
在平面内取一个定点O,自点O引一条射线Ox,同时确定一个长
度单位和计算角度的正方向(通常取逆时针方向),这样就建立了
一个极坐标系.点O称为极点,射线Ox称为极轴.
0,直线 l 的参数方程为
(t 为参数),射线 OM 的极坐标方程
y=t
3π
为 θ= 4 .求圆 C 和直线 l 的极坐标方程;
题型三、距离的最值: 用“参数法”
1.曲线上的点到直线距离的最值问题
2.点与点的最值问题
“参数法”:设点---套公式--三角辅助角
①设点: 设点的坐标,用该点在所在曲线的的参数 方程来设
直线
圆
普通方程
参数方程
y-y0=tan α(x-x0)
x=x0+tcos α,
(t 为参数)
y=y0+tsin α
(x-a)2+(y-b)2=r2
2
椭圆
抛物线
2
x y
2+ 2=1(a>b>0)
a b
y2=2px(p>0)
ቊ
= +
(为参数)
= +
极坐标系与参数方程专题

练习题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、选择题1.在极坐标系中,点)65,2(π到直线4)3sin(=-πθρ的距离为( ) A .1 B .2 C .3 D .4 2.在极坐标系中,设圆C :4cos ρθ=与直线:(R)4l πθρ=∈交于A ,B 两点,求以AB 为直径的圆的极坐标方程为( ) A .22sin()4πρθ=+B .22sin()4πρθ=-C .22cos()4πρθ=+D .22cos()4πρθ=-3.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .221x y +=或1y = B .1x =C .221x y +=或1x = D .1y =4.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为()A .2cos ρθ=B .2sin ρθ=C .2cos ρθ=-D .2sin ρθ=-5.在极坐标中,与圆4sin ρθ=相切的一条直线方程为( )A .sin 2ρθ=B .cos 2ρθ=C .cos 4ρθ=D .cos 4ρθ=-6.参数方程2cos (3sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程4sin ρθ=所表示的图形分别是( )(A )圆和直线 (B )直线和直线 (C )椭圆和直线 (D )椭圆和圆 评卷人 得分二、填空题7.在极坐标系中,经过点)3,4(π且与极轴垂直的直线的极坐标方程为 .8.(坐标系与参数方程选做题)极坐标系下,直线2)4cos(=-πθρ与圆2=ρ的公共点个数是________;9.极坐标系中,圆θρsin 4=的圆心到直线)(3R ∈=θπθ 的距离是 .10.已知圆C 的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标为 .三、解答题(题型注释)11.在平面直角坐标系中,已知直线l 过点(),12P - ,倾斜角6πα=,再以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为3ρ=. (Ⅰ)写出直线l 的参数方程和曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 分别交于、M N 两点,求PM PN ⋅的值.12.在极坐标系中,已知曲线)4sin(22:πθρ-=C ,P 为曲线C 上的动点,定点)4,1(πQ .(1)将曲线C 的方程化成直角坐标方程,并说明它是什么曲线; (2)求P 、Q 两点的最短距离.13.在平面直角坐标系xOy 中,直线l 经过点(10)A -,,其倾斜角是α,以原点O 为极点,以x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程是26cos 5ρρθ=-.(Ⅰ)若直线l 和曲线C 有公共点,求倾斜角α的取值范围; (Ⅱ)设()B x y ,为曲线C 任意一点,求3x y +的取值范围.14.在直角坐标系xoy 中,直线l 的参数方程为212242x ty t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数).再以原点为极点,以x 正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy 有相同的长度单位.在该极坐标系中圆C 的方程为4sin ρθ=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点M 的坐标为()2,1-,求MA MB +的值.15.在极坐标系中,已知点A 的极坐标为(22,)4π-,圆E 的极坐标方程为4cos 4sin ρθθ=+,试判断点A 和圆E 的位置关系16.已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).17.在平面直角坐标系xoy 中,已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),将1C 上的所有点的横坐标、纵坐标分别伸长为原来的2和2倍后得到曲线2C ,以平面直角坐标系xoy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线():2cos sin 4l ρθθ+=.(1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程;(2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值.18.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线12cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数),28cos :23sin x Cy θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)将12,C C 的方程化为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2πα=,Q 为2C 上的动点,求PQ 中点M 到直线l :cos 33πρθ⎛⎫-= ⎪⎝⎭的距离的最大值.19.在直角坐标系中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.20.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为2,4π⎛⎫⎪⎝⎭,直线的极坐标方程为cos 4a πρθ⎛⎫-= ⎪⎝⎭,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.21.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为()2sincos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为222242x ty t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB ⋅=,求a 的值.22.在直角坐标系xoy 中,直线l 的参数方程为122322x t y t ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),若以直角极坐标方程为2cos()4πρθ=-.(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于,A B 两点,求AB 的距离.23.已知在直角坐标系xOy 中,曲线t t y t x C (,233,211:1⎪⎪⎩⎪⎪⎨⎧+-=+-=为参数,)2≠t ,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线θρsin 32:2=C ,曲线θρcos 2:3=C . (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 2与C 1相交于点A ,C 3与C 1相交于点B ,求||AB 的值.24.在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程; (Ⅱ)射线4:πθ=OM 与圆C 的交点为O 、P 两点,求P 点的极坐标.25.已知曲线C 的参数方程是()cos sin x y m ααα=⎧⎨=+⎩为参数,直线l 的参数方程为()5152545x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数, (1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于,P Q 两点,且455PQ =,求实数m 的值。
专题突破——极坐标与参数方程专题

极坐标与参数方程专题(1)——直线参数t 几何意义的应用1.在平面直角坐标系xoy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 的参数方程为:(t 为参数),两曲线相交于M ,N 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程;(Ⅱ)若P (﹣2,﹣4),求|PM |+|PN |的值.2.在直角坐标系xOy 中,直线l 过点P (1,﹣2),倾斜角为.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cosθ,直线l 与曲线C 交于A ,B 两点. (Ⅰ)求直线l 的参数方程(设参数为t )和曲线C 的普通方程;(Ⅱ)求的值.3.在极坐标系中,已知圆C 的圆心C (,),半径r=.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)若α∈[0,),直线l 的参数方程为(t 为参数),直线l 交圆C 于A 、B 两点,求弦长|AB |的取值范围.4.(2018•新课标Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为,(θ为参数),直线l 的参数方程为,(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5.(2016年全国II )在直角坐标系xOy 中,圆C 的方程为()22625x y ++=(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,AB =求l 的斜率.极坐标与参数方程专题(2)——极坐标系下ρ意义的应用1.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.2.在直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(α为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l和曲线C的极坐标方程;(Ⅱ)已知直线l上一点M的极坐标为(2,θ),其中.射线OM与曲线C交于不同于极点的点N,求|MN|的值.3.已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.4.已知曲线C的极坐标方程为,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.(1)求曲线C的普通方程(2)A、B为曲线C上两个点,若OA⊥OB,求的值.5.(2015•新课标Ⅱ)在直角坐标系xOy 中,曲线C 1:(t 为参数,t ≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=2cosθ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.6.(2017新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.7.(2011新课标)在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P点满足2OP OM =uu u v uuu v,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .8.(2015新课标Ⅰ)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.极坐标与参数方程专题(3)——求点到直线的距离1.(2017新课标Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .2.(2016年全国III )在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3.(2015陕西)在直角坐标系xOy 中,直线l的参数方程为1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系中,以O 为极点,x 轴为正半轴建立极坐标系,取相同的长度单位,若曲线C 1的极坐标方程为ρsin (θ﹣)=3,曲线C 2的参数方程为(θ为参数).(1)将曲线C 1的极坐标方程化为直角方程,C 2的参数方程化为普通方程;(2)设P 是曲线C 1上任一点,Q 是曲线C 2上任一点,求|PQ |的最小值.极坐标与参数方程专题(4)——求轨迹方程1.(2018全国卷Ⅲ)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.2.(2017新课标Ⅲ)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt=+⎧⎨=⎩ (t 为参数),直线2l 的参数方程为2x m m y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.3.(2017新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.4.(2013新课标Ⅱ)已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数 上,对应参数分别为βα=与2βα=(02απ<<)M 为PQ 的中点。
极坐标与参数方程专题

极坐标与参数方程专题1.已知曲线1C 的直角坐标方程1422=+y x ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,P 是曲线1C 上一点,∠xOP=α,)0(πα≤≤,将点P 绕点O 逆时针旋转角α后得到点Q, OQ OM 2=,OM 点M 的轨迹是曲线2C 。
(1)求曲线2C 的极坐标方程;(2)求|OM |的取值范围。
2.在直角坐标平面内,以坐标原点O 为极点,X 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是θρcos 4=,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 21233(t 是参数)。
(1)过极点作直线l 的垂线,垂足为点P ,求P 的极坐标;(2)若点M,N 分别为曲线C 和直线l 上的动点,求|MN|的最小值。
3.已知直线l 的参数方程为⎩⎨⎧+=+-=ty tx 21(t 是参数),在直角坐标系xOy 中,以O 为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为6)4sin(242--=πθρ。
(1)求直线l 与圆C 的直角坐标方程;x-y+3=0 (x+2)2+(y-2)2=2 (2)设P ,Q 为直线l 与圆C 的两个交点,A (-1,2),求|PA|+|AQ|的值。
4.已知曲线1C 的参数方程为⎪⎪⎩⎪⎪⎨⎧-=-+=t t y tt x 12122(t 是参数),以坐标原点为极点,x 轴正半轴为极轴,单位长度保持不变,建立极坐标系,直线l 的极坐标方程为2)4sin(=+πθρ。
(1)试求曲线1C 和直线l 的普通方程;y 2=x x+y=2 (2)求出它们的公共点的极坐标。
5.长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴正半轴上滑动,BA =3PA ,点P 的轨迹为曲线C ,(1)以直线AB 的倾斜角α为参数,求曲线C 的参数方程; (2)求点P 到点D(0,-2)距离的最大值。
6.已知某圆的极坐标方程为6)4cos(242=+--πθρρ (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x,y )在该圆上,求x+y 的最大值和最小值.7.已知直线l 的参数方程为⎩⎨⎧+-=-=ty tx 23,t 为参数),以坐标原点o 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为)3cos(4πθρ-= (1)将直线l 的参数方程化为普通方程,将圆C 的极坐标方程化为直角坐标方程。
专题:极坐标与参数方程知识点及对应例题

极坐标及参数方程一、极坐标知识点 1.极坐标系的概念:2.有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 3.极坐标与直角坐标的互化: (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合 ③两种坐标系中取相同的长度单位. (2)互化公式二、参数方程知识点(1)圆222)()(r b y a x =-+-的参数方程可表示为 )(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .(2)椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .(3)经过点),(o o O y x M ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.sin ,cos o o ααt y y t x x (t 为参数).三、点到直线的距离公式、直线与圆、圆与圆位置关系 极坐标方程典型例题1.点()22-,的极坐标为 。
2.已知圆C :22(1)(3)1x y ++-=,则圆心C 的极坐标为_______(0,02)ρθπ>≤<3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 5.极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆6.极点到直线()cos sin 3ρθθ+________ 。
7.在极坐标系中,点3(2,)2π到直线l :3cos 4sin 3ρθρθ-=的距离为 .8.在极坐标系中,点π(1,)2P 到曲线π3:cos()242l ρθ+=上的点的最短距离为 .9.已知直线4sin cos :=-θρθρl ,圆θρcos 4:=C ,则直线l 与圆C 的位置关系是________.(相交或相切或相离?)10.在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a 的值。
高考数学极坐标及参数方程专题

高考数学极坐标及参数方程专题1.设(,)P x y 是曲线(θ为参数,02θπ≤≤)上任意一点, (1)将曲线化为普通方程;(2)求的取值范围.2.知曲线1C 的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为。
(1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥, 02θπ≤<)。
3.已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数)经过伸缩变换32x x y y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程; (2)若点M 在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.4.在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线2C . (1)求2C 的方程(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .⎩⎨⎧=+-=θθsin ,cos 2y x x y5.在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。
(1)求1C ,2C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN V 的面积6.极坐标系中,已知射线1C :(0)6πθρ=≥动圆2C :220002cos 40()x x x R ρρθ-+-=∈. (1)求1C ,2C 的直角坐标方程;(2)若射线1C 与动圆2C 相交于M 与N 两个不同点,求0x 的取值范围.7.在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数) (1)求过椭圆的右焦点,且与直线42(3x t t y t=-⎧⎨=-⎩为参数)平行的直线l 的普通方程。
艺术生高考数学专题讲义考点60极坐标与参数方程

艺术生高考数学专题讲义考点60极坐标与参数方程一、极坐标与参数方程的基本概念及性质1.极坐标:在平面直角坐标系中,以极轴为基准,通过极径和极角来确定一个点的坐标。
极坐标中,点的坐标表示为(r,θ),其中r为极径,θ为极角。
2.参数方程:用一个参数t表示自变量,由参数方程可以将二维平面上的点的坐标表示为一对关于参数t的函数。
一般形式为{x=f(t),y=g(t)}。
二、极坐标和参数方程的转化1. 极坐标转参数方程:通过极坐标的关系式,将r和θ用参数t表示,并转化为参数方程。
例如,直角坐标系中的点{(x,y)}可以用极坐标{(r,θ)}表示,其中x=r cosθ,y=r sinθ。
将x和y分别用参数t表示,可得到参数方程{x=f(t), y=g(t)}。
2. 参数方程转极坐标:反过来,将参数方程中的x和y分别转化为极坐标中的r和θ。
例如,参数方程{x=f(t), y=g(t)}可以表示为极坐标{(r, θ)},其中r²=f²(t)+g²(t),tanθ=g(t)/f(t)。
1.圆的极坐标和参数方程:极坐标:r=a;参数方程:{x=a cosθ, y=a sinθ}。
2.直线的极坐标和参数方程:极坐标:θ=α;参数方程:{x=a sec(θ-α), y=a tan(θ-α)}。
3.椭圆的极坐标和参数方程:极坐标:r=a√(1-ε²cos²θ);参数方程:{x=a cosθ, y=b sinθ}。
4.渐近线的极坐标和参数方程:极坐标:θ=π±α;参数方程:{x=a cos(θ±α), y=a sin(θ±α)}。
四、极坐标与参数方程的应用1.曲线的表示:极坐标和参数方程可以用来表示一些特殊的曲线,如圆、椭圆、双曲线等。
通过改变参数的取值范围和数值,可以得到不同形状的曲线。
2.确定曲线的方程:已知一些特征点的极坐标或参数方程,可以借助与直角坐标系的关系,确定曲线的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标与参数方程专题(1)——直线参数t几何意义的应用1.(2018•银川三模)在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:(t为参数),两曲线相交于M,N两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若P(﹣2,﹣4),求|PM|+|PN|的值.解:(Ⅰ)根据x=ρcosθ、y=ρsinθ,求得曲线C的直角坐标方程为y2=4x,用代入法消去参数求得直线l的普通方程x﹣y﹣2=0.(Ⅱ)直线l的参数方程为:(t为参数),代入y2=4x,得到,设M,N对应的参数分别为t1,t2,则t1+t2=12,t1•t2=48,∴|PM|+|PN|=|t1+t2|=.2.(2018•乐山二模)已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数),点A的极坐标为(,),设直线l与圆C交于点P、Q两点.(1)写出圆C的直角坐标方程;(2)求|AP|•|AQ|的值.解:(1)圆C的极坐标方程为ρ=2cosθ 即ρ2=2ρcosθ,即(x﹣1)2+y2=1,表示以C(1,0)为圆心、半径等于1的圆.(2)∵点A的直角坐标为(,),∴点A在直线(t为参数)上.把直线的参数方程代入曲线C的方程可得t2+t﹣=0.由韦达定理可得t1•t2=﹣<0,根据参数的几何意义可得|AP|•|AQ|=|t1•t2|=.3.(2018•西宁模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,C的极坐标方程为ρ=4sin(θ﹣).(I)求直线l和C的普通方程;(II)直线l与C有两个公共点A、B,定点P(2,﹣),求||PA|﹣|PB||的值.解:(I)直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,所以:直线l的普通方程为:,因为圆C的极坐标方程为为ρ=4sin(θ﹣),所以圆C的普通方程:.(II)直线l:的参数方程为:(t为参数),代入圆C2的普通方程:消去x、y整理得:t2﹣9t+17=0,t1+t2=9,t1t2=17,则:||PA|﹣|PB||=,=.4.(2018•内江三模)在直角坐标系xOy中,直线l过点P(1,﹣2),倾斜角为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l与曲线C交于A,B 两点.(Ⅰ)求直线l的参数方程(设参数为t)和曲线C的普通方程;(Ⅱ)求的值.解:(Ⅰ)∵直线l过点P(1,﹣2),倾斜角为.∴直线l以t为参数的参数方程为,(t为参数)…(3分)∵曲线C的极坐标方程为ρ=4cosθ.∴曲线C的普通方程为(x﹣2)2+y2=4.…(5分)(Ⅱ)将直线l的参数方程,(t为参数)代入曲线C的普通方程(x﹣2)2+y2=4,得,…(6分)设A,B两点对应的参数为t1,t2,∵点P在曲线C的左下方,∴|PA|=t1,|PB|=t2,…(8分)∴===3.…(10分)5.(2018•上饶三模)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,即x2+y2=4x,所以圆C的直角坐标方程为(x﹣2)2+y2=4,直线l过点P(1,0),且倾斜角为α,所以直线l的参数方程为(t为参数).(2)将代入(x﹣2)2+y2=4,得t2﹣2tcosα﹣3=0,△=(2tcosα)2+12>0,设A,B两点对应的参数分别为t1,t2,则,=因为cosα∈[﹣1,1],所以的最大值为,最小值为.6.(2018•武昌区校级模拟)以直角坐标系的原点O为极点,以x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为(t为参数,0≤α<π),曲线C的极坐标方程为ρcos2θ=4sinθ.(1)若,求直线l的普通方程和曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当α变化时,求|AB|的最小值.解:(1)当时,由直线l的参数方程消去t得,即直线l的普通方程为;因为曲线过极点,由ρcos2θ=4sinθ,得(ρcosθ)2=4ρsinθ,所以曲线C的直角坐标方程为x2=4y.(2)将直线l的参数方程代入x2=4y,得t2cos2α﹣4tsinα﹣8=0,由题意知,设A,B两点对应的参数分别为t1,t2,则,,∴==.∵,cos2α∈(0,1],,当cos2α=1,即α=0时,|AB|的最小值为.7.(2018•洛阳一模)在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.解:(Ⅰ)∵C(,)的直角坐标为(1,1),∴圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=3.化为极坐标方程是ρ2﹣2ρ(cosθ+sinθ)﹣1=0 …(5分)(Ⅱ)将代入圆C的直角坐标方程(x﹣1)2+(y﹣1)2=3,得(1+tcosα)2+(1+tsinα)2=3,即t2+2t(cosα+sinα)﹣1=0.∴t1+t2=﹣2(cosα+sinα),t1•t2=﹣1.∴|AB|=|t1﹣t2|==2.∵α∈[0,),∴2α∈[0,),∴2≤|AB|<2.即弦长|AB|的取值范围是[2,2)…(10分)8.(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,①当直线的斜率不存时,x=1.②当直线的斜率存在时,,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.9.(2018•合肥二模)已知过点P(0,﹣1)的直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2asinθ﹣ρcos2θ=0(a>0).(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.解(Ⅰ)曲线C的方程为2asinθ﹣ρcos2θ=0(a>0).∴2aρsinθ﹣ρ2cos2θ=0.即x2=2ay(a>0).(Ⅱ)将代入x2=2ay,得,得.∵a>0,∴解①得.∵|PM|,|MN|,|PN|成等比数列,∴|MN|2=|PM|•|PN|,即,∴,即,解得a=0或.∵,∴.10.(2018•芜湖模拟)在平面直角坐标系xOy中,曲线C1过点P(a,1),其参数方程为(t为参数,a∈R),以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρcos2θ+2cosθ﹣ρ=0.(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;(2)已知曲线C1和曲线C2交于A,B两点(P在A,B之间),且|PA|=2|PB|,求实数a的值.解:(1)∵曲线C1过点P(a,1),其参数方程为(t为参数,a∈R),消参得曲线C1的普通方程为x+y﹣a﹣1=0,∵曲线C2的极坐标方程为ρcos2θ+2cosθ﹣ρ=0.两边同乘ρ得ρ2cos2θ+2ρcosθ﹣ρ2=0,即y2=2x.………(5分)(2)将曲线C1的参数方程代入曲线C2:y2=2x,得+2+1﹣2a=0,设A,B对应的参数为t1,t2,由题意得|t1|=2|t2|,且P在A,B之间,则t1=﹣2t2,∴,解得a=.………(10分)11.(2018•深圳一模)在直角坐标系xOy中,直线/的参数方程为(t为参数).在以O为极点、x轴的正半轴为极轴的极坐标系中,曲线C的方程为ρcos2θ+8cosθ﹣ρ=0(I)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(a,1),设直线l与曲线C的两个交点为A,B,若|PA|=3|PB|.求a的值.解:(Ⅰ)直角坐标系xOy中,直线/的参数方程为(t为参数).转化为直角坐标方程为:4x﹣3y﹣4a+3=0.曲线C的方程为ρcos2θ+8cosθ﹣ρ=0,转化为直角坐标方程为:y2=8x.(Ⅱ)设A、B的两个参数为t1和t2,则:,整理得:,所以:.由,解得:.由|PA|=3|PB|.则:t1=3t2或t1=﹣3t2,当t1=3t2时,,解得:.当t1=﹣3t2时,,解得:.故:.极坐标与参数方程专题(2)——极坐标系下ρ意义的应用1.(2018•顺德区一模)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.解:(Ⅰ)曲线C1的参数方程为(α为参数),转化为直角坐标方程为:x2+y2=1,曲线C1经过坐标变换后得到的轨迹为曲线C2.即:,故C2的直角坐标方程为:.转化为极坐标方程为:.(Ⅱ)曲线C1的参数方程为(α为参数),转化为极坐标方程为ρ1=1,由题意得到:A(1,),将B(ρ,)代入坐标方程:.得到,则:|AB|=.2.(2018•内江一模)在直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C 的参数方程为(α为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l和曲线C的极坐标方程;(Ⅱ)已知直线l上一点M的极坐标为(2,θ),其中.射线OM与曲线C交于不同于极点的点N,求|MN|的值.解:(Ⅰ)直线l的参数方程为(t为参数),直线的普通方程为,极坐标方程为.曲线C的普通方程为,极坐标方程为…(5分)(Ⅱ)∵点M在直线l上,且点M的极坐标为(2,θ)∴,∵∴,∴射线OM的极坐标方程为.联立,解得ρ=3.∴|MN|=|ρN﹣ρM|=1.3.(2016•晋中一模)已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.解:(1)线C1:x+y=和C2:(φ为参数),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,因为x=ρcosθ,y=ρsinθ,所以C1:,即,所以;C2的普通方程为,所以其极坐标方程为,即.(2)由题意M(,0),N(0,1),所以P(),所以射线OP的极坐标方程为:,把代入C1得到ρ1=1,P(1,);把代入C2得到ρ2=2,Q(2,),所以|PQ|=|ρ2﹣ρ1|=1,即P,Q两点间的距离为1.4.(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.5.(2018•城关区校级模拟)已知曲线C的极坐标方程为,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.(1)求曲线C的普通方程;(2)A、B为曲线C上两个点,若OA⊥OB,求的值.解:(1)由,得ρ2cos2θ+9ρ2sin2θ=9,将x=ρcosθ,y=ρsinθ代入,得到曲线C的普通方程是.…(5分)(2)因为,所以,由OA⊥OB,设A(ρ1,α),则B点的坐标可设为,所以===.…(10分)6.(2018•衡阳二模)在直角坐标系xOy中,曲线C的参数方程为(φ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B为C上两点,且OA⊥OB,设射线OA:θ=α,其中0<α<.(1)求曲线C的极坐标方程;(2)求|OA|•|OB|的最小值.解:(1)曲线C的参数方程为(φ为参数)化为直角坐标方程为:.再转化为极坐标方程为:.(2)根据题意:射线OB的极坐标方程为或所以:|OA|=,=,所以:|OA||OB|=ρ1ρ2=,当且仅当sin2α=cos2α,即时,函数的最小值为.7.(2018•全国I模拟)在直角坐标系xOy中,直线l:x=4,M为l上的动点,P在线段OM上,满足|OM|•|OP|=16,记P的轨迹为曲线C;以O为极点,x轴正半轴为极轴建立极坐标系.(1)求l与C的极坐标方程;(2)设A的极坐标为(2,),点B在曲线C上,△OAB的面积为,求B点的直角坐标.解:(1)∵在直角坐标系xOy中,直线l:x=4,∴直线l的极坐标方程为l:ρcosθ=4.设P(ρ,θ),(ρ>0),M(ρ1,θ),(ρ1>0),则ρ1cosθ=4,∵M为l上的动点,P在线段OM上,满足|OM|•|OP|=16,∴|OM|•|OP|=ρρ1=16,∴ρ=4cosθ,ρ>0,∴C的极坐标方程为ρ=4cosθ,ρ>0.(2)依题意设B点极坐标为(4cosα,α),则S=|AO|•|BO|sin∠AOB=△ABO=2|sin(2α﹣)﹣|=,解得,此时B(2,),或α=﹣,此时B(2,﹣),化为直角坐标为B(3,)或B(1,﹣).8.(2018•石家庄一模)在平面直角坐标系xOy中,曲线C的参数方程为(r>0,φ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,若直线l与曲线C相切;(Ⅰ)求曲线C的极坐标方程;(Ⅱ)在曲线C上取两点M,N与原点O构成△MON,且满足,求面积△MON的最大值.解:(Ⅰ)∵直线l的极坐标方程为,∴由题意可知直线l的直角坐标方程为y=+2,曲线C是圆心为(,1),半径为r的圆,直线l与曲线C相切,可得r==2,∵曲线C的参数方程为(r>0,φ为参数),∴曲线C的普通方程为(x﹣)2+(y﹣1)2=4,所以曲线C的极坐标方程为ρ2﹣2ρcosθ﹣2ρsinθ=0,即.(Ⅱ)由(Ⅰ)不妨设M(ρ1,θ),N(ρ2,),(ρ1>0,ρ2>0),==4sin()sin()=2sinθcosθ+2=sin2θ+=2sin(2)+,当时,,所以△MON面积的最大值为2+.极坐标与参数方程专题(3)——求取值范围或最值1.(2018•曲靖二模)在平面直角坐标系中,以O为极点,x轴为正半轴建立极坐标系,取相同的长度单位,若曲线C1的极坐标方程为ρsin(θ﹣)=3,曲线C2的参数方程为(θ为参数).(1)将曲线C1的极坐标方程化为直角方程,C2的参数方程化为普通方程;(2)设P是曲线C1上任一点,Q是曲线C2上任一点,求|PQ|的最小值.解:∵曲线C1的极坐标方程为ρsin(θ﹣)=3,∴=3,∴曲线C1的直角坐标方程为.∵曲线C2的参数方程为(θ为参数),∴曲线C2的普通方程为:x2+(y+2)2=4.(2)∵曲线C2:x2+(y+2)2=4是以(0,﹣2)为圆心,以2为半径的圆,圆心(0,2)到曲线C1:的距离d==4,P是曲线C1上任一点,Q是曲线C2上任一点,∴|PQ|的最小值为:d﹣r=4﹣2=2.2.(2018•赤峰模拟)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(α为参数),曲线C2的极坐标方程为.(1)求曲线C1,C2公共弦所在的直线的极坐标方程;(2)设M点在曲线C1上,N点在曲线C2上,求|MN|的最大值.解:(1)∵曲线C1的参数方程为(α为参数),∴曲线C1的普通方程为x2+y2=1,∵曲线C2的极坐标方程为.∴=4cosθ+4sinθ,∴ρ2=4ρcosθ+4ρsinθ,∴曲线C2的直角坐标方程为x2+y2﹣4x﹣4y=0,∴曲线C1,C2公共弦所在的直线的普通方程为4x+4y﹣1=0.∴曲线C1,C2公共弦所在的直线的极坐标方程4ρcosθ+4ρsinθ=1.(2)∵曲线C1:x2+y2=1的圆心为C1(0,0),半径r1=1,曲线C2:x2+y2﹣4x﹣4y=0的圆心C2(2,2),半径r2==2,|C1C2|==2,∵设M点在曲线C1上,N点在曲线C2上,∴|MN|的最大值为:|C1C2|+r1+r2=2=4+1.3.(2018•洛阳三模)已知直线l的极坐标方程为,现以极点O为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线C1的参数方程为(φ为参数).(1)求直线l的直角坐标方程和曲线C1的普通方程;(2)若曲线C2为曲线C1关于直线l的对称曲线,点A,B分别为曲线C1、曲线C2上的动点,点P坐标为(2,2),求|AP|+|BP|的最小值.解:(1)直线l的极坐标方程为,∴,即ρcosθ+ρsinθ=4,∴直线l的直角坐标方程为x+y﹣4=0;曲线C1的参数方程为(φ为参数).∴曲线C1的普通方程为(x+1)2+(y+2)2=4.(2)∵点P在直线x+y=4上,根据对称性,|AP|的最小值与|BP|的最小值相等.曲线C1是以(﹣1,﹣2)为圆心,半径r=2的圆.∴|AP|min=|PC1|﹣r=.所以|AP|+|BP|的最小值为2×3=6.4.(2018•黑龙江模拟)在直角坐标系xOy中,圆C的参数方程为(θ为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(﹣2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.解:(1)圆C的参数方程为(θ为参数)所以普通方程为(x﹣3)2+(y+4)2=4.(2分),x=ρcosθ,y=ρsinθ,可得(ρcosθ﹣3)2+(ρsinθ+4)2=4,化简可得圆C的极坐标方程:ρ2﹣6ρcosθ+8ρsinθ+21=0.(5分)(2)点M(x,y)到直线AB:x﹣y+2=0的距离为(7分)△ABM的面积所以△ABM面积的最大值为(10分)5.(2018•孝义市一模)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为,P为曲线C上的动点,C与x轴、y轴的正半轴分别交于A,B两点.(1)求线段OP中点Q的轨迹的参数方程;(2)若M是(1)中点Q的轨迹上的动点,求△MAB面积的最大值.解:(1)由C的方程可得ρ2+3ρ2sin2θ=16,又ρ2=x2+y2,y=ρsinθ,∴C的直角坐标方程为x2+4y2=16,即.设P(4cosθ,2sinθ),则Q(2cosθ,sinθ),∴点Q的轨迹的参数方程为(θ为参数).(2)由(1)知点Q的轨迹的普通方程为,A(4,0),B(0,2),,所以直线AB的方程为x+2y﹣4=0.设M(2cosθ,sinθ),则点M到AB的距离为,∴△MAB面积的最大值为.6.(2018•思明区校级模拟)在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,曲线C1的极坐标方程为ρ=2,正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0).(1)求点B,C的直角坐标;(2)设P是圆C2:x2+(y+)2=1上的任意一点,求|PB2|+|PC|2的取值范围.解:(1)∵曲线C1的极坐标方程为ρ=2,∴曲线C1的直角坐标方程为x2+y2=4,∵正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0),∴B点的坐标为(2cos120°,2sin120°),即B(﹣1,),C点的坐标为(2cos240°,2sin240°),即C(﹣1,﹣).(2)∵圆C2:x2+(y+)2=1,∴圆C2的参数方程,设点P(cosα,﹣),0≤α<2π,∴|PB2|+|PC|2=+(cosα+1)2+sin2α=16+4cosα﹣4sinα=16+8cos(),∴|PB2|+|PC|2的范围是[8,24].7.(2018•河南一模)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos(θ﹣).(1)求圆C的直角坐标方程;(2)若P(x,y)是直线l与圆面的公共点,求x+y的取值范围.解:(1)∵圆C的极坐标方程为ρ=4cos(θ﹣),∴,又∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,…(5分)∴,∴圆C的普通方程为=0.(2)设z=,圆C的方程=0.即(x+1)2+(y﹣)2=4,∴圆C的圆心是C(﹣1,),半径r=2,将直线l的参数方程为(t为参数)代入z=,得z=﹣t,又∵直线l过C(﹣1,),圆C的半径是2,∴﹣2≤t≤2,∴﹣2≤﹣t≤2,即的取值范围是[﹣2,2].…(10分)8.(2018•湖南三模)在直角坐标系中,曲线经过伸缩变换后得到曲线C2,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标,曲线C3的极坐标方程为ρ=﹣2sinθ.(1)求出曲线C2,C3的参数方程;(2)若P,Q分别是曲线C2,C3上的动点,求|PQ|的最大值.解:(1)曲线经过伸缩变换后得到曲线C2,∴曲线C2的方程为+y2=1∴曲线C2的参数方程为,(α为参数).∵曲线C3的极坐标方程为ρ=﹣2sinθ.即ρ2=﹣2ρsinθ,∴曲线C3的直角坐标方程为x2+y2=﹣2y,即x2+(y+1)2=1,∴曲线C3的参数方程为,(β为参数).(2)设P(2cosα,sinα),则P到曲线C3的圆心(0,﹣1)的距离:d==.∵sinα∈[﹣1,1],∴当sinα=时,d max=.∴|PQ|max=d max+r=+1=.9.(2018•大庆模拟)在直角坐标系xOy中,曲线C的参数方程为(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+=.(Ⅰ)将曲线C和直线l化为直角坐标方程;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.解:(Ⅰ)解:由曲线C的参数方程为(θ为参数)可得,∴曲线C的直角坐标方程为.由ρsin(θ+=,得,化简得,ρsinθ+ρcosθ=2,∴x+y=2.∴直线l的直角坐标方程为x+y=2.(Ⅱ)解:由于点Q是曲线C上的点,则可设点Q的坐标为,点Q到直线l的距离为=.当时,.∴点Q到直线l的距离的最大值为.10.(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.。