永磁电机永磁同步电机65页PPT
合集下载
《永磁同步电机》幻灯片PPT

3 2
N3(iB
iC)
iiN N32
1 0
1 2 3 2
1 2
3 2
iiiC BA
PMSM电机的FOC控制策略
考虑变换前后总功率不变,可得匝数比应为 N 3 2
N2 3
可得
ii
21 30
1 2 3 2
1 2
3 2
iiiC BA
坐标系变换矩阵:
C3/2
2
1
3 0
1 2 3 2
1 2
3 2
C 2/3
1
2 3
1 2
1 2
0
3
2
3 2
PMSM电机的FOC控制策略
如果三相绕组是Y形联结不带零线,那么有
iAiBiC0
于是
3
i i
2 1
2
0 2
iA iB
2
iA iB
3 1 6
0
1 2
i i
PMSM电机的FOC控制策略
〔2〕Park〔2s/2r〕变换
U1
VF1
VF3
VF5
H1
译
A
码
H2
电
B
H3
路
VF4
VF6
VF2
C
Y联结三三通电方式的控制原理图
PMSM和BLDC电机的工作原理
vab
0
V d
2
t
van
0
2
3V d
1 3V d
M
Y联结三三通电方式相电压和线电压波形
t
a)
VF6VF1VF2导通时合成转矩
Tc 2
b) VF1VF2VF3导通是合成转矩
永磁同步电机 ppt课件

静止学习参数时电机无转动,分两步完成:发电压、大电流, 这两步完成后学出电机参数D轴电感、Q轴电感、定子电 阻。感应电动势根据给出的电机参数计算得出。
旋转学习参数电机有转动,分三步完成:发电压、大电流、 旋转电机。前两步后学出电机参数D轴电感、Q轴电感、 定子电阻,第三步学习出感应电动势。
在电机有负载的情况下需要静止学习参数。
永磁同步电机参数学习
学习完成后,读取电机参数: F870(PMSM感应电动势1000r/min) F871(PMSM D轴电感) F872(PMSM Q轴电感) F873(PMSM定子电阻) 额定频率输出电压与F870参数的关系 额定频率输出电压=(额定频率/1000)*F870参数 F876(空载注入电流) (异步电机参数学习后,读取参数F806~F809)
永磁同步电机
永磁同步电机与异步机
永磁同步电机 交流异步机Байду номын сангаас
永磁同步电机基本原理
在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机 的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体 的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中 产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与 定子中产生的旋转磁极的转速相等
永磁同步电机相比交流异步电机优势
1、效率高、更加省电; 2、功率因数高,对电网影响小; 3、电机结构简单灵活; 4、可靠性高,故障率低; 5、体积小,重量轻; 6、起动力矩大、噪音小、温升低;
永磁同步变频调速功能应用
目前公司绝大部分产品都已添加同步机功能: E2000、E800、AC10、EP66、EM30、细纱机、伺服 驱动器。 在测试过程中如果涉及到新机测试、改板、换霍尔等情 况时,均需要进行同步机测试。
旋转学习参数电机有转动,分三步完成:发电压、大电流、 旋转电机。前两步后学出电机参数D轴电感、Q轴电感、 定子电阻,第三步学习出感应电动势。
在电机有负载的情况下需要静止学习参数。
永磁同步电机参数学习
学习完成后,读取电机参数: F870(PMSM感应电动势1000r/min) F871(PMSM D轴电感) F872(PMSM Q轴电感) F873(PMSM定子电阻) 额定频率输出电压与F870参数的关系 额定频率输出电压=(额定频率/1000)*F870参数 F876(空载注入电流) (异步电机参数学习后,读取参数F806~F809)
永磁同步电机
永磁同步电机与异步机
永磁同步电机 交流异步机Байду номын сангаас
永磁同步电机基本原理
在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机 的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体 的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中 产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与 定子中产生的旋转磁极的转速相等
永磁同步电机相比交流异步电机优势
1、效率高、更加省电; 2、功率因数高,对电网影响小; 3、电机结构简单灵活; 4、可靠性高,故障率低; 5、体积小,重量轻; 6、起动力矩大、噪音小、温升低;
永磁同步变频调速功能应用
目前公司绝大部分产品都已添加同步机功能: E2000、E800、AC10、EP66、EM30、细纱机、伺服 驱动器。 在测试过程中如果涉及到新机测试、改板、换霍尔等情 况时,均需要进行同步机测试。
永磁同步电机工作原理 ppt课件

U1
H1 H2 H3
译 码 电 路
VF1
VF3
VF5
A B
C
VF4
VF6
VF2
全控桥两两通电电路原理图
PMSM和BLDC电机的工作原理
将三只霍尔集成电路 按相位差120度安装, 产生波形如图所示。
a)
H1
0
t
H20
H3 0
2
3
4
t t
VF1、VF2
导通时合成转矩
Tac
Ta Tc a) Tbc
转子
转子采用永磁体,目前主要以钕铁硼作
为永磁材料。 采用永磁体简化了电机的 结构,提高了可靠性,又没有转子铜耗, 提高电机的效率。
PMSM和BLDC电机的结构
PMSM按转子永磁体的结构可分为两种
(1)表面贴装式(SM-PMSM)
直交轴电感Ld和Lq相同 气隙较大,弱磁能力小, 扩速能力受到限制
r
3 电磁转矩: Te n p s is 2
PMSM和BLDC电机的工作原理
永磁同步电动机在 以表达如下: 标系中的数学模型可
定子电流: s s j s
3 Te n p s is 电磁转矩: s is 2
is is jis
g g
B
⊕
b
r
⊕C
⊙
X
PMSM和BLDC电机的结构
实物结构图
转子磁铁
定子绕组
霍尔传感器
PMSM和BLDC电机的结构
定子
定子绕组一般制成多相(三、四、五相不
等),通常为三相绕组。三相绕组沿定子
铁心对称分布,在空间互差120度电角度, 通入三相交流电时,产生旋转磁场。
H1 H2 H3
译 码 电 路
VF1
VF3
VF5
A B
C
VF4
VF6
VF2
全控桥两两通电电路原理图
PMSM和BLDC电机的工作原理
将三只霍尔集成电路 按相位差120度安装, 产生波形如图所示。
a)
H1
0
t
H20
H3 0
2
3
4
t t
VF1、VF2
导通时合成转矩
Tac
Ta Tc a) Tbc
转子
转子采用永磁体,目前主要以钕铁硼作
为永磁材料。 采用永磁体简化了电机的 结构,提高了可靠性,又没有转子铜耗, 提高电机的效率。
PMSM和BLDC电机的结构
PMSM按转子永磁体的结构可分为两种
(1)表面贴装式(SM-PMSM)
直交轴电感Ld和Lq相同 气隙较大,弱磁能力小, 扩速能力受到限制
r
3 电磁转矩: Te n p s is 2
PMSM和BLDC电机的工作原理
永磁同步电动机在 以表达如下: 标系中的数学模型可
定子电流: s s j s
3 Te n p s is 电磁转矩: s is 2
is is jis
g g
B
⊕
b
r
⊕C
⊙
X
PMSM和BLDC电机的结构
实物结构图
转子磁铁
定子绕组
霍尔传感器
PMSM和BLDC电机的结构
定子
定子绕组一般制成多相(三、四、五相不
等),通常为三相绕组。三相绕组沿定子
铁心对称分布,在空间互差120度电角度, 通入三相交流电时,产生旋转磁场。
《永磁电机》PPT课件

5. 价格低廉
稀土材料: 退磁曲线即回复线,磁性能稳定!!
§24-2 永磁同步电机 永磁代替电励磁电枢结构不变。
N S
星型
径向
切向
结构特点
➢不消耗励磁 功率损耗小,效率高 ➢省去转子的滑环或电刷(电磁式同步电机) 结构简单
永磁铁的工作特点
➢永磁铁的提供磁通和磁势不是常数 永磁电机参数和运行的性
➢永磁的磁阻很大
第十八章 同步电机概述 复习交流电机一般问题(交流绕组、感应电势、 磁势),了解同步电机原理、结构、励磁方式、 技术指标、航空同步电机特色及发展状况。
*第十九章 三相同步发电机对称运行原理 重点介绍了同步电机电枢反应,推导出时空相量 图,本章另一个重点是同步发电机的电势方程及 相量图,这些是同步电机的基本理论,应当牢固 掌握,同时,对同步发电机的负载特性及电抗测 定方法应了解。
Hs H
1O1e004π0 A/ /m
79.577 8A 0A /m /m 磁滞回线
铁磁性材料的分类
➢软磁材料:矫顽力小于100A/m。用来组
成电机磁路,如定、转于冲片,以及其它导 磁部分。
➢半硬磁材料:矫顽力为100~1000A/m。
可用于制作磁滞电动机转子,故也称磁滞材
料。在工作过程中常处于交变磁化状态。
硅钢 纯铁
银 铜 真空 铝
物质的磁性
r
性质 相对导磁率
铁磁性
5000
铁磁性
7000
铁磁性
200000
反磁性 0.99983
反磁性 0.999983
反磁性
1.0
反磁性 1.00002
第一节 永磁材料的基本性能
一.磁性材料基本概念 二.永磁材料磁性能的主要参数
永磁同步电机工作原理及控制策略-PPT课件

永磁同步电动机在 以表达如下: 定子电流: 定子磁链: 电磁转矩:
坐标系中的数学模型可
j s s s
3 T i i e n p s s s s 2
is is jis
PMSM和BLDC电机的工作原理
永磁同步电动机在转子旋转坐标系d-q中的数学模 型可以表达如下: 定子电压:
PMSM和BLDC电机的结构
正弦波永磁同步电机 永磁体表面设计成抛物线,极弧大体为 120度 定子绕组为短距、分布绕组 定子由正弦波脉宽调制(SVPWM)的电压 型逆变其供电,三相电流为正弦或准正 弦波
PMSM和BLDC电机的工作原理
PMSM的数学模型
为了简化和求解数学模型方程,运用坐标变换理论,通 过对同步电动机定子三相静止坐标轴系的基本方程进 行线性变换,实现电机数学模型的解耦 。 q u s :定子电压 B
PMSM和BLDC电机的工作原理
BLDC电机控制方式 (1)两两通电方式
每一瞬间有两个功率开关导通,每隔60度换相一次, 每次换相一个功率开关,每个功率开关导通120度电 F V F 、 V F V F 、 V F V F 、 V F V F 、 V F V F 、 V F V F . . . 角度。导通顺序为 V 1 2 2 3 3 4 4 5 5 6 6 1
转子
转子采用永磁体,目前主要以钕铁硼作
为永磁材料。 采用永磁体简化了电机的 结构,提高了可靠性,又没有转子铜耗, 提高电机的效率。
PMSM和BLDC电机的结构
PMSM按转子永磁体的结构可分为两种
(1)表面贴装式(SM-PMSM)
直交轴电感Ld和Lq相同 气隙较大,弱磁能力小, 扩速能力受到限制
坐标系中的数学模型可
j s s s
3 T i i e n p s s s s 2
is is jis
PMSM和BLDC电机的工作原理
永磁同步电动机在转子旋转坐标系d-q中的数学模 型可以表达如下: 定子电压:
PMSM和BLDC电机的结构
正弦波永磁同步电机 永磁体表面设计成抛物线,极弧大体为 120度 定子绕组为短距、分布绕组 定子由正弦波脉宽调制(SVPWM)的电压 型逆变其供电,三相电流为正弦或准正 弦波
PMSM和BLDC电机的工作原理
PMSM的数学模型
为了简化和求解数学模型方程,运用坐标变换理论,通 过对同步电动机定子三相静止坐标轴系的基本方程进 行线性变换,实现电机数学模型的解耦 。 q u s :定子电压 B
PMSM和BLDC电机的工作原理
BLDC电机控制方式 (1)两两通电方式
每一瞬间有两个功率开关导通,每隔60度换相一次, 每次换相一个功率开关,每个功率开关导通120度电 F V F 、 V F V F 、 V F V F 、 V F V F 、 V F V F 、 V F V F . . . 角度。导通顺序为 V 1 2 2 3 3 4 4 5 5 6 6 1
转子
转子采用永磁体,目前主要以钕铁硼作
为永磁材料。 采用永磁体简化了电机的 结构,提高了可靠性,又没有转子铜耗, 提高电机的效率。
PMSM和BLDC电机的结构
PMSM按转子永磁体的结构可分为两种
(1)表面贴装式(SM-PMSM)
直交轴电感Ld和Lq相同 气隙较大,弱磁能力小, 扩速能力受到限制
永磁同步电机的模型和方法ppt课件

标系上表示出来。将α 、 β 、o坐标放在定子上, α 轴与A相轴
线重合, β轴超前α 轴90度,在α 、 β 、o坐标系中的电压电流,
可以直接从A 、B、C三相坐标系中的电压电流通过简单的线性
变换可以得到。一个旋转矢量从A 、B、C三相定子坐标系变换
到α 、 β 、o坐标系成为3/2变换,有
• 经过变换后得到α 、 β 、o坐标系的电压方
围。
• 力矩平衡方程式为:
• − =
+
• 从上述分析可以看出在d 、q、0坐标系下的
数学模型简单的多,方便控制
• 根据电机的数学模型,可以将永磁同步电
机简化为如图所示的d,q轴模型。永磁同
步电机的转矩方程表示发电机的电磁转矩
可以通过控制定子电流的d,q轴分量进行
控制。
程为:
• α 、 β 、o坐标系的磁链方程为:
• 其中:Ld、Lq分别是同步电机直轴交轴电感;
为永磁极产生的与定子绕组交链的磁链
在α 、 β 、o坐标系中,经过线性变换使A 、
B、C三相坐标系中的电机数学模型方程得到一定
简化。针对内永磁同步电机,因为转子的直、交
轴的不对称而具有凸极效应,因此在α 、 β 、o
永磁同步发电机控制策略
• 永磁同步发电机常用的矢量控制策略有:
(1)isd=0 控制;
• (2)最大转矩电流比控制:
• (3)单位功率因数控制;
• (4)最小损耗控制等。
• 每种控制策略都有其优缺点,于是针对永
磁同步电机不同控制目标下的矢量控制策
略进行比较分析。
• 2.1 id=0电流控制
• id=0的控制称为磁场定向控制,这种控制
线重合, β轴超前α 轴90度,在α 、 β 、o坐标系中的电压电流,
可以直接从A 、B、C三相坐标系中的电压电流通过简单的线性
变换可以得到。一个旋转矢量从A 、B、C三相定子坐标系变换
到α 、 β 、o坐标系成为3/2变换,有
• 经过变换后得到α 、 β 、o坐标系的电压方
围。
• 力矩平衡方程式为:
• − =
+
• 从上述分析可以看出在d 、q、0坐标系下的
数学模型简单的多,方便控制
• 根据电机的数学模型,可以将永磁同步电
机简化为如图所示的d,q轴模型。永磁同
步电机的转矩方程表示发电机的电磁转矩
可以通过控制定子电流的d,q轴分量进行
控制。
程为:
• α 、 β 、o坐标系的磁链方程为:
• 其中:Ld、Lq分别是同步电机直轴交轴电感;
为永磁极产生的与定子绕组交链的磁链
在α 、 β 、o坐标系中,经过线性变换使A 、
B、C三相坐标系中的电机数学模型方程得到一定
简化。针对内永磁同步电机,因为转子的直、交
轴的不对称而具有凸极效应,因此在α 、 β 、o
永磁同步发电机控制策略
• 永磁同步发电机常用的矢量控制策略有:
(1)isd=0 控制;
• (2)最大转矩电流比控制:
• (3)单位功率因数控制;
• (4)最小损耗控制等。
• 每种控制策略都有其优缺点,于是针对永
磁同步电机不同控制目标下的矢量控制策
略进行比较分析。
• 2.1 id=0电流控制
• id=0的控制称为磁场定向控制,这种控制
永磁同步电机介绍ppt课件

.
永磁同步电机的优点
一、同步电机的概念
1. 三相永磁同步电机转子由稀土永磁材料做成; 2. 永磁同步电机转子本身能产生固定方向的磁场; 3. 交流电定子旋转磁场“拖着”转子磁场(转子)转
动; 因此工作时转子的转速一定等于同步转速,也因此叫
做同步电机。
.
永磁同步电机的优点
二、同步电机的优点
1、效率高:
▪ 由于磁路系统的小型化,绕组亦趋小,从而减少了电机的铜 损和铁损,效率提高;
▪ 在转子上嵌人稀土永磁材料后,在正常工作时转子与定子磁 场同步运行,转子绕组无感生电流,不存在转子电阻和磁滞 损耗;
▪ 定子电流中无励磁电流分量,功率因数高,定子电流小,定 子侧铜损下降,提高了电机效率。
.
永磁同步电机的优点
.
电机使用的主要问题
三、电机选型
电机节能改造或新定制设备,电机选型应应避免上述问题:
1、选用高能效电机-一级能效或二级能效电机
淘汰三级(含)能效以下电机已逐步强制淘汰。 考虑到企业节能的需求和国家引导方向,应首选一级能效电机。
2、选择合理选择电机的功率
可先进行现场测试,取得测试报告后再选型。
3、合理的控制模式
二、同步电机的优点
2、功率因数高:
▪ 稀土永磁电机转子中无感应电流励磁,定子绕组呈现阻性负载,电 机的功率因数近于1;
▪ 减小了定子电流,进一步提高了电机的效率。 ▪ 同时功率因数的提高,提高了电网的品质因数,减少了输变电线路
的损耗,输变电容量也可降低,节省电网投资。
3、起动力矩大:
▪ 在需要大启动转矩的设备(如某倍捻机)中,可以用较小容量的稀 土永磁电机替代较大容量Y系列电机;
▪ 如用18.5kW 效能。
永磁同步电机的优点
一、同步电机的概念
1. 三相永磁同步电机转子由稀土永磁材料做成; 2. 永磁同步电机转子本身能产生固定方向的磁场; 3. 交流电定子旋转磁场“拖着”转子磁场(转子)转
动; 因此工作时转子的转速一定等于同步转速,也因此叫
做同步电机。
.
永磁同步电机的优点
二、同步电机的优点
1、效率高:
▪ 由于磁路系统的小型化,绕组亦趋小,从而减少了电机的铜 损和铁损,效率提高;
▪ 在转子上嵌人稀土永磁材料后,在正常工作时转子与定子磁 场同步运行,转子绕组无感生电流,不存在转子电阻和磁滞 损耗;
▪ 定子电流中无励磁电流分量,功率因数高,定子电流小,定 子侧铜损下降,提高了电机效率。
.
永磁同步电机的优点
.
电机使用的主要问题
三、电机选型
电机节能改造或新定制设备,电机选型应应避免上述问题:
1、选用高能效电机-一级能效或二级能效电机
淘汰三级(含)能效以下电机已逐步强制淘汰。 考虑到企业节能的需求和国家引导方向,应首选一级能效电机。
2、选择合理选择电机的功率
可先进行现场测试,取得测试报告后再选型。
3、合理的控制模式
二、同步电机的优点
2、功率因数高:
▪ 稀土永磁电机转子中无感应电流励磁,定子绕组呈现阻性负载,电 机的功率因数近于1;
▪ 减小了定子电流,进一步提高了电机的效率。 ▪ 同时功率因数的提高,提高了电网的品质因数,减少了输变电线路
的损耗,输变电容量也可降低,节省电网投资。
3、起动力矩大:
▪ 在需要大启动转矩的设备(如某倍捻机)中,可以用较小容量的稀 土永磁电机替代较大容量Y系列电机;
▪ 如用18.5kW 效能。
《永磁同步电动机》课件

面临的挑战与解决方案
成本问题
随着高性能永磁材料价格的上涨,永磁同步电动机的成本 也随之增加。解决方案包括采用替代性材料、优化设计等 降低成本。
控制精度问题
在某些高精度应用场景中,永磁同步电动机的控制精度仍 需提高。解决方案包括采用先进的控制算法和传感器技术 提高控制精度。
可靠性问题
在高温、高湿等恶劣环境下,永磁同步电动机的可靠性可 能会受到影响。解决方案包括加强散热设计、提高材料耐 久性等提高可靠性。
总结词
风力发电系统中应用永磁同步电动机,具有 高效、可靠、低噪音等优点。
详细描述
风力发电系统需要能够在风能不稳定的情况 下高效、可靠运行的电机,永磁同步电动机 能够满足这些要求。其高效、可靠、低噪音 的特性使得风力发电系统在能源利用效率和
可靠性方面具有显著优势。
THANKS
感谢观看
工作原理
永磁同步电动机通过控制器调节电机电流,使电机转子与定子磁场保持同步, 从而实现电机的运转。其工作原理基于磁场定向控制和矢量控制技术。
种类与特点
种类
永磁同步电动机根据结构可分为 表面贴装式、内置式和无铁心式 等类型。
特点
永磁同步电动机具有效率高、节 能效果好、运行稳定、维护方便 等优点,广泛应用于工业自动化 、新能源、电动汽车等领域。
05
CATALOGUE
永磁同步电动机的发展趋势与挑战
技术发展趋势
高效能化
随着技术的不断进步,永磁同步电动机的效率和性能不断提升, 能够满足更多高效率、高负载的应用需求。
智能化
随着物联网、传感器等技术的发展,永磁同步电动机的智能化水平 不断提高,可以实现远程监控、故障诊断等功能。
紧凑化
为了适应空间受限的应用场景,永磁同步电动机的尺寸和重量不断 减小,同时保持高性能。