多目标遗传算法代码
MATLAB多目标优化计算

MATLAB多目标优化计算多目标优化是指在一个优化问题中同时优化多个目标函数,这些目标函数往往存在冲突,不能同时达到最优。
MATLAB提供了许多工具和函数,可以帮助解决多目标优化问题。
在MATLAB中,多目标优化问题可以用以下形式表示:min f(x)s.t.g(x)≤0h(x)=0lb ≤ x ≤ ub其中,f(x)表示待优化的多个目标函数,g(x)和h(x)分别表示不等式约束和等式约束条件,lb和ub分别表示x的下界和上界。
1. paretofront函数:可以用来判断一组给定解的非支配解集合。
```index = paretofront(F)```其中,F是一个m×n矩阵,每一行表示一个解的m个目标函数值。
index是一个逻辑向量,长度为n,表明对应位置的解是否为非支配解。
2. paretofun函数:可以用来对非支配解集进行排序。
```rank = paretofun(F)```其中,F同样是一个m×n矩阵,每一行表示一个解的m个目标函数值。
rank表示对应位置的解在非支配解集中的排序。
3. gamultiobj函数:使用遗传算法进行多目标优化。
```[x, fval, exitflag, output, population] = gamultiobj(fun, nvars, A, b, Aeq, beq, lb, ub)```其中,fun是一个函数句柄,表示待优化的目标函数。
nvars表示决策变量的个数。
A、b、Aeq、beq、lb和ub分别表示不等式约束、等式约束、下界和上界。
x是优化后的决策变量值,fval是优化后的目标函数值。
exitflag是优化器的退出标志,output包含了优化算法的输出结果,population包含了所有迭代过程中的解集。
4.NSGA-II函数:使用非支配排序遗传算法进行多目标优化。
```[x, fval, exitflag, output, population] = nsga2(fun, nvars, A, b, Aeq, beq, lb, ub)```参数和返回结果的含义同gamultiobj函数相似。
多目标遗传算法NSGA-II

在NSGA-II中,我们计算两个属性Sp 和np来帮助我们识别更好的个体。
快速非支配排序
假设种群大小为P,该算法需要计算每个个体p的被支配个数np和该个体支配的解的集合Sp 这两个参数。 遍历整个种群
该算法的伪代码如下:
拥挤度
• 为了使得到的解在目标空间中更加均匀,引入了拥挤度的概念
•为所有个体的拥挤距离初始化零。 •审视所有的个人和目标值。通过用Inf值分配绑定解决方案 来选择它们。 •计算每个目标的第m个最大值和最小值,得到归一化的分 母。 •对第i个个体的m个目标的拥挤距离求和
计算拥挤度是为了保存下来相似程度较低的解,保持解空间的多样性
精英保留策略
1 首先将父代种群Pt和子代种群Qt合成种群Rt 2 根据以下规则从种群Rt生成新的父代种群Rt+1
(1)根据Pareto等级从低到高的顺序,将整层种 群放入父代种群Rt+1中,真到某一层个体不能 全部放入父代种群Rt+1。 (2)将该层个体根据拥挤度从大到小排列,依次 放入父代种群Rt+1中,直到父代种群Rt+1f填满。
单目标优化——》多目标优化
NSGA-II 在常规遗传算法上的改进
• 1 快速非支配算子设计 • 多目标优化问题的设计关键在于求取Pareto最优解集。
• 2 通过优先选择拥挤距离较大的个体
• 3 精英策略选择算子
• NAS中的性能评估也可以是一个多目标问题 • 测试集上的准确率 • 参数数量
遗传算法解决多目标优化问题
多目标优化问题:
• 包含多个可能有冲突的目标函数
NSGA-Ⅱ算法,即带有精英保留策略的快 速非支配多目标优化算法,是一种基于 Pareto最优解的多目标优化算法。
(完整版)遗传算法c语言代码

}
}
}
//拷贝种群
for(i=0;i<num;i++)
{
grouptemp[i].adapt=group[i].adapt;
grouptemp[i].p=group[i].p;
for(j=0;j<cities;j++)
grouptemp[i].city[j]=group[i].city[j];
{
group[i].p=1-(double)group[i].adapt/(double)biggestsum;
biggestp+=group[i].p;
}
for(i=0;i<num;i++)
group[i].p=group[i].p/biggestp;
//求最佳路劲
bestsolution=0;
for(i=0;i<num;i++)
printf("\n******************是否想再一次计算(y or n)***********************\n");
fflush(stdin);
scanf("%c",&choice);
}while(choice=='y');
return 0;
}
遗传算法代码
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>
#define cities 10 //城市的个数
遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
多目标优化python代码

多目标优化python代码多目标优化(multi-objective optimization)是一个在优化问题中存在多个目标函数的情况下,同时优化多个目标的方法。
在Python中,我们可以利用各种优化算法和工具来实现多目标优化。
多目标优化在实际问题中非常常见,例如在供应链管理中,我们可能需要同时考虑成本最小化和服务水平最大化;在工程设计中,我们可能需要同时优化性能和可靠性等。
传统的单目标优化方法往往只能找到单个最优解,无法同时考虑多个目标。
而多目标优化则能够为决策者提供一系列不同的解决方案,形成一个解集(Pareto set),其中每个解都是在某种意义上是最优的。
在Python中,有几个常用的库和工具可以用于多目标优化。
下面将介绍其中的几个。
1. PyGMO:PyGMO是一个基于Python的开源优化库,它提供了多种多目标优化算法,如NSGA-II、MOEA/D等。
PyGMO的优势在于其丰富的算法库和灵活的接口,可以方便地在多种问题上进行实验。
2. DEAP:DEAP也是一个Python的开源优化库,它提供了多种遗传算法和进化策略的实现。
DEAP的特点是简单易用,适合初学者使用。
3. Platypus:Platypus是一个Python的多目标优化库,它提供了多种多目标优化算法的实现,如NSGA-II、SPEA2等。
Platypus的特点是速度快、易用性好,适合处理中小规模问题。
4. Scipy.optimize:Scipy是一个Python的科学计算库,其中的optimize模块提供了一些基本的优化算法,如COBYLA、SLSQP等。
虽然Scipy.optimize主要用于单目标优化,但也可以通过一些技巧来实现多目标优化。
在使用这些工具进行多目标优化时,我们需要定义适应度函数(fitness function),也就是衡量解决方案好坏的指标。
对于多目标优化问题,适应度函数通常是一个向量,其中每个维度对应一个目标函数。
多目标多约束优化问题算法

多目标多约束优化问题算法多目标多约束优化问题是一类复杂的问题,需要使用特殊设计的算法来解决。
以下是一些常用于解决这类问题的算法:1. 多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA):-原理:使用遗传算法的思想,通过进化的方式寻找最优解。
针对多目标问题,采用Pareto 前沿的概念来评价解的优劣。
-特点:能够同时优化多个目标函数,通过维护一组非支配解来表示可能的最优解。
2. 多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization, MOPSO):-原理:基于群体智能的思想,通过模拟鸟群或鱼群的行为,粒子在解空间中搜索最优解。
-特点:能够在解空间中较好地探索多个目标函数的Pareto 前沿。
3. 多目标差分进化算法(Multi-Objective Differential Evolution, MODE):-原理:差分进化算法的变种,通过引入差分向量来生成新的解,并利用Pareto 前沿来指导搜索过程。
-特点:对于高维、非线性、非凸优化问题有较好的性能。
4. 多目标蚁群算法(Multi-Objective Ant Colony Optimization, MOACO):-原理:基于蚁群算法,模拟蚂蚁在搜索食物时的行为,通过信息素的传递来实现全局搜索和局部搜索。
-特点:在处理多目标问题时,采用Pareto 前沿来评估解的质量。
5. 多目标模拟退火算法(Multi-Objective Simulated Annealing, MOSA):-原理:模拟退火算法的变种,通过模拟金属退火的过程,在解空间中逐渐减小温度来搜索最优解。
-特点:能够在搜索过程中以一定的概率接受比当前解更差的解,避免陷入局部最优解。
这些算法在解决多目标多约束优化问题时具有一定的优势,但选择合适的算法还取决于具体问题的性质和约束条件。
多目标优化实例和matlab程序

NSGA-II 算法实例目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。
本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。
一、 数值例子多目标优化问题424221*********422421221211212min (,)10min (,)55..55f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤⎧⎨-≤≤⎩二、 Matlab 文件1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2;y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);2. 调用gamultiobj 函数,及参数设置:clearclcfitnessfcn=@f; %适应度函数句柄nvars=2; %变量个数lb=[-5,-5]; %下限ub=[5,5]; %上限A=[];b=[]; %线性不等式约束Aeq=[];beq=[]; %线性等式约束options=gaoptimset('paretoFraction',,'populationsize',100,'ge nerations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFc ns',@gaplotpareto);% 最优个体系数paretoFraction 为;种群大小populationsize 为100,最大进化代数generations 为200,% 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端[x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)3. 计算结果-40-35-30-25-20-15-10-5-505101520253035Objective 1O b j e c t i v e 2Pareto front图1. 实例1对应的Pareto 前沿图从图1可以看出Pareto 前分布较均匀,多样性较好。
遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗传算法入门(上)代码中的进化学说与遗传学说写在之前算法所属领域遗传算法的思想解析为什么要用遗传算法?科研现状应用现状遗传算法入门系列文章:(中篇)遗传算法入门(中)实例,求解一元函数最值(MATLAB版)(下篇)遗传算法入门(下)实例,求解TSP问题(C++版)写在之前说明:本想着用大量篇幅写一篇“关于遗传算法的基本原理”作为本系列入门的第一篇,但是在找寻资料的过程中,看到网络上有大量的关于遗传算法的介绍,觉得写的都挺好,所以本文我就简单写点自己的理解。
推荐几篇关于遗传算法的介绍性文章:遗传算法详解(GA)(个人觉得很形象,很适合初学者)算法所属领域相信每个人学习一门知识之前,都会想知道这门知识属于哪一门学科范畴,属于哪一类技术领域?首先对于这种问题,GA是没有绝对的归属的。
算法的定义是解决问题的一种思想和指导理论。
而遗传算法也是解决某一问题的一种思想,用某一编程语言实现这种思想的程序具有很多特点,其中一个便是智能性和进化性,即,不需要大量的人为干涉,程序本身能够根据一定的条件自我筛选,最终得出令人满意的结果。
所以按照这种特性,把它列为人工智能领域下的学习门类毫无疑问是可以的。
遗传算法的思想是借鉴了达尔文的进化学说和孟德尔的遗传学说,把遗传算法说成是一门十足的仿生学一点都不过分。
然而从应用的角度出发,遗传算法是求最优解问题的好方法,如信号处理中的优化、数学求解问题、工业控制参数最优解、神经网络中的激活函数、图像处理等等,所以把遗传算法说成优化范畴貌似也说的过去。
为了方便理解,我们可以暂时将其定位为人工智能–智能优化,这也是很多书中描述遗传算法的惯用词汇。
遗传算法的思想解析遗传算法(gentic algorithms简称GA)是模拟生物遗传和进化的全局优化搜索算法我们知道,在人类的演化中,达尔文的进化学说与孟德尔的遗传学说起着至关重要的理论指导。
每个人作为一个个体组成一个人类种群,正是经历着物竞天择,才会让整个群体慢慢变的更好,即更加适应周围的环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.% function nsga_2(pro)%% Main Function% Main program to run the NSGA-II MOEA.% Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms.% initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2.%inp_para_definition=input_parameters_definition;%% Initialize the variables% Declare the variables and initialize their values% pop - population% gen - generations% pro - problem number%clear;clc;tic;pop = 100; % 每一代的种群数gen = 100; % 总共的代数pro = 2; % 问题选择1或者2,见switchswitch procase 1% M is the number of objectives.M = 2;% V is the number of decision variables. In this case it is% difficult to visualize the decision variables space while the % objective space is just two dimensional.V = 6;case 2M = 3;V = 12;case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3为本工程所需;M = 2; %(output parameters 个数)V = 8; %(input parameters 个数)K = 10;end% Initialize the populationchromosome = initialize_variables(pop,pro);%% Sort the initialized population% Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance% corresponding to their position in the front they belong. 真是牛 X了。
chromosome = non_domination_sort_mod(chromosome,pro);%% Start the evolution process..% The following are performed in each generation% Select the parents% Perfrom crossover and Mutation operator% Perform Selectionfor i = 1 : gen% Select the parents% Parents are selected for reproduction to generate offspring. The % original NSGA-II uses a binary tournament selection based on the % crowded-comparision operator. The arguments are% pool - size of the mating pool. It is common to have this to be half the% population size.% tour - Tournament size. Original NSGA-II uses a binary tournament % selection, but to see the effect of tournament size this is kept% arbitary, to be choosen by the user.pool = round(pop/2);tour = 2;%下面进行二人锦标赛配对,新的群体规模是原来群体的一半parent_chromosome = tournament_selection(chromosome,pool,tour);% Perfrom crossover and Mutation operator% The original NSGA-II algorithm uses Simulated Binary Crossover (SBX) and% Polynomial crossover. Crossover probability pc = 0.9 and mutation % probability is pm = 1/n, where n is the number of decision variables. % Both real-coded GA and binary-coded GA are implemented in the original % algorithm, while in this program only the real-coded GA is considered. % The distribution indeices for crossover and mutation operators as mu = 20% and mum = 20 respectively.mu = 20;mum = 20;% 针对对象是上一步产生的新的个体parent_chromosome%对parent_chromosome 每次操作以较大的概率进行交叉(产生两个新的候选人),或者较小的概率变异(一个新的候选人)操作,这样%就会产生较多的新个体offspring_chromosome =genetic_operator(parent_chromosome,pro,mu,mum);% Intermediate population% Intermediate population is the combined population of parents and % offsprings of the current generation. The population size is almost 1 and% half times the initial population.[main_pop,temp]=size(chromosome);[offspring_pop,temp]=size(offspring_chromosome);intermediate_chromosome(1:main_pop,:)=chromosome;..intermediate_chromosome(main_pop+1:main_pop+offspring_pop,1:M+V)=offs pring_chromosome;%intermediate_chromosome=inter_chromo(chromosome,offspring_chromo some,pro);% Non-domination-sort of intermediate population% The intermediate population is sorted again based on non-domination sort% before the replacement operator is performed on the intermediate % population.intermediate_chromosome = ...non_domination_sort_mod(intermediate_chromosome,pro);% Perform Selection% Once the intermediate population is sorted only the best solution is% selected based on it rank and crowding distance. Each front is filled in% ascending order until the addition of population size is reached. The% last front is included in the population based on the individuals with% least crowding distancechromosome = replace_chromosome(intermediate_chromosome,pro,pop); if ~mod(i,10)fprintf('%d\n',i);endend%% Result% Save the result in ASCII text format.save solution.txt chromosome -ASCII%% Visualize% The following is used to visualize the result for the given problem. switch procase 1plot(chromosome(:,V + 1),chromosome(:,V + 2),'y+');title('MOP1 using NSGA-II');xlabel('f(x_1)');ylabel('f(x_2)');case 2plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');title('MOP2 using NSGA-II');xlabel('f(x_1)');ylabel('f(x_2)');zlabel('f(x_3)');end%disp('run time is:')%toc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f = initialize_variables(N,problem)..% function f = initialize_variables(N,problem)% N - Population size% problem - takes integer values 1 and 2 where,% '1' for MOP1% '2' for MOP2%% This function initializes the population with N individuals and each % individual having M decision variables based on the selected problem. % M = 6 for problem MOP1 and M = 12 for problem MOP2. The objective space % for MOP1 is 2 dimensional while for MOP2 is 3 dimensional.% Both the MOP's has 0 to 1 as its range for all the decision variables. min = 0;max = 1;switch problemcase 1M = 6;K = 8; % k=决策变量(M=6)+目标变量(K-M=2)=8case 2M = 12;K = 15;case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case3为本工程所需;M = 8; %(input parameters 个数)K = 10;endfor i = 1 : N% Initialize the decision variablesfor j = 1 : Mf(i,j) = rand(1); % i.e f(i,j) = min + (max - min)*rand(1);end% Evaluate the objective functionf(i,M + 1: K) = evaluate_objective(f(i,:),problem);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f = evaluate_objective(x,problem)% Function to evaluate the objective functions for the given input vector % x. x has the decision variablesswitch problemcase 1f = [];%% Objective function onef(1) = 1 - exp(-4*x(1))*(sin(6*pi*x(1)))^6;sum = 0;..for i = 2 : 6sum = sum + x(i)/4;end%% Intermediate functiong_x = 1 + 9*(sum)^(0.25);%% Objective function onef(2) = g_x*(1 - ((f(1))/(g_x))^2);case 2f = [];%% Intermediate functiong_x = 0;for i = 3 : 12g_x = g_x + (x(i) - 0.5)^2;end%% Objective function onef(1) = (1 + g_x)*cos(0.5*pi*x(1))*cos(0.5*pi*x(2));%% Objective function twof(2) = (1 + g_x)*cos(0.5*pi*x(1))*sin(0.5*pi*x(2));%% Objective function threef(3) = (1 + g_x)*sin(0.5*pi*x(1));case 3f = [];%% Objective function onef(1) = 0;%% Objective function onef(2) = 0;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Non-Donimation Sort %按照目标函数最小了好% This function sort the current popultion based on non-domination. All the% individuals in the first front are given a rank of 1, the second front % individuals are assigned rank 2 and so on. After assigning the rank the % crowding in each front is calculated.function f = non_domination_sort_mod(x,problem)[N,M] = size(x);switch problemcase 1M = 2;V = 6;case 2M = 3;V = 12;case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3为本工程所需;..M = 2; %(output parameters 个数)V = 8; %(input parameters 个数)K = 10;endfront = 1;% There is nothing to this assignment, used only to manipulate easily in % MATLAB.F(front).f = [];individual = [];for i = 1 : N% Number of individuals that dominate this individual 支配i的解的个数individual(i).n = 0;% Individuals which this individual dominate 被i支配的解individual(i).p = [];for j = 1 : Ndom_less = 0;dom_equal = 0;dom_more = 0;for k = 1 : Mif (x(i,V + k) < x(j,V + k))dom_less = dom_less + 1;elseif (x(i,V + k) == x(j,V + k))dom_equal = dom_equal + 1;elsedom_more = dom_more + 1;endend% 这里只要考虑到求取得是函数的最小值就可以了,此时支配的概念就会变为谁的函数值小,谁去支配别的解%——————————————————————if dom_less == 0 & dom_equal ~= M % 举个例子,其中i=a,b; j= c,d; 如果i中的a,b全部大于individual(i).n = individual(i).n + 1; % 或者部分大于j中的c,d(但没有小于的情况),则称为i优于j,elseif dom_more == 0 & dom_equal ~= M % 当i优于j的时候,则此时把individual(i)_n加1individual(i).p = [individual(i).p j]; %如果i中的a,b全部小于或者部分小于j中的c,d(但没有大于的情况),则end %则称为j优于i, 则把此时的j放入individual(i)_P中;end %总之,就是说两个目标变量必须全部大于或者全部小于才能对individual有效。