发光材料
发光材料

发光材料
人们经常可以看到在夜晚能发光的物品,如交通路牌、交通民警晚上穿着的服饰、汽车的牌照、自行车上的标志、有机玻璃做的广告宣传栏、钟表和发光装饰品等。
它们中都含有发光材料。
这些发光材料一般制成发光颜料、荧光染料和发光漆等。
(1)发光颜料指能发出荧光或磷光的颜料。
荧光颜料要在紫外线激发下才能发光,在黑暗中不能持续。
磷光颜料经紫外线或日光激发发光后,在黑暗中能持续发光若干小时。
发光颜料通常是由锌、钙、钡或锶的硫化物、少量的助熔剂(如氯化钠)和微量的活化剂(如氯化铜)配成的混合物,经火煅烧而成。
荧光或磷光的颜色随着活化剂的性质和发光颜料的成分而定。
例如,在硫化锌荧光颜料中加入硫化镉,用银为活化剂时由蓝色移至红色部分,用铜作活化剂时由绿色转移至红外部分。
(2)荧光染料能吸收紫外光波,并把紫外光转变成波长较长的可见光波而反射出来的染料。
这类染料如荧光黄、酸性曙红、红汞和某些分散染料等。
它们大多是含有苯环或杂环并带有共轭双键的化合物。
荧光染料具有闪光的鲜艳色彩,除用于纤维织物的印染外,还可以作特种标志(如暗处符号)和军事追踪用。
(3)发光漆又叫荧光涂料,是能发出荧光或磷光的漆,由发光颜料和中性清漆(如聚醋酸乙烯清漆、聚丙烯酸酯清漆等)配制而成。
加入痕量的镭或铀等放射性物质,能延长发光的时间。
这种漆用于涂刷仪表、公路路标、机械设备、防火设备和防空走道等,也可用于涂刷钟表和发光的装饰品等。
发光材料课件

发光材料课件发光材料是一种特殊的材料,它能够在受到激发后发出可见光。
这种材料在各个领域都有着广泛的应用,包括照明、显示、生物医学等。
本文将介绍发光材料的基本原理、种类以及应用领域。
一、发光材料的基本原理发光材料的发光原理主要有两种,一种是通过外部激发,另一种是自发发光。
外部激发是指通过外界能量的输入,使材料处于激发态,然后再从激发态返回基态时发出光。
自发发光则是指材料自身处于激发态,不需要外界能量的输入即可发出光。
在外部激发的机制中,最常见的是荧光和磷光。
荧光是指材料在受到紫外线或可见光激发后,能够立即发出可见光。
而磷光则是指材料在受到紫外线或可见光激发后,能够在激发结束后持续一段时间发出可见光。
自发发光的机制主要有两种,一种是通过电子跃迁发光,另一种是通过激子发光。
电子跃迁发光是指材料中的电子从高能级跃迁到低能级时,释放出能量并发出光。
激子发光则是指材料中的电子与空穴结合形成激子,当激子解离时,释放出能量并发出光。
二、发光材料的种类发光材料的种类繁多,常见的有荧光材料、磷光材料、半导体发光材料等。
荧光材料是一种能够吸收紫外线或可见光并立即发出可见光的材料。
它具有高亮度、高饱和度和长寿命等特点,广泛应用于照明、显示、荧光标记等领域。
常见的荧光材料有铜铝硅酸盐、硫化锌等。
磷光材料是一种能够吸收紫外线或可见光并在激发结束后持续一段时间发出可见光的材料。
它具有较长的寿命和较高的发光效率,广泛应用于荧光显示、荧光标记、荧光探针等领域。
常见的磷光材料有氧化锌、氧化铟等。
半导体发光材料是一种能够通过电子跃迁或激子发光的半导体材料。
它具有高亮度、高效率和快速响应等特点,广泛应用于LED照明、显示屏、激光器等领域。
常见的半导体发光材料有氮化镓、砷化镓等。
三、发光材料的应用领域发光材料在各个领域都有着广泛的应用。
在照明领域,发光材料被广泛应用于LED照明。
LED照明具有高效率、长寿命和环保等优点,逐渐取代传统的白炽灯和荧光灯成为主流照明产品。
发光材料的选用

发光材料的选用
发光材料的选用需要考虑多个因素。
常见的发光材料有亚克力板、金属板、LED灯模块、外壳和面板等。
1. 亚克力板:亚克力板是一种常见的发光字材料,因其表面光滑、透明度高、硬度大、耐候性强等优点而广受欢迎。
它适用于大多数设计,可轻松制作出各种形状和颜色的发光字。
在选用亚克力板时,需要注意其厚度,一般建议选用厚度在3mm以上的亚克力板,以保证制作出来的发光字坚固耐用。
2. 金属板:金属板通常用于需要更坚固外壳或特殊效果的发光字。
铝和不锈钢是常见的选择,具有高度耐久性和防腐蚀性。
3. LED灯模块:LED灯模块是发光字的关键部分,选择高质量的LED灯模块如SMD LEDs,以确保明亮、均匀的发光效果。
同时,需要考虑LED的亮度和能效,以满足项目的要求并降低长期运营成本。
4. 外壳和面板:外壳和面板需要具备耐候性,以抵御阳光、雨水和其他自然元素的影响。
同时,如果需要透明效果,应确保外壳或面板具有适当的透明度。
5. 特殊效果:如需要特殊的装饰效果,如镜面、哑光或金属质感,可以考虑使用特殊的涂层或喷漆。
总的来说,选择发光材料需要根据具体的设计要求和使用环境来决定。
发光材料有哪些

发光材料有哪些
发光材料是指在外界作用下能够发出可见光的物质。
随着科学技术的不断发展,发光材料在各个领域得到了广泛的应用,比如LED显示屏、荧光材料、荧光标记等。
那么,发光材料究竟有哪些呢?下面我们就来了解一下。
首先,我们要提到的是荧光材料。
荧光材料是一种能够吸收紫外光或蓝光并转
化为可见光的材料。
它可以分为有机荧光材料和无机荧光材料两大类。
有机荧光材料主要是指有机化合物,比如荧光染料、荧光聚合物等;而无机荧光材料则包括荧光粉、荧光玻璃等。
荧光材料在荧光灯、荧光屏、荧光标记等方面有着广泛的应用。
其次,是磷光材料。
磷光材料是指能够吸收能量并在一定时间后以光的形式释
放出来的材料。
它可以分为无机磷光材料和有机磷光材料两种。
无机磷光材料主要包括磷光粉、磷光玻璃等;而有机磷光材料则包括有机磷光染料、有机磷光聚合物等。
磷光材料在夜光表盘、夜光标识、荧光材料激光显示器等方面有着重要的应用。
另外,还有发光二极管材料,即LED材料。
LED是一种半导体发光器件,其
发光材料主要是氮化镓、磷化铝、氮化铟等化合物半导体材料。
LED在照明、显示、指示等领域有着广泛的应用,其节能、环保的特点也使其成为了未来照明的主流产品。
此外,还有一些其他的发光材料,比如有机电致发光材料(OLED)、有机染
料激光材料(OPLD)等,它们在显示技术、光通信、激光打印等领域也有着重要
的应用。
总的来说,发光材料种类繁多,应用广泛,随着科学技术的不断进步,相信发
光材料会在更多的领域发挥重要作用,为人类的生活带来更多的便利和创新。
发光材料种类和作用

第九章 发光材料
§9.2 光致发光材料
二、磷光材料 2、稀土三基色荧光粉 (1)红粉 在提高材料性能上,加入一定量的 La、Gd、Ta、 Nb 等元素,或者氧化物(如In2O3、GeO2等)可提高其发 光亮度和稳定性。 加入一定量的硼酸盐,在降低材料的烧结温度条件 下,仍可使材料的发光亮度提高。 在 新 的 红 粉 探 索 研 究 上 有 : YVPO4·BO3:Eu3+、 InYBO3:Eu3+ 、 LaMgB5O10:Eu3+、LaSiO3·(FCl):Eu3+、 Ba2(Gd2-xYx)(Si4-yGey)O13:Eu3+等。
发光材料种类和作用
发光材料的种类繁多,应用广泛。按激发方式发 光材料可以分为(5类):
(1)光致发光材料:发光材料在光(通常是紫外 光、红外光和可见光 )照射下激发发光。
(2)电致发光材料:发光材料在电场或电流作用 下的激发发光。
(3)阴极射线致发光材料:发光材料在加速电子 的轰击下的激发发光。
(4)热致发光材料:发光材料在热的作用下的激 发发光。
第九章 发光材料
§9.2 光致发光材料
二、磷光材料 基质: 用作基质的有第Ⅱ族金属的硫化物、氧化物、硒化
物、氟化物、磷酸盐、硅酸盐和钨酸盐等,如 ZnS、BaS、 CaS、CaW03、Y3Si03、Ca3(P04)2、Zn-Si03。
激活剂: 用来作激活剂的是重金属。 所用的激活剂可以作为选定的基质的特征。不是所 有的重金属都可以用来激活选定的基质。 例如:对ZnS、CdS而言,Ag、Cu、Mn是最好的激活 剂。
界因素的影响下才发光,叫 受迫发光。
第九章 发光材料
§9.1 材料的发光机理
一、材料的发光机理
发光材料的基本特性和应用

发光材料的基本特性和应用发光材料是一类具有特殊发光性质的材料。
它们能够在光激发下,通过激发态的激光能够使材料发生较强的光发射。
随着光学和光电学技术的不断发展,发光材料在光电领域中的应用也越来越广泛。
发光材料的基本特性1. 发光原理发光材料能够在外界激发下,从能级较高的激发态跃迁到能级较低的基态,释放出能量。
这个过程中可以通过幅射或非幅射的方式进行,而总的效果是将激发态的能量转化为光发射。
发光材料的发光原理种类较多,在具体应用时需要根据材料的性质和作用场景选择合适的原理。
2. 发光颜色发光材料的发光颜色取决于其所处的能级状态,即材料的电子能带结构。
通常情况下,发光材料的发光颜色与其原子、分子等基本成分密切相关。
例如,红色的荧光材料常常来源于草酸根式的阳离子,而绿色的荧光材料则常常来源于镉硫化物等。
3. 发光效率发光材料的发光效率是评价其性能的一个指标。
一般来说,发光效率越高的材料,其发光亮度就越大。
为了提高发光效率,人们通常会对发光材料进行各种改性,比如加入掺杂物、改变结构等。
发光材料的应用1. LED照明LED(Light Emitting Diode)是当前比较常见的照明方式之一。
它利用半导体材料发光的特性,通过多种工艺制成各种形状和颜色的光源,广泛应用于室内、道路照明以及各种装饰灯具等领域。
2. 显示技术发光材料在显示技术中的应用也比较广泛。
例如,在带有发光背景板的液晶电视机和电子书阅读器中,发光材料用来形成底层光源,提供较强的背光照亮。
3. 光电器件发光材料还可以用于制备各种光电器件。
例如,发光二极管(LED)可用于光纤通信、宽带接入、军工雷达等行业,以及荧光粉、荧光玻璃等材料也被应用于指示灯、计数器、高亮度壁画、高温液体液位显示等领域。
4. 生物医疗在生物医疗领域,发光材料也被广泛应用。
例如,用于生物标记实现免疫分析、诊断分子生物学等分析方法;分析、诊断和治疗人类疾病等。
综上所述,发光材料具有独特的性能和应用优势,是现代光电技术和光电学领域中不可或缺的重要组成部分。
发光材料综述范文

发光材料综述范文引言:发光材料是指能够在外界作用下转换能量并产生发光现象的一类材料。
发光材料广泛应用于照明、显示、传感、生物医学和安全等领域。
本文将对常见的发光材料进行综述,包括有机发光材料、无机发光材料和半导体发光材料。
一、有机发光材料有机发光材料是指由有机化合物构成的能够发出光的材料。
其中最常见的有机发光材料是有机荧光材料和有机电致发光材料。
有机荧光材料具有很高的发光效率和色纯度,常用于有机发光二极管(OLEDs)和有机太阳能电池等器件中。
有机电致发光材料通过在外加电场作用下产生电子与空穴的复合,从而发出光。
有机电致发光材料的发光机制复杂,但具有优秀的发光性能,适用于显示和照明应用。
二、无机发光材料无机发光材料是指由无机化合物构成的能够发光的材料。
常见的无机发光材料包括磷光体、发光陶瓷和荧光粉等。
磷光体具有优异的发光性能和热稳定性,是目前最常用的发光材料之一、发光陶瓷是将发光颜料添加到陶瓷材料中制成的一种发光材料,具有较高的亮度和发光稳定性。
荧光粉能够将紫外光转换为可见光,广泛应用于荧光灯、LED照明和显示器件中。
三、半导体发光材料半导体发光材料基于半导体材料,通过外加电场或注入电流等方式产生发光。
最常见的半导体发光材料是氮化物、砷化物和磷化物等。
氮化物发光材料具有高亮度、高发光效率和高热稳定性,是白光LED的重要材料。
砷化物发光材料在红外光领域具有广泛的应用,例如红外激光器和红外检测器。
磷化物发光材料在高功率LED和激光二极管中有着重要的地位。
四、发光材料的应用发光材料在照明、显示、传感、生物医学和安全等领域有着广泛的应用。
在照明领域,发光材料可用于制造高效节能的LED照明产品。
在显示领域,发光材料可用于制造OLED显示屏和液晶显示背光源。
在传感领域,发光材料可用于制造生物传感器和化学传感器。
在生物医学领域,发光材料可用于生物成像和药物传递等应用。
在安全领域,发光材料可用于制造防伪标识和荧光染料。
第四章 发光材料

上转换发光材料 • 发光体在红外光的激发下发射可见光,这种现象称为上转 换发光,这种发光体称为上转换发光材料。上转换发光现 象有三种情况: • 第一种情况是确实有一个中间能级,在光激发下处于基态 的电子跃迁到这个中间能态;电子在这个中间能态的寿命 足够长,以致它还可吸收另一个光子而跃迁到更高的能级。 电子从这个更高的能态问基态跃迁,就发射出波长比激发 光的波长更短的光束: • 第二种情况是中间能级并不存在,但发光体可以连续吸收 两个光子,使基态电子直接跃迁到比激发光光子的能量大 得更多的能级; • 第三种情况是两个敏化中心被激发,它们把激发能按先后 顺序或同时传递给发光中心,使其中处于基态的电子跃迁 到比激发光光子能量更高的能级,然后弛豫下来,发出波 长短得多的光。
发光持续时间特征 • 最初的发光分为荧光(fluorescence)及磷光 两种。荧光是指在激发时发出的光,磷光 是指在激发停止后发出的光。发光总是延 迟于激发。
照明下
照明停止后的瞬间 (左:ZnS,右: SrAl2O4 )
照明停止,过4min后
萤火虫是不是荧光???
余辉时间:规定当激发停止时的发光亮度衰减到 10%时所经历的时间,简称余辉。如人眼能感觉到 余辉的长发光期间者为磷光,看不到余辉的短发光 期间者为荧光。 根据余辉时间的长短,可以划分六个范围: 极短余辉:余辉时间<1µs的发光; 短余辉:余辉时间1--10µs的发光; 中短余辉:余辉时间0.01—l ms的发光; 中余辉:余辉时间1—100ms的发光; 长余辉:余辉时间0.1—1s的发光; 极长余辉:余辉时间>1s的发光。
• 稀土三基色荧光粉分别是红粉、绿粉、蓝粉按一 稀土三基色荧光粉 三基色荧光粉 定比例混合而成。它解决了卤磷酸盐长期存在的 光效和显色性不能同时提高的矛盾,更由于这类 材料具有耐高负荷、耐高温的优异性能,成为新 一代灯用荧光粉材料。 • Y2O3:Eu3+(铕)是效率高、色纯度好、光衰性能 稳定而惟一达到制灯要求的稀土红粉。加入一定 量的La、Gd、Ta、Nb等元素,或者氧化物〔如 In2O3、GeO2等)可提高其发光亮度和稳定性。加 入一定量的硼酸盐,在降低材料的烧结温度条件 下,仍可使材料的发光亮度提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光源 光发射二极管 白炽灯,60W 白炽灯,100W 荧光灯管 水银灯,60W 水银灯,100W
光通量(lm) 0.01
730 1380 2300 5400 125000
8
照度
照度是指发光体照射在被照物体单位面积上的光通量, 其国际单位是lx(勒 [克斯] )。
1 lx = 1 lm/m2
照度的定义和测量比较复杂,象平均柱面照度、等效球 照度、标量照度等,它们的测量条件和计算方法有所不 同。 在建筑和装饰工程中经常会遇到、灯光系统中偶尔也涉 及到照度概念。
受迫发光:受激发的电子 只有在外界因素的影响下 才发光(亚稳态发光)。
分立中心发光
发光材料的发光中心受激发 时并未离化,发光过程全部 局限在中心内部。被激发的 发光中心内的电子虽然获得 了跃迁至激发态的能量,但 并未离开中心,迟早会释放 出激发能,回到基态而发出 光来。
这种发光是单分子过程,并 不伴随有光电导,故又称为 “非光电导型”发光。 3
21
例:
上转换发光的激
发过程:
第1个光子将电子激
发到3F2能级,由于 3F2、3F3、3H4相距很 近,电子很快弛豫到
3H4。在此,它可能 吸收第2个光子跃迁
至1D2;也可能跃迁 到基态或3F4发出红外 光。3F4上的电子吸收 第2个光子跃迁到1G4, 1G4上的电子吸收第3 个电子跃迁到3P1,然
光致发光材料 电致发光材料
发光材料在光(紫外光、红外光、可见光等) 照射下激发发光。
发光材料在电场或电流作用下的激发发光。
射线致发光材料 发光材料在电子束或其它射线束的轰击下的
激发发光。
热致发光材料 发光材料在热作用下的激发发光。
等离子发光材料 发光材料在等离子体的作用下的激发发光。
14
光致发光材料
交流驱动
可实现彩色化及全色显示 液晶背光源
交流粉末电致发光
发光效率高(1-5lm/W) 寿命短( 2500h)
直流薄膜电致发光——可靠性差
直流驱动 直流粉末电致发光
低压矩阵驱动 可实现彩色化
30
交流粉末电致发光器件结构:
Al ELECTRODE INSULATOR
PHOSPHOR (50-100μm )
上转换发光的另一种机制:逐次传递能量。
双掺杂体系:一种为能量的供体;一种为能量的受体
受体
供体
24
一个高能量的紫外或真空紫外光子变成两
量子剪裁 个能量较低的可见光光子的现象称为量子
剪裁,或称为量子劈裂或光子级连发射。
如(a)图,一个可 见光光子的产生以消 耗一个高能光子为代 价,即使量子效率接 近100%,能量效率 也比100%小很多。 如:荧光灯中的荧光 粉把紫外光转换为可 见光的量子效率超过 90%,但能量效率只 有50%左右。
Tm:铥 后弛豫到1I6,再… 22
吸收雪崩
该现象易发生在基态对激发光的吸收比 激发态弱,而且离子间相互作用强的体 系中。
由于基态吸收比较弱,开始时 激发态E1上的电子数不多,达 到E2上的电子也不多,上转换 发光较弱。
但处于激发态E2的离子和处于 基态G的另一个离子相互作用, 发生交叉弛豫,A离子E2上电 子跃迁到E1,同时B离子基态 的电子跃迁到E1,导致E1的电 子数增加了2个。此过程使E1 上的电子数目倍增,于是,从 E上1跃转迁换到发E光2的加电强子。数目也倍增,23
9
光源
照度(lx)
太阳,夏
70000
太阳,冬
5500
白昼,阴天
1000~2000
满月夜
0.25
星光,晴朗无月夜
0.001
工作台照明
1000
起居室照明
120
街道照明
1~16
10
亮度
亮度是指发光体在单位面积内发光强度。 单位是:cd/cm2。 坎 [德拉](cd)为发光强度的国际单位。
与照度定义几乎相同,如果我们把每一物体都视为光
在材料的禁带中,存在着不同深度的陷 阱。在激发过程中,有的电子就掉进了 这些深度不同的陷阱。陷阱中的电子回 到导带的几率为:
E
P e kT
若温度T大,则P大,即导带中的电子数 目增多,复合的次数增多,发光增强。
陷阱中的电子数目是有限的,这些电子 耗尽了,即使继续升温,也没有可以参 与复合的电子,因此不再发光。
(d). 电子在穿过发光层后,被另一侧的界面俘获。
32
碰撞离化
电致发光的一种重要的激发机构。
在碰撞离化过程中电场的能量直接转变成晶体中电子的能 量,使得电子能量分布发生变化,处在导带中的电子在电 场加速下达到较高的能量状态,并与发光中心碰撞而离化, 即形成了激发态。当电子从这些能量较高的激发态再跃迁 回到原来能量较低的状态时,就可能产生各种辐射复合发 光。
25
26
电致(场致)发光材料
Electroluminescence 电致发光是由直流或交流电场作用在物质上所产生的 发光现象,电能直接转变为光能,且无热辐射产生。
电致发光机理:
1. 本征式电致发光 2. 注入式电致发光
27
本征式电致发光
ITO
ITO:InSnO2,Indium Tin Oxide
复合发光
发光材料受激发时分离出一对带异号电荷的粒子,一 般为空穴和电子,这两种粒子复合时便发光,称为复 合发光。 由于离化的带电粒子在发光材料中漂移或扩散,从而 构成特征性光电导,故又称为“光电导型”发光。
短复合发光,单分子过程,<10-10s 长复合发光,双分子过程
4
材料的发光特征
1. 颜色特征
陷阱可有不同深度,使电子释放出来所 需的温度就有高有低。
20
上转换发光
如果一个激发光光子产生 一个发射光光子,发射光 子的能量必然不会大于激 发光光子的能量。
如果发光材料能够吸收两 个或多个光子而产生一个 光子,可能发射出波长短 的光,这种现象称为上转 换发光。
上转换发光可以由激发态 吸收或连续能量传递产生。
加上正向电压时,势垒高
度降低,耗尽层减薄,能
量较大的电子和空穴分别
注入到p区或n区,同p区的
空穴和n区的电子复合,同
时以光的形式辐射出多余
的能量。
29
高场电致发光分类
基于高场下的电致发光现象所制成的器件,根据发光物 质的形态和驱动电压波形可分为四类;20000h)
近年来电视演播室兴起的冷光源布光,是对传统光源的变革。冷光 源的色温高,耗能低,发热小,在进行室内外摄相时,色温转换简 单,画面自然,当然冷光源对调光台的性能要求也要高些。
12
发光光谱
(1)线谱
发光光谱指发光强度随波长或能量的 分布曲线,是发光材料独具的特征。
(2)带谱
(3)
13
发光材料分类(按激发方式来分)
源的话,那么亮度就是描述光源光亮的程度,而照度
正好是把每一物体都作为被照物体,用一块木板来举
例说明,当一定光束照到木板时我们讲木板有多少照
度,然后木板将多少光束反射到人眼,就称为木板的
多少亮度,那么有如下式子:亮度等于照度乘以反射
率。在同一房间同一位置一块白布和一块黑布的照度
是相同的,而亮度是不同的。
激光致冷就是利用反斯托克斯现象不断将物体的振动 能以光的形式发射出去,使物体温度降低。
19
当激发发光体后,发光将逐渐衰减,直至发光消失。随后,
热释发光 逐渐升高发光体的温度,有的发光材料又会逐渐发光,并逐 渐变强,在某一温度时达到最大值后又逐渐变弱,这种变化 随着温度的上升,可以重复几次,直到高温时发光才消失。
Photoluminescence
吸收光谱 光的吸收系数随波长或频率的变化关
系曲线,称为吸收光谱。
激发光谱
表示用不同波长的光激发材料时,使 材料发出某一波长光的效率。
15
发光过程
(1) 基质晶格或激活剂(或称发光中心)吸收激发能; (2) 基质晶格将吸收的激发能传递给激活剂; (3) 被激活的激活剂发出一定波长的光而返回基态,
ZnS:Cu,Cl或 (Zn,Cd)S:Cu,Br
本征式电致发光:利用电场直接激励电子,高能电子 与空穴复合而发光。电子的能量来自数量级为108V/m 的高电场,因此这种发光现象称为高场电致发光。 28
注入式电致发光
在低场下由电子-空穴对在pn结附近复合而产生的发光现 象。
由于电子和空穴的扩散作 用,在p-n结接触面两侧形 成空间电荷区(称为耗尽 层),形成一个势垒,阻 碍电子和空穴的进一步扩 散。
6
相关名词解释
光通量
光通量是指光源在单位时间内向周围空间辐射的能引起 视觉反应能量,即可见光的能量。 它描述的是光源的有效辐射值,其国际单位是1m(流 明)。 同样功率的灯具的光通量可能完全不同,这是因为它们 的光效不同的缘故。比如:普通照明灯泡只有10 1m/W, 而金属卤素灯可以达到80 1m/W。
不同的发光材料有着不同的发光颜色。
2. 发光强度特征
发光强度代表发射光的能量,是一个客观数值;发光的亮度是人眼的 感觉,是主观判断的结果,其中包含了眼睛对不同颜色视觉的差别。 发光效率用来表征材料的发光本领。
量子效率:发光的量子数与激发源输入的量子数的比值。 能量效率(功率效率):发光的能量与激发源输入的能量的比值。 流明效率(光度效率):发光的流明数与激发源输入的能量的比值 (lm/W)。
18
斯托克斯规则
发光波长总是大于激发波长。即发光的光子能量必 然小于激发光的光子能量。
用紫外线激发发光材料时,可得到可见光区域的各 种颜色的光。
用蓝光激发,只能得到红光、橙光,至多是绿光。
若周围环境的振动能比较高,而发光中心的激发态所 处的振动能级比较低,此时发光中心有可能得到一部 分振动能而升到比较高的激发态。从激发态到基态的 跃迁所伴随的发光的能量就比激发能量高,发光的波 长比激发光的波长短,称为反斯托克斯发光。