第4关 以动点函数图象问题为背景的选择填空题(解析版)
动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)

动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。
2022年冀教版八年级数学下册第二十一章一次函数定向练习试题(含详细解析)

八年级数学下册第二十一章一次函数定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .42、无论m 为何实数,直线y =-x +4与y =x +2m 的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限3、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x 件(x >2),则应付货款y (元)与商品件数x 的函数关系式( )A .y =54x (x >2)B .y =54x +10(x >2)C .y =54x -90(x >2)D .y =54x +100(x >2)4、若一次函数()11y m x =--的图像经过第一、三、四象限,则m 的值可能为( )A .-2B .-1C .0D .25、点()11,A x y 和()22,B x y 都在直线y x m =-+上,且12x x ≥,则1y 与2y 的关系是( )A .12y y ≤B .12y y ≥C .12y y <D .12y y >6、如图,点P 是▱ABCD 边上一动点,沿A →D →C →B 的路径移动,设P 点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( )A .B .C .D .7、把函数y =x 的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)8、如图,在平面直角坐标系中,线段AB 的端点为A (﹣2,1),B (1,2),若直线y =kx ﹣1与线段AB 有交点,则k 的值不能是( ).A .-2B .2C .4D .﹣49、点A (﹣1,y 1)和点B (﹣4,y 2)都在直线y =﹣2x 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1≥y 210、已知一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象经过点(0,-1),且y 的值随x 值的增大而增大,则这个一次函数的表达式可能是( )A .y =﹣2x +1B .y =2x +1C .y =﹣2x ﹣1D .y =2x ﹣1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A (-2,a ),B (3,b )在直线y =2x +3上,则a ___b .(填“>”“<”或“=”号)2、像h =0.5n ,T =-2t ,l =2πr 这些函数解析式都是______与______的积的形式.一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做______函数,其中k 叫做______.3、已知函数()325m y m x -=-+是关于x 的一次函数,则m =______.4、如图,已知函数y ax b =+和y kx =的图象交于点A ,则根据图象可得,二元一次方程组y ax b y kx=+⎧⎨=⎩的解是_______.5、如图,一次函数3y kx =-的图像与y 轴交于点A ,与正比例函数y mx =的图像交于点P ,点P 的横坐标为1.5,则满足36kx mx kx -<<+的x 的范围是______.三、解答题(5小题,每小题10分,共计50分)1、对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:如果图形M 上存在点Q ,使得0≤PQ ≤2,那么称点P 为图形M 的和谐点.已知点A (﹣4,3),B (4,3).(1)在点P 1(﹣2,1),P 2(﹣1,0),P 3(5,4)中,直线AB 的和谐点是 ;(2)点P 为直线y =x +1上一点,若点P 为直线AB 的和谐点,求点P 的横坐标t 的取值范围;(3)已知点C (4,﹣3),D (﹣4,﹣3),如果直线y =x +b 上存在矩形ABCD 的和谐点E ,F ,使得线段EF 上的所有点都是矩形ABCD 的和谐点,且EF >,请直接写出b 的取值范围.2、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水x 吨,应交水费y 元.(1)若08x <≤,请写出y 与x 的函数关系式.x ,请写出y与x的函数关系式.(2)若8(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?3、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x (h)之间的函数关系,且OC与EF相交于点P.(1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;(2)求线段OC对应的y甲与x的函数关系式;(3)求经过多少h,甲、乙两人相距的路程为6km.4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:(1)货车的速度为______km/h ,轿车的速度为______km/h ;(2)求y 与x 之间的函数关系式(写出x 的取值范围),并把函数图像画完整;(3)货车出发______h ,与轿车相距30km .5、如图,在平面直角坐标系中,直线112l :y x b =+与直线2:2l y x =相交于点(,4)B m .(1)求m ,b 的值;(2)求AOB 的面积;(3)点P 是x 轴上的一点,过P 作垂于x 轴的直线与12,l l 的交点分别为C ,D ,若P 点的横坐标为n ,当2CD >时直接写出n 的取值范围.-参考答案-一、单选题1、B【解析】【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.2、C【解析】【分析】通过一次函数中k 和b 的符号决定了直线经过的象限来解决问题.【详解】解:因为y =-x +4中,k =-1<0,b =4>0,∴直线y =-x +4经过第一、二、四象限,所以无论m 为何实数,直线y =-x +4与y =x +2m 的交点不可能在第三象限.故选:C .【点睛】本题考查了一次函数中k 和b 的符号,k >0,直线经过第一、三象限;k <0,直线经过第二、四象限.3、B【解析】【分析】由题意得2x >,则销售价超过100元,超过的部分为60100x -,即可得.【详解】解:∵2x >,∴销售价超过100元,超过的部分为60100x -,∴100(60100)0.910054905410y x x x =+-⨯=+-=+(2x >且为整数),故选B .【点睛】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.4、D【解析】【分析】利用一次函数图象与系数的关系可得出m -1>0,解之即可得出m 的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y =(m -1)x -1的图象经过第一、三、四象限,∴m -1>0,∴m >1,∴m 的值可能为2.故选:D .【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k >0,b <0⇔y =kx +b 的图象经过一、三、四象限”是解题的关键.5、A【解析】【分析】根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.【详解】解:∵直线y =-x +m 的图象y 随着x 的增大而减小,又∵x 1≥x 2,点A (x 1,y 1)和B (x 2,y 2)都在直线y =-x +m 上,∴y 1≤y 2,故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.6、A【解析】【分析】分三段来考虑点P 沿A →D 运动,BAP △的面积逐渐变大;点P 沿D →C 移动,BAP △的面积不变;点P 沿C →B 的路径移动,BAP △的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.【详解】解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,12y hx=,h是定值,y是x的一次函数,点P沿A→D运动,BAP的面积逐渐变大,且y是x的一次函数,点P沿D→C移动,BAP的面积不变,点P沿C→B的路径移动,BAP的面积逐渐减小,同法可知y是x的一次函数,故选:A.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.7、C【解析】【分析】由函数“上加下减”的原则解题.【详解】解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,当x=2时,y=2+2=4,所以在平移后的函数图象上的是(2,4),故选:C.本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.8、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.9、B【解析】【分析】由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k=-2<0,∴y随x的增大而减小,∵-4<-1,故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.10、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,∴b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.二、填空题1、<【解析】【分析】根据一次函数的解析式可得到函数的增减性,则可比较a、b的大小.【详解】解:∵在y=2x+3中,k=2>0,∴y 随x 的增大而增大,∵点A (−2,a ),B (3,b )在直线y =2x +3上,且−2<3,∴a <b ,故答案为:<.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y =kx +b 中,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.2、 常数 自变量 正比例 比例系数【解析】略3、4【解析】【分析】由一次函数的定义可知x 的次数为1,即|3−m |=1,x 的系数不为0,即()20m -≠,然后对()3120m m -=-≠,计算求解即可.【详解】 解:由题意知()3120m m -=-≠,解得2m =(舍去),4m =故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.4、23 xy=⎧⎨=⎩【解析】【分析】根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.【详解】解:由图像可知二元一次方程组y ax by kx=+⎧⎨=⎩的解是23xy=⎧⎨=⎩,故答案为:23 xy=⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.5、3 1.5x-<<##1.5>x>-3【解析】【分析】根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为3 1.5x-<<.【详解】∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,∴1.51.53 y my k=⎧⎨=-⎩解得m=k-2联立y =mx 和y =kx +6得(2)6y k x y kx =-⎧⎨=+⎩ 解得x =-3即函数y =mx 和y =kx +6交点P ’的横坐标为-3,观察函数图像得,满足kx −3<mx <kx +6的x 的范围为:3 1.5x -<<故答案为:3 1.5x -<<【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx −3<mx <kx +6解集转化为直线y =mx 与直线y =kx -3,直线y =kx +6相交的横坐标x 的范围.三、解答题1、 (1)P 1,P 3(2)0≤t ≤4(3)3≤b <5或﹣5<b ≤﹣3【解析】【分析】(1)作出直线AB图象,根据到直线的距离即可得出结论;(2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;(3)根据图象找出临界值,再根据对称性写全取值范围即可.(1)解:作AB图象如图,P2到AB的距离为3不符合和谐点条件,P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,故直线AB的和谐点为P1,P3;故答案为:P1,P3;(2)解:∵点P为直线y=x+1上一点,∴设P点坐标为(t,t+1),寻找直线上的点,使该点到AB垂线段的距离为2,∴|t+1-3|=2,解得t=0或t'=4,∴0≤t≤4;(3)解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>∴3≤b<5,由对称性同法可知﹣5<b ≤﹣3也满足条件,故3≤b <5或﹣5<b ≤﹣3..【点睛】本题主要考查一次函数的知识,弄清新定义是解题的关键.2、 (1) 1.5y x =(2) 2.2 5.6y x =-(3)13吨【解析】【分析】(1)当0<x ≤8时,根据水费=用水量×1.5,即可求出y 与x 的函数关系式;(2)当x >8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y 与x 的函数关系式;(3)当0<x ≤8时,y ≤12,由此可知这个月该户用水量超过8吨,将y =23代入(2)中所求的关系式,求出x 的值即可.(1)根据题意可知:当08x <时, 1.5y x =;根据题意可知:当8x >时, 1.58 2.2(8) 2.2 5.6y x x =⨯+⨯-=-; (3)当08x <时, 1.5y x =,y 的最大值为1.5812⨯=(元),1223<,∴该户当月用水超过8吨.令 2.2 5.6y x =-中23y =,则23 2.2 5.6x =-,解得:13x =.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.3、 (1)612y x 乙,9km(2)18y x 甲(3)经过14小时或1小时,甲、乙两人相距6km . 【解析】【分析】(1)根据题意和函数图象中的数据,可以得到y 乙与x 的函数关系式以及两人相遇地点与A 地的距离;(2)根据函数图象中的数据,可以计算出线段OP 对应的y 甲与x 的函数关系式;(3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km .解:设y 乙与x 的函数关系式是y kx b =+乙,∵点E (0,12),F (2,0)在函数y 乙=kx +b 的图象上,∴2012k b b ,解得612k b ,即y 乙与x 的函数关系式是612y x 乙,当x =0.5时,60.512=9y 乙,即两人相遇地点P 与A 地的距离是9km ;(2)解:设线段OC 对应的y 甲与x 的函数关系式是y 甲=ax ,∵点(0.5,9)在函数y 甲=ax 的图象上,∴9=0.5a , 解得a =18,即线段OP 对应的y 甲与x 的函数关系式是y 甲=18x ;(3) 解:①令186126,x x 即24126,x 24126x 或24126,x 解得:34x =或1,4x = 甲从A 地到达B 地的时间为:122=183小时, 经检验:34x =不符合题意,舍去, ②当甲到达B 地时,乙离B 地6千米所走时间为:6=16(小时), 综上所述,经过14小时或1小时,甲、乙两人相距6km . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.4、 (1)80,100(2)当02x ≤≤时,180360y x =-+;当2 2.4x <≤时,0y =;当2.44x <≤时,180432y x =-;当4 4.9x <≤时,8032y x =-,图见解析 (3)116或7730【解析】【分析】(1)结合图象可得经过两个小时,两车相遇,设货车的速度为/xkm h ,则轿车的速度为()20/x km h +,根据题意列出方程求解即可得;(2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;(3)将30y =代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.(1)解:由图象可得:经过两个小时,两车相遇,设货车的速度为/xkm h ,则轿车的速度为()20/x km h +,∴()202360x x ++⨯=,解得:80x =,20100x +=,∴货车的速度为80/km h ,则轿车的速度为100/km h ,故答案为:80;100;(2)当02x ≤≤时,图象经过()0,360,()2,0点,设直线解析式为:()0y kx b k =+≠,代入得:36002b k b=⎧⎨=+⎩, 解得:360180b k =⎧⎨=-⎩, ∴当02x ≤≤时,180360y x =-+;24分钟0.4=小时,∵两车相遇后休息了24分钟,∴当2 2.4x <≤时,0y =;当 2.4x =时,轿车距离甲地的路程为:802160km ⨯=,货车距离乙地的路程为:1002200km ⨯=, 轿车到达甲地还需要:160100 1.6h ÷=,货车到达乙地还需要:20080 2.5h ÷=,∴当2.44x <≤时,()()80 2.4100 2.4180432y x x x =-+-=-;当4 4.9x <≤时,()16080 2.48032y x x =+-=-;当 2.4x =时,0y =;当4x =时,288y =;当 4.9x =时,360y =;∴函数图象分别经过点()2.4,0,()4,288,()4.9,360,作图如下:(3)①当02x ≤≤时,令30y =可得:30180360x =-+, 解得:116x h =; ②当2.44x <≤时,令30y =可得:30180432x =-, 解得:7730x h =; ③当4 4.9x <≤时,令30y =可得:308032x =-;解得::31440x =<,不符合题意,舍去; 综上可得:货车出发116h 或7730h ,与轿车相距30km ,故答案为:116或7730.【点睛】题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.5、 (1)m=2,b=3(2)12(3)23n<或103n>【解析】【分析】(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.(1)解:∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),将点B(2,4)代入直线11 2l:y x b=+得:1242b⨯+=,解得b=3;(2)将y=0代入132y x=+,得:x=-6,∴A (-6,0),∴OA =6,∴△AOB 的面积=1642⨯⨯=12;(3)令x =n ,则113322x n +=+,22x n =, 当C 、D 在点B 左侧时, 则13222n n +->, 解得:23n <;当C 、D 在点B 右侧时, 则12322n n ⎛⎫-+> ⎪⎝⎭, 解得:103n >; 综上:n 的取值范围为23n <或103n >. 【点睛】 本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.。
中考数学之一次函数中的动点问题与实际问题(解析版)

专题一次函数中的动点问题与实际问题【例题精讲】题型一、角度问题例1. 【2019·莆田市期末】如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足√m−6+(n-12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,-2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.【答案】见解析.【解析】解:(1)∵√m−6+(n-12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则:b=12,6k+b=0,解得:k=-2,b=12,∴直线AB解析式为y=-2x+12,∵直线AB点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图所示,设直线CD解析式为y=12x+n,边点C(4,4)代入得到n=2,即直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图,过点C作CF⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C 作x 轴垂线l ,分别过F 、E 作FM ⊥l ,EN ⊥l ,则△FMC ≌△CNE ,则FM =CN =6,CM =EN =4,即F 点坐标为(-2,8),由E (0,-2),得直线EF 的解析式为:52y x =--联立52y x =--,y =-2x +12,得:x =143-,y =643-, 即点P 坐标为:(143-,643-). 题型二、面积问题例1. 【2019·高密市期末】如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)请直接写出不等式kx +b ﹣3x >0的解集.(3)若点D 在y 轴上,且满足S ⊥BCD =2S ⊥BOC ,求点D 的坐标.【答案】见解析.【解析】解:(1)当x =1时,y =3x =3,⊥点C 的坐标为(1,3).将A (﹣2,6)、C (1,3)代入y =kx +b ,得:263k b k b -+=⎧⎨+=⎩, 解得:14k b =-⎧⎨=⎩;(2)由kx+b﹣3x>0,得:kx+b>3x,⊥点C的横坐标为1,⊥x<1;(3)在y=﹣x+4中,当y=0时,x=4;x=0时,y=4,⊥点B的坐标为(4,0),直线AB与y轴交点为:F(0,4).过点C作CE⊥y轴于E,则E(0,3),⊥S⊥BCD=2S⊥BOC,⊥S⊥BDF-S⊥CDF=2S⊥BOC,即12×DF×OB-12×DF×CE=2×12×OE×OB,1 2×DF×4-12×DF×1=2×12×3×4,解得:DF=8,⊥F(0,4),⊥D(0,﹣4)或D(0,12).例2. 【2019·成都市期末】如图,已知直线y=kx+4(k≠0)经过点(-1,3),交x轴于点A,y轴于点B,F 为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.(1)当0<t<4时,求证:FC=FD;(2)连接CD,若⊥FDC的面积为S,求出S与t的函数关系式;(3)在运动过程中,直线CF交x轴的负半轴于点G,11OC OG是否为定值?若是,请求出这个定值;若不是,请说明理由.【答案】见解析.【解析】解:(1)证明:连接OF,⊥直线y=kx+4经过点(-1,3),⊥-k+4=3,解得:k=1,即直线AB的解析式为:y=x+4,当y=0时,x=-4;当x=0时,y=4;⊥A(-4,0),B(0,4),⊥OA=OB=4,⊥⊥AOB=90°,⊥⊥AOB是等腰直角三角形,⊥CBF=45°,⊥F为线段AB的中点,⊥OF=12AB=BF,OF⊥AB,⊥DOF=12⊥AOB=45°=⊥CBF,⊥⊥OFB=90°,⊥DF ⊥CF ,⊥⊥DFC =90°,⊥⊥OFD =⊥BFC ,⊥⊥BCF ⊥⊥ODF (ASA ),⊥FC =FD ;(2)解:⊥当0<t <4时,连接OF ,由题意得:OC =t ,BC =4-t ,由(1)得:⊥BCF ⊥⊥ODF ,⊥BC =OD =4-t ,⊥CD 2=OD 2+OC 2=(4-t )2+t 2=2t 2-8t +16,⊥FC =FD ,⊥DFC =90°,⊥⊥FDC 是等腰直角三角形,⊥FC 2=12CD 2,⊥S =12FC 2 =12×12CD 2 =21242t t -+;⊥当t ≥4时,连接OF ,由题意得:OC =t ,BC =t -4,由(1)得:⊥BCF ⊥⊥ODF ,⊥BC =OD =t -4,⊥CD 2=OD 2+OC 2=(t -4)2+t 2=2t 2-8t +16,⊥S =21242t t -+;综上所述,S 与t 的函数关系式为S =21242t t -+;(3)解:11OC OG +为定值12;理由如下:⊥当0<t <4时,当设直线CF 的解析式为:y =mx +t ,⊥A (-4,0),B (0,4),F 为线段AB 的中点,⊥F (-2,2),把点F (-2,2)代入y =mx +t 得:-2m +t =2,解得:m =12(t -2),⊥直线CF的解析式为:y=12(t-2)x+t,当y=0时,x=22tt-,即G(22tt-,0),⊥OG=22tt-,⊥11OC OG+=122tt t-+=12;⊥当t≥4时,同⊥得:11OC OG+=122tt t-+=12;综上所述,11OC OG+为定值12.题型三、复杂实际问题例1. 【2019·泉州市晋江区期中】某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【答案】(1)40;(2)(3)见解析.【解析】解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=()() 606001 606013t tt t-+≤<⎧⎨-≤≤⎩;(3)d2=40t,⊥当0≤t<1时,d2+d1>10,即:﹣60t+60+40t>10,解得:0≤t<2.5,⊥当0≤t<1时,两遥控车的信号不会产生相互干扰;⊥当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤t<52时,两遥控车的信号不会产生相互干扰;综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【刻意练习】1. 【2019·乐亭县期末】如图1,四边形ABCD中,AB⊥CD,⊥B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,⊥BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.5B.√34C.8D.2√3【答案】B.【解析】解:当t=3时,点P到达A处,即AB=3;过点A 作AE ⊥CD 交CD 于点E ,则四边形ABCE 为矩形, ⊥AC =AD ,⊥DE =CE =12CD , 当S =15时,点P 到达点D 处,则15=12CD •BC , 15=12(2AB )•BC 3×BC =15,则BC =5,由勾股定理得AD =AC =√34,故答案为:B .2. 【2019·卢龙县期末】如图,直线y 1=2x -2的图象与y 轴交于点A ,直线y 2=-2x +6的图象与y 轴交于点B ,两者相交于点C .(1)方程组{2x −y =2,2x +y =6的解是______; (2)当y 1>0与y 2>0同时成立时,x 的取值范围为______;(3)求⊥ABC 的面积;(4)在直线y 1=2x -2的图象上存在异于点C 的另一点P ,使得⊥ABC 与⊥ABP 的面积相等,请求出点P 的坐标.【答案】(1){x =2y =2 ;(2)1<x <3;(3)(4)见解析.【解析】解:(1)如图所示:方程组{2x −y =2,2x +y =6的解为:{x =2y =2;故答案为:{x =2y =2;(2)如图所示:当y 1>0与y 2>0同时成立时, x 取何值范围是:1<x <3; 故答案为:1<x <3;(3)令x =0,则y 1=-2,y 2=6, ⊥A (0,-2),B (0,6). ⊥AB =8. ⊥S ⊥ABC =12×8×2=8; (4)令P (x 0,2x 0-2),则S ⊥ABP =12×8×|x 0|=8, ⊥x 0=±2. ⊥点P 异于点C , ⊥x 0=-2,2x 0-2=-6. ⊥P (-2,-6).3. 【2019·莆田市期末】某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.【答案】见解析.【解析】解:(1)⊥8x+6y+5(20-x-y)=120,⊥y=20-3x,⊥y与x之间的函数关系式为y=20-3x.(2)由x≥3,y=20-3x≥3,即20-3x≥3,可得3≤x≤253,⊥x为正整数,⊥x=3,4,5.故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(3)设此次销售利润为W百元,W=8x×12+6(20-3x)×16+5[20-x-(20-3x)] ×10=-92x+1920,⊥W随x的增大而减小,x=3,4,5,当x=3时,W最大=1644 百元.4. 【问题情境】已知矩形的面积为一定值1,当该矩形的一组邻边分别为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的一边长为x,周长为L,则L与x的函数表达式为.【探索研究】小彬借鉴以前研究函数的经验,先探索函数y=x+1x的图象性质.(1)结合问题情境,函数y=x+1x的自变量x的取值范围是,如表是y与x的几组对应值.x (1)41312123m…y (1)443132122212313144…⊥直接写出m的值;⊥画出该函数图象,结合图象,得出当x=时,y有最小值,y的最小值为;【解决问题】(2)直接写出“问题情境”中问题的结论.【答案】见解析.【解析】解:【数学模型】L与x的函数表达式为:L=2(x+1x );【探索研究】(1)自变量x的取值范围是:x>0;⊥当y=144时,x=4,⊥m的值为4;⊥当0<x<1时,y随x增大而减小;当x>1时,y随x增大而增大;当x=1时函数y=x+1x(x>0)的最小值为2;故答案为:L=2(x+1x);x>0;1,2;(2)当邻边分别为1和1时,它的周长最小,最小值是4.5. 【2018·辽阳市期末】为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?【答案】见解析.【解析】解:(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);(2)y甲=y乙时,1050+15x=13.5x+1080,解得x=20,即当x=20时,到两店一样合算;y甲>y乙时,1050+15x>13.5x+1080,解得x>20,即当x>20时,到乙店合算;y甲<y乙时,1050+15x<13.5x+1080,x≥4,解得10≤x<20,即当10≤x<20时,到甲店合算.6. 【2019·乐亭县期末】小明骑电动车从甲地去乙地,而小刚骑自行车从乙地去甲地,两人同时出发走相同的路线;设小刚行驶的时间为x(h),两人之间的距离为y(km),图中的折线表示y与x之间的函数关系,,0).根据图象进行探究:点B的坐标为(13(1)两地之间的距离为______km;(2)请解释图中点B的实际意义;(3)求两人的速度分别是每小时多少km?(4)直接写出点C的坐标______.【答案】见解析.【解析】解:(1)实际距离是9千米,故答案为:9;(2)点B表示两人相遇.(3)两人的速度和为:9÷13=27 千米/小时=0.45千米/分钟,小刚的速度为:9÷1=9千米/小时=0.15千米/分钟,小明的速度=0.45-0.15=0.3千米/分钟;(4)两人相遇时用时:9÷(9+18)=13,即B(13,0)BC段用时为:9÷18-13=16,此时两人相距:(9+18)×16=4.5,所以C(12,4.5).故答案为:(12,4.5).7. 【2019·宜城市期末】某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)【答案】见解析. 【解析】解:(1)当1≤x ≤10时,设AB 的解析式为:y =kx +b , 把A (1,300),B (10,120)代入得: {k +b =30010k +b =120, 解得:{k =−20b =320,即:y =-20x +320(1≤x ≤10),当10<x ≤30时,同理可得:y =14x -20, 综上所述,y 与x 之间的函数表达式为:()()2032011014201030x x y x x -+≤≤⎧=⎨-<≤⎩ (2)当1≤x ≤10时,w =(10-6)(-20x +320)=-80x +1280, -80x +1280≤1040,解得:x ≥3, 即3≤x ≤10,日销售利润不超过1040元的天数一共8天; 当10<x ≤30时,w =(10-6)(14x -20)=56x -80, 56x -80≤1040, 即10<x ≤20,⊥日销售利润不超过1040元的天数共10天;综上所述,日销售利润不超过1040元的天数共有18天;(3)由(2)知,当5≤x ≤10时,w =-80x +1280,当x =5时,w 取最大值,-80×5+1280=880, 当10<x ≤17时,w =56x -80,当x =17时,w 取最大值,56×17-80=872, ⊥880>872,⊥第5天的日销售利润最大,最大日销售利润是880元.8. 【2019·成都月考】一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价和预售价如下表:(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.⊥求出预估利润P (元)与x (部)的函数关系式;(注:预估利润P =预售总额-购机款-各种费用) ⊥求出预估利润的最大值,并写出此时购进三款手机各多少部.【答案】见解析. 【解析】 解:(1)60-x -y ;(2)由题意,得:900x +1200y+1100(60-x -y )=61000, 即,y =2x -50. (3)⊥由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500, 即,P =500x +500.⊥购进C 型手机部数为:60-x -y =110-3x ,根据题意,得:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得:29≤x≤34,⊥x为整数,k=500>0,⊥P随x的增大而增大,⊥当x=34时,P有最大值,最大值为17500元,此时购进A型手机34部,B型手机18部,C型手机8部.9. 【2018·北师大附中期中】已知:如图,⊥MON=90°,在⊥ABC中,⊥C=90°,AC=3cm,BC=4cm,将⊥ABC 的两个顶点A、B放在射线OM和ON上移动,作CD⊥ON于点D,记OA=x(当点O与A重合时,x的值为0),CD=y,小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)通过取点、画图、计算、测量等方法,得到了x与y的几组值,如下表(补全表格)(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象。
中考数学 专题17 四川中考填空题压轴专题(解析版)

专题17 四川中考填空题压轴专题【典例1】(2019•眉山)如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为 4 .【点拨】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【解答】解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k |,S △OAD =12|k |, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则k2+k 2+12=4k ,∴k =4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.【典例2】(2019•凉山州)如图,正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 4 .【点拨】先证明△BPE ∽△CQP ,得到与CQ 有关的比例式,设CQ =y ,BP =x ,则CP =12﹣x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值. 【解答】解:∵∠BEP +∠BPE =90°,∠QPC +∠BPE =90°, ∴∠BEP =∠CPQ . 又∠B =∠C =90°, ∴△BPE ∽△CQP . ∴BE PC=BP CQ.设CQ =y ,BP =x ,则CP =12﹣x . ∴912−x=xy ,化简得y =−19(x 2﹣12x ),整理得y =−19(x ﹣6)2+4, 所以当x =6时,y 有最大值为4. 故答案为4.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.【典例3】(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【点拨】给图中相关点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =√3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)的值.【解答】解:给图中相关点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.【典例4】(2019•雅安)已知函数y ={−x 2+2x(x >0)−x(x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14 .【点拨】直线与y =﹣x 有一个交点,与y =﹣x 2+2x 有两个交点,则有m >0,x +m =﹣x 2+2x 时,△=1﹣4m >0,即可求解.【解答】解:直线y =x +m 与该图象恰有三个不同的交点, 则直线与y =﹣x 有一个交点, ∴m >0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<1 4,∴0<m<1 4;故答案为0<m<1 4.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.【典例5】(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.【点拨】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a>﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2 =6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【典例6】(2019•巴中)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16√3.【点拨】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=√34BP2+12×PP'×AP=24+16√3故答案为:24+16√3【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.【典例7】(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为2π3+√3.【点拨】连接OE ,作OF ⊥DE ,先求出∠COE =2∠D =60°、OF =12OD =1,DF =OD cos ∠ODF =√3,DE =2DF =2√3,再根据阴影部分面积是扇形与三角形的面积和求解可得. 【解答】解:如图,连接OE ,作OF ⊥DE 于点F ,∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°, ∵CD =4, ∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×√32=√3, ∴DE =2DF =2√3, ∴图中阴影部分的面积为60⋅π⋅22360+12×2√3×1=2π3+√3, 故答案为:2π3+√3.【点睛】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S =nπr 2360是解题的关键.【典例8】(2019•泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 9√2 .【点拨】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC =BC =15,∠CAD =45°,求得AH =DH ,得到CH =15﹣DH ,根据相似三角形的性质即可得到结论.【解答】解:过D 作DH ⊥AC 于H , ∵在等腰Rt △ABC 中,∠C =90°,AC =15, ∴AC =BC =15, ∴∠CAD =45°, ∴AH =DH , ∴CH =15﹣DH , ∵CF ⊥AE ,∴∠DHA =∠DF A =90°, ∴∠HAF =∠HDF , ∴△ACE ∽△DHC , ∴DH AC=CH CE,∵CE =2EB , ∴CE =10, ∴DH 15=15−DH 10,∴DH =9, ∴AD =9√2, 故答案为:9√2.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.【典例9】(2019•乐山)如图1,在四边形ABCD 中,AD ∥BC ,∠B =30°,直线l ⊥AB .当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .【点拨】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【典例10】(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.【点拨】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y=13x+13,把C5的纵坐标代入即可求得横坐标.【解答】解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=13x+13,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=13x+13,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).【点睛】此题考查了待定系数法求一次函数的解析式、等腰直角三角形和正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想的应用.【典例11】(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt △OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017√3).【点拨】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,√3),A3的坐标为(﹣2,2√3),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8√3),A6的坐标为(16,﹣16√3),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2√3,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2√3,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2√3,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2√3,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017√3,故答案为:(﹣22017,22017√3).【点睛】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.【典例12】(2019•南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积最大值为144;③当OD 最大时,点D 的坐标为(25√2626,125√2626).其中正确的结论是 ②③ .(填写序号)【点拨】①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DF A ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出. 【解答】解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DF A =∠AOB , ∴∠DAF =∠ABO , ∴△DF A ∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x5, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD AB =OF OA,∴2524=√252−x 224x 5,解得x =25√2626,x =−25√2626舍去,∴OF=125√26 26,∴D(25√2626,125√2626).故③正确.故答案为:②③.【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.【典例13】(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=√2+√6.【点拨】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【典例14】(2019•宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是 ①③④ (写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN=1AC+1CE【点拨】①根据等边三角形性质得出AC =BC ,CE =CD ,∠ACB =∠ECD =60°,求出∠BCE =∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC =60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB =60°,可求得MFN =120°,根据∠BCD =60°可解题; ④根据CM =CN ,∠MCN =60°,可求得∠CNM =60°,可判定MN ∥AE ,可求得MN AC=DN CD=CD−CN CD,可解题.【解答】证明:①∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°, ∴∠ACB +∠ACE =∠ECD +∠ACE , 即∠BCE =∠ACD , 在△BCE 和△ACD 中, {BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴AD =BE ,∠ADC =∠BEC ,∠CAD =∠CBE , 在△DMC 和△ENC 中, {∠MDC =∠NEC DC =BC ∠MCD =∠NCE =60°, ∴△DMC ≌△ENC (ASA ), ∴DM =EN ,CM =CN ,∴AD ﹣DM =BE ﹣EN ,即AM =BN ; ②∵∠ABC =60°=∠BCD , ∴AB ∥CD , ∴∠BAF =∠CDF , ∵∠AFB =∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB +∠ABF +∠BAF =180°,∠FBC =∠CAF , ∴∠AFB +∠ABC +∠BAC =180°, ∴∠AFB =60°, ∴∠MFN =120°, ∵∠MCN =60°, ∴∠FMC +∠FNC =180°; ④∵CM =CN ,∠MCN =60°, ∴△MCN 是等边三角形, ∴∠MNC =60°, ∵∠DCE =60°, ∴MN ∥AE , ∴MN AC=DN CD=CD−CN CD,∵CD =CE ,MN =CN , ∴MN AC =CE−MN CE ,∴MNAC=1−MNCE ,两边同时除MN 得1AC=1MN−1CE,∴1MN=1AC+1CE.故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.【典例15】(2019•资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【点拨】如图,作CH ⊥AB 于H .首先证明∠ACB =90°,解直角三角形求出AH ,再证明CE ′=AH 即可.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ′∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【典例16】(2019•达州)如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 ①③④ .【点拨】①把y =m +2代入y =﹣x 2+2x +m +1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC 边一定,只要其他三边和最小便可,作点B 关于y 轴的对称点B ′,作C 点关于x 轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:√B′M2+C′M2+√BM2+CM2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.【点睛】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.【典例17】(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=12x经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=12x2−114x+3.(填一般式)【点拨】点C (0,3),反比例函数y =12x 经过点B ,则点B (4,3),由勾股定理得:(4﹣x )2=4+x 2,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点C (0,3),反比例函数y =12x经过点B ,则点B (4,3), 则OC =3,OA =4, ∴AC =5,设OG =PG =x ,则GA =4﹣x ,P A =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2, 解得:x =32,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式得:{c =394a +32b +c =014a +4b +c =0,解得:{ a =12b =−114c =3,故答案为:y =12x 2−114x +3.【点睛】本题考查的是二次函数综合运用,涉及到矩形基本性质、反比例函数基本性质与应用,其中用勾股定理求OG 的长度,是本题解题的关键.【典例18】(2018•凉山州)△AOC 在平面直角坐标系中的位置如图所示,OA =4,将△AOC 绕O 点,逆时针旋转90°得到△A 1OC 1,A 1C 1,交y 轴于B (0,2),若△C 1OB ∽△C 1A 1O ,则点C 1的坐标 (43,83) .【点拨】如图作C 1H ⊥x 轴于H .由△C 1OB ∽△C 1A 1O ,推出OC 1A 1C 1=OB OA 1=12,由tan ∠C 1A 1H =OBOA 1=C 1K A 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,构建方程即可解决问题; 【解答】解:如图作C 1H ⊥x 轴于H .∵△C 1OB ∽△C 1A 1O , ∴OC 1A 1C 1=OB OA 1=12,∵tan ∠C 1A 1H =OBOA 1=C 1HA 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,∴A 1C 1=√5m ,OC 1=√m 2+(2m −4)2, ∴√5m =2√m 2+(2m −4)2, 解得m =83或85(舍弃),∴C 1(43,83).(本题也可以证明tan ∠OC 1H =OH HC 1=12,S 设C 1(m ,2m ),根据A 1H =4m ,构建方程)【点睛】本题考查相似三角形的性质、坐标与图形的旋转等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.【精练1】(2019秋•河东区期末)如图,在反比例函数y =−6x (x <0)的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .【点拨】设出点P 的坐标,四边形PMON 的面积等于点P 的横纵坐标的积的绝对值,把相关数值代入即可.【解答】解:设点P 的坐标为(x ,y ),∵点P 的反比例函数解析式上, ∴xy =﹣6,易得四边形PMON 为矩形, ∴四边形PMON 的面积为|xy |=6, 故答案为6.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.【精练2】(2016秋•江阴市校级月考)如图,正方形ABCD 的边长为1cm ,M 、N 分别是BC 、CD 上两个动点,且始终保持AM ⊥MN ,则△ADN 的最小面积为 .【点拨】设BM =xcm ,则MC =(1﹣x )cm ,当AM ⊥MN 时,利用互余关系可证△ABM ∽△MCN ,利用相似比求CN ,根据三角形的面积公式表示出△ADN 的面积,用二次函数的性质求面积的最小值. 【解答】解:设BM =xcm ,则MC =(1﹣x )cm , ∵∠AMN =90°,∴∠AMB +∠NMC =90°,∠NMC +∠MNC =90°, ∴∠AMB =∠MNC , 又∵∠B =∠C , ∴△ABM ∽△MCN ,则AB MC=BM CN,即11−x=x CN,解得:CN =x(1−x)1=x (1﹣x ), ∴S △ADN =S 正方形ABCD =12×1×[1﹣x (1﹣x )]=12x 2−12x +12, ∵12<0,∴当x =12cm 时,S △ADN 最小,最小值是4×12×12−(−12)24×12=38(cm 2).故答案是:38cm 2.【点睛】本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.【精练3】(2019秋•香坊区期末)等边△ABC 中,点P 是BC 所在直线上一点,且PC :BC =1:4,则tan ∠APB 的值是 .【点拨】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a ,分类讨论:当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a ;当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a ,然后分别利用正切的定义求解即可. 【解答】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a , 当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a , 在Rt △ADP 中,tan ∠APD =AD DP =2√3a 3a =2√33; 当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a , 在Rt △ADP ′中,tan ∠AP ′D =AD DP′=2√3aa =2√3.故答案为2√3或2√33.【点睛】本题考查了解直角三角形:利用三角函数和勾股定理求三角形中未知的边或角的过程叫解直角三角形.也考查了分类讨论思想的运用.【精练4】(2019秋•长清区期中)如图,在△ABC 中,∠BAC =90°,AB =AC =√2,点D 、E 分别在BC 、AC 上(点D 不与点B 、C 重合),且∠ADE =45°,若△ADE 是等腰三角形,则CE = .【点拨】可得∠B =∠C =45°,可证得△DCE ∽△ABD ,由于D 与B 、C 不重合,显然∠ADE =∠AED=45°不符合题意,即AD≠AE,所以此题分两种情况讨论:①AD=DE,此时(2)的相似三角形全等,由此可求得CD、BD的长,进而可得CE、AE的值.【解答】解:∵点D不能与B点重合,∴AD=AE不能成立,(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图1),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴CE=AE=√2 2;②当AD、DE为腰,即AD=DE时(如图2),∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC +∠B +∠BAD =180,∠DEC +∠C +∠CDE =180°, ∴∠ADC +∠B +∠BAD =∠DEC +∠C +∠CDE , ∴∠EDC =∠BAD , ∴△ABD ∽△DCE 此时AD 与DE 为对应边,∴△ABD ≌△DCE ,DC =AB =√2, CE =BD =BC ﹣CD =2−√2. 因此CE 的长为2−√2或√22. 故答案为:2−√2或√22. 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定,解答时证明三角形相似是关键. 【精练5】(2019秋•江岸区校级月考)我们把函数y ={x 2−2x −3(x ≥0)x 2+2x −3(x ≤0)的图象记为C ,若直线y =x +b与图象C 有且只有三个公共点,则b 的取值是 .【点拨】画出分段函数的图象,结合图象找到直线与该图象有三个交点的两端情况:直线经过点(0,﹣3)时;直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时. 【解答】解:根据函数解析式分别画出函数图象,如图所示: 当直线经过点(0,﹣3)时,此时函数与直线y =x +b 恰有三个交点, ∴b =﹣3,当直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时, ∴x 2+2x ﹣3=x +b , ∴b =−134; ∴b =﹣3或b =−134时两图象有三个交点; 故答案为−134或﹣3.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.【精练6】(2018秋•越秀区期末)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是(填写所有正确判断的序号)【点拨】根据抛物线的开口方向,对称轴,抛物线与x轴的交点情况,二次函数图象上点的坐标特征判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴−b2a=−1,a+b+c=0,∴b=2a,c=﹣3a,∵抛物线开口向上,∴a>0,∴b>0,c<0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确;∵9a﹣3b+c=0,b=2a,c=﹣3a,∴6a﹣2b+c=6a﹣4a﹣3a=﹣a<0,故④正确;∵抛物线对称轴x=﹣1,∴x=﹣0.5与x=﹣1.5的函数值相等,∵﹣1.5>﹣2,∴则y1<y2;故⑤错误;故答案为:②③④.【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,灵活运用数形结合思想.【精练7】(2019春•东海县期中)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若P A=3,PB=4,PC=5,则四边形APBQ的面积为【点拨】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=AQ=3,∠P AQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S=S△BPQ+S△APQ进行计算.四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12BP×PQ+√34×PQ2=6+9√34故答案为:6+9√3 4【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是本题的关键.【精练8】(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB̂上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).【点拨】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90⋅π×102360−8×6=25π﹣48.故答案为:25π﹣48.【点睛】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.【精练9】(2019•虞城县一模)如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.【点拨】根据题意和函数图象可以得到BE和BC的长,然后根据当t=5时,y=10可以得到AB的长,然后根据QD平分∠PQC,可得DG=DC,进而可以求得相应的t的值.【解答】解:由题意可得,BE =5,BC =12, ∵当t =5时,S =10, ∴10=5×AB2,得AB =4, 作EH ⊥BC 于点H ,作EF ∥PQ ,P 1Q 2∥EF ,作DG ⊥P 1Q 2于点G , 则EH =AB =4,BE =BF =5, ∵∠EHB =90°, ∴BH =√52−42=3, ∴HF =2,∴EF =√42+22=2√5, ∴P 1Q 2=2√5,设当点P 运动到P 1时,Q 2D 平分∠P 1Q 2C ,则DG =DC =4,P 1D =17﹣AE ﹣EP 1=12﹣3﹣(t ﹣5)=14﹣t , ∴(14−t)×42=2√5×42,解得,t =14﹣2√5, 故答案为:14﹣2√5.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【精练10】(2018秋•市中区期末)将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2019的横坐标是 .【点拨】根据直线y=x+1可求与x轴、y轴的交点坐标,得出第一个正方形的边长,得出点B1的横坐标,根据第二个正方形与第一个正方形的关系,可求出第二个正方形的边长,进而确定B2的横坐标,依此类推,可得出B2019的横坐标.【解答】解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.【点睛】此题主要考查了一次函数图形上的点与坐标特征,规律型问题常用的方法是,分别求出前几个数据,然后依据变化规律,得出一般的结论.本题就是先求出B1的横坐标为21﹣1,B2的横坐标为22﹣1,B3的横坐标为23﹣1,B4的横坐标为24﹣1,……进而得到B n的横坐标为2n﹣1.【精练11】(2019•鄂尔多斯模拟)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.【点拨】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)【点睛】本题考查规律性:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.【精练12】(2019春•徐州期中)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P 在运动过程中所经过的路径长度为cm.【点拨】根据题意可以判断出点P的运动轨迹是4段弧长和2段线段的长度.【解答】解:连接BP,如图所示:∵P是EF的中点,∴BP=12EF=12×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×90π×1180+2×1=2π+2.故答案为:2π+2.【点睛】本题考查了轨迹、矩形的性质、直角三角形斜边上的中线等于斜边的一半的性质以及弧长的计算.判断出点的P运动的轨迹是解题的关键.【精练13】(2018秋•雨花区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=12S△ABC;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.。
2020年中考数学备考优生百日闯关 第4关 以动点函数图象问题为背景的选择填空题(解析版)

第4关 以动点函数图象问题为背景的选择填空题【考查知识点】这类问题通过点、线或图形的运动构成一种函数关系,生成一种函数图像,将几何图形与函数图像有机地融合在一起,体现了数形结合的思想,能充分考查学生的观察、分析、归纳、猜想的能力以及综合运用所学知识解决问题的能力。
【解题思路】解答此类问题的策略可以归纳为三步:“看” 、“写” 、“选”。
(1)“看”就是认真观察几何图形,彻底弄清楚动点从何点开始出发,运动到何点停止,整个运动过程分为不同的几段,何点(时刻)是特殊点(时刻),这是准确解答的前提和关键(2)“写”就是计算、写出动点在不同路段的函数解析式,注意一定要注明自变量的取值范围,求出在特殊点的函数数值和自变量的值(3)“选”就是根据解析式选择准确的函数图像或答案,多用排除法。
首先,排除不符合函数类形的图像选项,其次,对于相同函数类型的函数图像选项,再用自变量的取值范围或函数数值的最大和最小值进行排除,选出准确答案。
【典型例题】【例1】(2019·辽宁中考真题)如图,在Rt ABC △中,AB AC =,4BC =,AG BC ⊥于点G ,点D 为BC 边上一动点,DE BC ⊥交射线CA 于点E ,作DEC V 关于DE 的轴对称图形得到DEF V ,设CD 的长为x ,DEF V 与ABG V 重合部分的面积为y .下列图象中,能反映点D 从点C 向点B 运动过程中,y 与x 的函数关系的是( )A .B .C .D .【答案】A【分析】根据等腰三角形的性质可得122BG GC BC ===,由DEC V 与DEF V 关于DE 对称,即可求出当点F 与G 重合时x 的值,再根据分段函数解题即可. 【详解】解:AB AC =Q ,AG BC ⊥,122BG GC BC ∴===, DEC QV 与DEF V 关于DE 对称,FD CD x ∴==.当点F 与G 重合时,FC GC =,即22x =,1x ∴=,当点F 与点B 重合时,FC BC =,即24=x ,2x ∴=,如图1,当01x ≤≤时,0y =,∴B 选项错误;如图2,当12x <≤时,()()22211222122y FG x x ==-=-,∴选项D 错误;如图3,当24x <≤时,()2211422y BD x ==-,∴选项C 错误.故选:A .【名师点睛】函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.【例2】(2019·甘肃中考真题)已知点P 为某个封闭图形边界上一定点,动点M 从点P 出发,沿其边界顺时针匀速运动一周,设点M 的运动时间为x ,线段PM 的长度为y ,表示y 与x 的函数图象大致如图所示,则该封闭图形可能是( )A .B .C .D .【答案】D【分析】先观察图象得到y 与x 的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,从而得到正确选项.【详解】y 与x 的函数图象分三个部分,而B 选项和C 选项中的封闭图形都有4条线段,其图象要分四个部分,所以B 、C 选项不正确;A 选项中的封闭图形为圆,开始y 随x 的增大而增大,然后y 随x 的减小而减小,所以A 选项不正确; D 选项为三角形,M 点在三边上运动对应三段图象,且M 点在P 点的对边上运动时,PM 的长有最小值. 故选:D . 【名师点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.【例3】(2018·安徽中考真题)如图,直线12l l 、都与直线l 垂直,垂足分别为M ,N ,MN=1,正方形ABCD,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为x ,正方形ABCD 的边位于12l l 、之间部分的长度和为y ,则y 关于x的函数图象大致为()A.B.C.D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,=,如图,当1<x≤2时,y=2,=-,如图,当2<x≤3时,y=2)x综上,只有选项A 符合, 故选A.【名师点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.【例4】(2019·四川中考真题)如图1,在四边形ABCD 中,AD ∥BC ,30B ︒∠=,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是_____.【答案】10+【分析】根据图1直线l 的平移过程分为三段,当F 与A 重合之前,x 与y 都不断增大,当当F 与A 重合之后到点E 与点C 重合之前,x 增加y 不变,E 与点C 重合后继续运动至F 与D 重合x 增加y 减小.结合图2可知BC=5,AD=7-4=3,由l AB ⊥且∠B=30°可知AB=F 与A 重合时,把CD 平移到E 点位置可得三角形AED′为正三角形,可得CD=2,进而可求得周长. 【详解】由题意和图像易知BC=5,AD=7-4=3 当BE=4时(即F 与A 重合),EF=2 又∵l AB ⊥且∠B=30°∴AB=∵当F 与A 重合时,把CD 平移到E 点位置可得三角形AED′为正三角形 ∴CD=2∴AB+BC+CD+AD=故答案时10+ 【名师点睛】本题考查了30°所对的直角边是斜边的一半,对四边形中动点问题几何图像的理解,解本题的关键是清楚掌握直线l 平移的距离为x ,线段EF 的长为的图像和直线运动的过程的联系,找到对应线段长度.【方法归纳】从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
以数字及图形规律探究问题为背景的选择填空题(word+答案)

以数字及图形规律探究问题为背景的选择填空题【考查知识点】探索规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
这种类题型的题目主要考查了学生分析问题解决问题的能力,也考察了初中数学中的各种数学思想。
【解题思路】掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律;恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。
解决规律探究性问题常常利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律(符合一定的经验与事实的数学结论),然后验证或应用这一规律解题即可.解答时对分析问题、解决问题能力具有很高的要求.【典型例题】【例1】(2019·湖北中考真题)观察下列一组数的排列规律:112121123412145,,,,,,,,,,,,,,355993171717173333113333… 那么,这一组数的第2019个数是_____. 【名师点睛】本题考查数字的变化类问题,把数据的分子、分母分别找出规律是解题关键.【例2】(2019·辽宁中考真题)如图,直线l 1的解析式是y x=,直线l 2的解析式是y =,点A 1在l 1上,A 1的横坐标为32,作111A B l ⊥交l 2于点B 1,点B 2在l 2上,以B 1A 1,B 1B 2为邻边在直线l 1,l 2间作菱形A 1B 1B 2C 1,分别以点A 1,B 2为圆心,以A 1B 1为半径画弧得扇形B 1A 1C 1和扇形B 1B 2C 1,记扇形B 1A 1C 1与扇形B 1B 2C 1重叠部分的面积为S 1;延长B 2C 1交l 1于点A 2,点B 3在l 2上,以B 2A 2,B 2B 3为邻边在l 1,l 2间作菱形A 2B 2B 3C 2,分别以点A 2,B 3为圆心,以A 2B 2为半径画弧得扇形B 2A 2C 2和扇形B 2B 3C 2,记扇形B 2A 2C 2与扇形B 2B 3C 2重叠部分的面积为S 2……按照此规律继续作下去,则n S =________.(用含有正整数n 的式子表示)【名师点睛】本题考查了扇形的计算,规律型:点的坐标,菱形的性质,正确的识别图形是解题的关键.【例3】(2019·内蒙古中考真题)如图,有一条折线11223344A B A B A B A B L ,它是由过1(0,0)A ,1(4,4)B ,2(8,0)A 组成的折线依次平移8,16,24,…个单位得到的,直线2y kx =+与此折线有2n (1n ≥且为整数)个交点,则k 的值为_____.【名师点睛】一次函数图象和点的坐标规律.数形结合分析问题,寻找规律是关键.【例4】(2018·内蒙古中考真题)观察下列一组由★排列的“星阵”,按图中规律,第n 个“星阵”中的★的个数是__.【名师点睛】本题考查了规律型中的图形变化问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.【例5】(2018·山东中考真题)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第_____行.【名师点睛】本题属于探究规律类题目,解答本题需掌握题目中数的排列规律,考虑从最大数与行数入手.【方法归纳】1.图形循环类问题,只要找到所求值在第几个循环,便可找出答案,一般难度不大;图形的变化规律计算问题,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.2.对于数式规律型问题,关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律回到问题中去解决问题.3.对于坐标变化规律问题,解决此类问题的关键是从点的变化中发现横坐标、纵坐标的变化规律.4. 对于数形结合规律型问题,解决此类问题的关键是利用数形结合的思想发现运动的规律.综合其用勾股定理等知识点解出相应的问题.【针对练习】1.(2018·湖北中考真题)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A .33B .301C .386D .5712.(2019·山东中考真题)已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1=-112-,-1的差倒数是11=1(1)2--.如果12a =-,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么12100a a a +++L 的值是( ) A .-7.5B .7.5C .5.5D .-5.53.(2019·湖北中考真题)观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( ) A .222a a -B .2222a a --C .22a a -D .22a a +4.(2018·重庆中考真题)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A .11B .13C .15D .175.(2017·江苏中考真题)如图所示,一动点从半径为2的上的点出发,沿着射线方向运动到上的点处,再向左沿着与射线夹角为的方向运动到上的点处;接着又从点出发,沿着射线方向运动到上的点处,再向左沿着与射线夹角为的方向运动到上的点处;…按此规律运动到点处,则点与点间的距离是( )A .4B .C .D .06.(2018·山东中考真题)定义一种对正整数n 的“F”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=2kn(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( ) A .1B .4C .2018D .420187.(2019·四川中考真题)如图,过点0(0,1)A 作y 轴的垂线交直线:l y =于点1A ,过点1A 作直线l 的垂线,交y 轴于点2A ,过点2A 作y 轴的垂线交直线l 于点3A ,…,这样依次下去,得到012A A A ∆,234A A A ∆,4564A A ∆,…,其面积分别记为1S ,2 S ,3 S ,…,则100S ( )A .1002⎛⎫⎪ ⎪⎝⎭B .100C .1994D .39528.(2019·甘肃中考真题)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.9.(2019·山东中考真题)如图,在以A 为直角顶点的等腰直角三角形纸片ABC 中,将B 角折起,使点B 落在AC 边上的点D (不与点A ,C 重合)处,折痕是EF .如图,当12CD AC =时,13tan 4α=; 如图,当13CD AC =时,25tan 12α=;如图,当14CD AC =时,37tan 24α=;……依此类推,当11CD AC n =+(n 为正整数)时,tan n α=_____. 10.(2019·贵州中考真题)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.11.(2019·山东中考真题)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭, L请利用你发现的规律,计算:____. 12.(2019·浙江中考真题)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共_____个.13.(2018·湖北中考真题)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记11a =,23a =,36a =,410a =,…,那么41110210a a a +-+的值是__________.14.(2019·湖南中考真题)探索与发现:下面是用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是_____.15.(2017·湖北中考真题)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有______个点.16.(2019·贵州中考真题)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90o 得到,第2019个图案与第1个至第4个中的第___个箭头方向相同(填序号).17.(2018·浙江中考真题)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×ba符合前面式子的规律,则a+b=_____. 18.(2019·山东中考真题)在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,…,点1A ,2A ,3A ,4A ,…在直线l 上,点1C ,2C ,3C ,4C ,…在x 轴正半轴上,则前n 个正方形对角线的和是_____.19.(2017·山东中考真题)某广场用同一种如图所示的地砖拼图案.第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3的图案,第四次拼成形如图4的图案……按照只有的规律进行下去,第次拼成的图案用地砖 块.20.(2019·湖北中考真题)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043L L L L则第20行第19个数是_____________________ 21.(2019·西藏中考真题)观察下列式子 第1个式子:224193⨯+== 第2个式子:2681497⨯+== 第3个式子:21416122515⨯+== ……请写出第n 个式子:_____.22.(2019·广西中考真题)123456,,,,,a a a a a a ,…,是一列数,已知第1个数14a =,第5个数55a =,且任意三个相邻的数之和为15,则第2019个数2019a 的值是___.23.(2018·广西中考真题)如图,直线l 为,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为(_______).24.(2018·四川中考真题)已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =__________. 25.(2019·辽宁中考真题)如图,在11A C O V 中,1112A C A O ==,1130AOC ∠=︒,过点1A 作121AC OC ⊥,垂足为点2C ,过点2C 作2211C A C A P 交1OA 于点2A ,得到221A C C V ;过点2A 作231A C OC ⊥,垂足为点3C ,过点3C 作3311C A C A P 交1OA 于点3A ,得到332A C C V ;过点3A 作341A C OC ⊥,垂足为点4C ,过点4C 作4411C A C A P 交1OA 于点4A ,得到443A C C V ;……按照上面的作法进行下去,则11n n n A C C ++V 的面积为_____.(用含正整数n 的代数式表示)以数字及图形规律探究问题为背景的选择填空题【考查知识点】探索规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
北京市中考数学试卷及答案(完整版)

北京市中考数学试卷及答案(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2021-2021)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
第四关 以立体几何为背景的新颖问题为背景的填空题-(原卷版)

压轴填空题第四关 以立体几何为背景的新颖问题为背景的填空题【名师综述】以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,三棱锥E BCD -体积的取值范围是___________.【来源】山东省菏泽市2021-2022学年高三上学期期末数学试题【举一反三】如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为_____类型二 几何体的外接球或者内切球问题典例2.已知正三棱锥S ABC -的底面边长为32P ,Q ,R 分别是棱SA ,AB ,AC 的中点,若PQR 是等腰直角三角形,则该三棱锥的外接球的表面积为______.【来源】陕西省宝鸡市2022届高三上学期高考模拟检测(一)文科数学试题【举一反三】已知菱形ABCD 中,对角线23BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC 33= ,则三棱锥A BCD -的外接球的表面积为________. 【来源】江西宜春市2021届高三上学期数学(理)期末试题类型三 立体几何与函数的结合典例3. 已知正方体1111ABCD A B C D -的棱长为1,E 为线段11A D 上的点,过点E 作垂直于1B D 的平面截正方体,其截面图形为M ,下列命题中正确的是______. ①M 在平面ABCD 上投影的面积取值范围是17,28⎡⎤⎢⎥⎣⎦;②M 的面积最大值为334; ③M 的周长为定值.【来源】江西省九江市2022届高三第一次高考模拟统一考试数学(理)试题【举一反三】如图,点C 在以AB 为直径的圆周上运动(C 点与A ,B 不重合),P 是平面ABC 外一点,且PA ⊥平面ABC ,2PA AB ==,过C 点分别作直线AB ,PB 的垂线,垂足分别为M ,N ,则三棱锥B CMN -体积的最大值为______.【来源】百校联盟2020-2021学年高三教育教学质量监测考试12月全国卷(新高考)数学试题类型四 立体几何中的轨迹问题典例4. 已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足2,2PA PB AB ==,则动点P 运动轨迹的周长为__________.【来源】福建省莆田市2022届高三第一次教学质量检测数学试题【举一反三】在棱长为2的正方体1111ABCD A B C D -中,棱1BB ,11B C 的中点分别为E ,F ,点P 在平面11BCC B 内,作PQ ⊥平面1ACD ,垂足为Q .当点P 在1EFB △内(包含边界)运动时,点Q 的轨迹所组成的图形的面积等于_____________.【来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测数学试题【精选名校模拟】1.已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________. 【来源】江苏省南通市2020-2021高三下学期一模试卷2.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【来源】山东省枣庄市滕州市2020-2021学年高三上学期期中数学试题3.四面体A BCD -中,AB BC ⊥,CD BC ⊥,2BC =,且异面直线AB 和CD 所成的角为60︒,若四面体ABCD 的外接球半径为5,则四面体A BCD -的体积的最大值为_________. 【来源】浙江省宁波市镇海中学2020-2021学年高三上学期11月期中数学试题4.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童ABCD EFGH -有外接球,且43,4,26,62AB AD EH EF ====,点E 到平面ABCD 距离为4,则该刍童外接球的表面积为__________.【来源】江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题5.已知正三棱柱111ABC A B C -的外接球表面积为40π,则正三棱柱111ABC A B C -的所有棱长之和的最大值为______.【来源】河南省中原名校2020-2021学年高三第一学期数学理科质量考评二6.已知体积为72的长方体1111ABCD A B C D -的底面ABCD 为正方形,且13BC BB =,点M 是线段BC 的中点,点N 在矩形11DCC D 内运动(含边界),且满足AND CNM ∠=∠,则点N 的轨迹的长度为______. 【来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)文科数学试卷7.矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的表面积为______;若翻折过程中BD 的长度在710,22⎡⎤⎢⎥⎣⎦范围内变化,则点D 的运动轨迹的长度是______.【来源】江苏省无锡市江阴市青阳中学2020-2021学年高三上学期1月阶段检测数学试题8.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =23,且异面直线AB 与CD 所成的角为60,则四面体ABCD 的外接球的表面积为_________.【来源】山东省新高考2020-2021学年高三上学期联考数学试题9.已知三棱锥P ABC -外接球的表面积为100π,PB ⊥平面ABC ,8PB =,120BAC ∠=︒,则三棱锥体积的最大值为________.【来源】江苏省徐州市三校联考2020-2021学年高三上学期期末数学试题10.已知直三棱柱111ABC A B C -的底面为直角三角形,且内接于球O ,若此三棱柱111ABC A B C -的高为2,体积是1,则球O 的半径的最小值为___________.【来源】广西普通高中2021届高三高考精准备考原创模拟卷(一)数学(理)试题11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为______.【来源】2021年届国著名重点中学新高考冲刺数学试题(7)12.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题13.在三棱锥P ABC -中,平面PAB 垂直平面ABC ,23PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【来源】福建省福州市八县(市)一中2021届高三上学期期中联考数学试题14.已知A ,B ,C ,D 205的球体表面上四点,若4AB =,2AC =,23BC =且三棱维A BCD -的体积为23CD 长度的最大值为________.【来源】福建省四地市2022届高三第一次质量检测数学试题15.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//AB CD ,AB ⊥AD ,22CD AD AB ===,3PA =,若动点Q 在PAD △内及边上运动,使得CQD BQA ∠=∠,则三棱锥Q ABC -的体积最大值为______.【来源】八省市2021届高三新高考统一适应性考试江苏省无锡市天一中学考前热身模拟数学试题16.已知正三棱锥A BCD -的底面是边长为23其内切球的表面积为π,且和各侧面分别相切于点F 、M 、N 三点,则FMN 的周长为______.【来源】湖南省常德市2021-2022学年高三上学期期末数学试题17.在三棱锥P ABC -中,PA ⊥平面ABC ,AC CB ⊥,4===PA AC BC .以A 为球心,表面积为36π的球面与侧面PBC 的交线长为______.【来源】山东省威海市2021-2022学年高三上学期期末数学试题18.在棱长为1的正方体1111ABCD A B C D -中,过点A 的平面α分别与棱1BB ,1CC ,1DD 交于点E ,F ,G ,记四边形AEFG 在平面11BCC B 上的正投影的面积为1S ,四边形AEFG 在平面11ABB A 上的正投影的面积为2S .给出下面四个结论:①四边形AEFG 是平行四边形; ②12S S +的最大值为2; ③12S S 的最大值为14;④四边形AEFG 6则其中所有正确结论的序号是___________.【来源】北京西城区2022届高三上学期期末数学试题196,在该圆柱内放置一个棱长为a 的正四面体,并且正四面体在该圆柱内可以任意转动,则a 的最大值为__________.【来源】河南省郑州市2021-2022学年高三上学期高中毕业班第一次质量预测数学(文)试题20.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.【来源】湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题21.体积为8的四棱锥P ABCD -的底面是边长为22底面ABCD 的中心为1O ,四棱锥P ABCD -的外接球球心O 到底面ABCD 的距离为1,则点P 的轨迹长度为_______________________.22.如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD'△的位置,使得平面A CD '⊥平面BCD .若63A B '=,则三棱锥A BCD '-外接球的表面积是________.【来源】河南省2021-2022学年高三下学期开学考试数学理科试题23.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.【来源】辽宁省营口市2021-2022学年高三上学期期末数学试题24.在棱长为2的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球表面积的最小值为_______.【来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试理科数学试题25.如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形; ④直线MN 与平面ABCD 2;⑤若正方体的棱长为2,点1D 到平面1A MN 2.【来源】四川省成都市第七中学2021-2022学年高三上学期1月阶段性考试理科数学试题11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4关 以动点函数图象问题为背景的选择填空题【考查知识点】这类问题通过点、线或图形的运动构成一种函数关系,生成一种函数图像,将几何图形与函数图像有机地融合在一起,体现了数形结合的思想,能充分考查学生的观察、分析、归纳、猜想的能力以及综合运用所学知识解决问题的能力。
【解题思路】解答此类问题的策略可以归纳为三步:“看” 、“写” 、“选”。
(1)“看”就是认真观察几何图形,彻底弄清楚动点从何点开始出发,运动到何点停止,整个运动过程分为不同的几段,何点(时刻)是特殊点(时刻),这是准确解答的前提和关键(2)“写”就是计算、写出动点在不同路段的函数解析式,注意一定要注明自变量的取值范围,求出在特殊点的函数数值和自变量的值(3)“选”就是根据解析式选择准确的函数图像或答案,多用排除法。
首先,排除不符合函数类形的图像选项,其次,对于相同函数类型的函数图像选项,再用自变量的取值范围或函数数值的最大和最小值进行排除,选出准确答案。
【典型例题】【例1】(2019·辽宁中考真题)如图,在Rt ABC △中,AB AC =,4BC =,AG BC ⊥于点G ,点D 为BC 边上一动点,DE BC ⊥交射线CA 于点E ,作DEC 关于DE 的轴对称图形得到DEF ,设CD 的长为x ,DEF 与ABG 重合部分的面积为y .下列图象中,能反映点D 从点C 向点B 运动过程中,y 与x 的函数关系的是( )A .B .C .D .【答案】A【分析】根据等腰三角形的性质可得122BG GC BC ===,由DEC 与DEF 关于DE 对称,即可求出当点F 与G 重合时x 的值,再根据分段函数解题即可. 【详解】解:AB AC =,AG BC ⊥,122BG GC BC ∴===,DEC 与DEF 关于DE 对称,FD CD x ∴==.当点F 与G 重合时,FC GC =,即22x =,1x ∴=,当点F 与点B 重合时,FC BC =,即24=x ,2x ∴=,如图1,当01x ≤≤时,0y =,∴B 选项错误;如图2,当12x <≤时,()()22211222122y FG x x ==-=-,∴选项D 错误;如图3,当24x <≤时,()2211422y BD x ==-,∴选项C 错误.故选:A .【名师点睛】函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.【例2】(2019·甘肃中考真题)已知点P 为某个封闭图形边界上一定点,动点M 从点P 出发,沿其边界顺时针匀速运动一周,设点M 的运动时间为x ,线段PM 的长度为y ,表示y 与x 的函数图象大致如图所示,则该封闭图形可能是( )A .B .C .D .【答案】D【分析】先观察图象得到y 与x 的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,从而得到正确选项.【详解】y 与x 的函数图象分三个部分,而B 选项和C 选项中的封闭图形都有4条线段,其图象要分四个部分,所以B 、C 选项不正确;A 选项中的封闭图形为圆,开始y 随x 的增大而增大,然后y 随x 的减小而减小,所以A 选项不正确; D 选项为三角形,M 点在三边上运动对应三段图象,且M 点在P 点的对边上运动时,PM 的长有最小值. 故选:D . 【名师点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.【例3】(2018·安徽中考真题)如图,直线12l l 、都与直线l 垂直,垂足分别为M ,N ,MN=1,正方形ABCD,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为x ,正方形ABCD 的边位于12l l 、之间部分的长度和为y ,则y 关于x的函数图象大致为()A.B.C.D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,=,如图,当1<x≤2时,y=2,=-,如图,当2<x≤3时,y=2)x综上,只有选项A 符合, 故选A.【名师点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.【例4】(2019·四川中考真题)如图1,在四边形ABCD 中,AD ∥BC ,30B ︒∠=,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是_____.【答案】10+【分析】根据图1直线l 的平移过程分为三段,当F 与A 重合之前,x 与y 都不断增大,当当F 与A 重合之后到点E 与点C 重合之前,x 增加y 不变,E 与点C 重合后继续运动至F 与D 重合x 增加y 减小.结合图2可知BC=5,AD=7-4=3,由l AB ⊥且∠B=30°可知AB=F 与A 重合时,把CD 平移到E 点位置可得三角形AED′为正三角形,可得CD=2,进而可求得周长. 【详解】由题意和图像易知BC=5,AD=7-4=3 当BE=4时(即F 与A 重合),EF=2 又∵l AB ⊥且∠B=30°∴AB=∵当F 与A 重合时,把CD 平移到E 点位置可得三角形AED′为正三角形 ∴CD=2∴AB+BC+CD+AD=故答案时10+ 【名师点睛】本题考查了30°所对的直角边是斜边的一半,对四边形中动点问题几何图像的理解,解本题的关键是清楚掌握直线l 平移的距离为x ,线段EF 的长为的图像和直线运动的过程的联系,找到对应线段长度.【方法归纳】从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质. 解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.【针对练习】1.(2019·四川中考真题)如图,边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将△EFG 沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和△EFG 重叠部分的面积S 与运动时间t 的函数图象大致是( )A .B .C .D .【答案】C【详解】解:当02t 时,()2tan 6022t t S t ︒⋅⋅==,即S 与t 是二次函数关系,有最小值(0,0),开口向上,当24t <时,()244sin 60(4)(4)tan 60)22t t S t ︒︒⎡⎤⨯⨯-⋅-⋅⎣⎦=-=-,即S 与t 是二次函数关系,开口向下,由上可得,选项C 符合题意, 故选:C .2.(2018·湖北中考真题)如图,在ABC ∆中,90B ∠=,3AB cm =,6BC cm =,动点P 从点A 开始沿AB 向点B 以1/cm s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2/cm s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ ∆的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .【答案】C【详解】由题意可得:PB=3-t ,BQ=2t , 则△PBQ 的面积S=12PB•BQ=12(3-t )×2t=-t 2+3t , 故△PBQ 的面积S 随出发时间t 的函数关系图象大致是二次函数图象,开口向下. 故选C .3.(2017·辽宁中考真题)如图,直线的解析式为,它与轴和轴分别相交于两点,平行于直线的直线从原点出发,沿轴的正方向以每秒1个单位长度的速度运动.它与轴和轴分别相交于两点,运动时间为秒(),以为斜边作等腰直角三角形(两点分别在两侧),若和的重合部分的面积为,则与之间的函数关系的图角大致是( )A .B .C .D .【答案】C【详解】分别求出0<t≤2和2<t≤4时,S 与t 的函数关系式即可爬判断. 当0<t≤2时,S=t 2, 当2<t≤4时,S=t 2﹣(2t ﹣4)2=﹣t 2+8t ﹣8,观察图象可知,S 与t 之间的函数关系的图象大致是C . 故答案为C .4.(2019·黑龙江中考真题)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是( )A .B .C .D .【答案】B【详解】解:由题意可得,战士们从营地出发到文具店这段过程中,S 随t 的增加而增大,故选项A 错误,战士们在文具店选购文具的过程中,S 随着t 的增加不变,战士们从文具店去福利院的过程中,S 随着t 的增加而增大,故选项C 错误,战士们从福利院跑回营地的过程中,S 随着t 的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B 正确,选项D 错误,故选:B . 5.(2019·江苏中考真题)随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t 的函数关系大致是( )A .B .C .D .【答案】B【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43; 当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98; 故选:B .6.(2019·河南中考模拟)如图1,在等边△ABC 中,点D 是BC 边的中点,点P 为AB 边上的一个动点,设AP x =,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边△ABC 的面积为_____.【答案】【详解】解:由图二可得y 最小值∵△ABC 为等边三角形,分析图一可知,当P 点运动到DP ⊥AB 时,DP 长为最小值,∴此时的 ∵∠B=60°,∴sin60°=BD, 解得BD=2, ∵D 为BC 的中点, ∴BC=4,连接AD ,∵△ABC 为等边三角形, ∴AD ⊥BC ,ADtan 60BD︒∴=,AD ∴=ABC 1S 42∆∴=⨯⨯=7.(2019·辽宁中考真题)如图,在等腰直角三角形ABC 中,90ACB ︒∠=,8cm AB =,CH 是AB 边上的高,正方形DEFG 的边DE 在高CH 上,F ,G 两点分别在AC ,AH 上.将正方形DEFG 以每秒1cm 的速度沿射线DB 方向匀速运动,当点G 与点B 重合时停止运动.设运动时间为ts ,正方形DEFG 与BHC △重叠部分的面积为Scm 2,则能反映S 与t 的函数关系的图象( )A .B .C .D .【答案】B【详解】由题意得:4AH BH CH ===,2FE FG GH EH ====,(1)当02t 时,如图1,设EF 交CH 于点K ,则22EDHK S S t t ==⨯=矩形;(2)24t <时,如图2,设EF 与BC 交于点M ,DE 于BC 交于点N ,22114[2(4)](2)422DEF EM G NS S St t =-=-⨯--=--+正方形;(3)46t <时,如图3,设GF 交BC 于点L ,2211[2(4)](6)22BGL S S t t ∆==⨯--=-; 故选B .8.(2018·辽宁中考真题)如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 ( )A .B .C .D .【答案】D【详解】在△ABC 中,∠C=90°,AC=BC=3cm ,可得AB=A=∠B=45°,当0<x≤3时,点Q 在AC上运动,点P 在AB 上运动(如图1), 由题意可得x ,AQ=x ,过点Q 作QN ⊥AB 于点N ,在等腰直角三角形AQN 中,求得x ,所以y=12AP QN ⋅=211=22x x (0<x≤3),即当0<x≤3时,y 随x 的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P 与点B 重合,点Q 在CB 上运动(如图2),由题意可得PQ=6-x ,,过点Q 作QN ⊥BC 于点N ,在等腰直角三角形PQN中,求得-x),所以y=12AP QN ⋅=13)=922x x ⨯--+(3≤x≤6),即当3≤x≤6时,y 随x 的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D 符合要求,故选D.9.(2019·辽宁中考真题)如图,四边形ABCD 是矩形,BC =4,AB =2,点N 在对角线BD 上(不与点B ,D 重合),EF ,GH 过点N ,GH ∥BC 交AB 于点G ,交DC 于点H ,EF ∥AB 交AD 于点E ,交BC 于点F ,AH 交EF 于点M .设BF =x ,MN =y ,则y 关于x 的函数图象是( )A .B .C .D .【答案】B【详解】解:2142tan DBC ∠==, 12112428xDH CD CH x AD A D n D A ta H --=∠==-= y =EF ﹣EM ﹣NF =2﹣BFtan ∠DBC ﹣AEtan ∠DAH =2﹣x×12﹣x (1128x -)=18x 2﹣x+2,故选:B .10.(2015·北京中考真题)一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB ,BC ,CA ,OA , OB ,OC 组成.为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图像大致如图②所示,则寻宝者的行进路线可能为:A .A→O→B B .B→A→C C .B→O→CD .C→B→O【答案】C 【详解】此题考查动点函数问题,各项分别分析如下:A 路线,A 到O 是减小,是直线型的,故错,B 路线,在AB 上是,开始减小,然后增大,但增大的时间比减小的时间要长,故不对;D 路线中,应会出现距离为0的点,但图中没有故不对,故选C.11.(2018·辽宁中考真题)如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C 的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.【答案】B【详解】在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴=8,当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260,故选B.12.(2019·贵州中考真题)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF =y,则能大致表示y与x之间关系的图象为( )A.B.C.D.【答案】A【详解】当0≤x≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴BP EFBO AC=,即46x y=,解得32y x=y,同理可得,当4<x≤8时,3(8)2y x =-.故选:A.13.(2018·河南中考模拟)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.【答案】2.4cm【详解】由图2可得,AC=3,BC=4,∴AB5=.当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B=ACAB=35,∴PD=BP·sin∠B=2×35=65=1.2(cm).故答案是:1.2 cm.14.(2018·山东中考真题)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S 与t之间函数关系的图象是()A.B.C.D.【答案】A【详解】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=12AP•AQ=122t t⋅⋅=t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=12AP•AB=182t⋅⋅=4t,故选项B不正确;故选:A.15.(2019·山东中考模拟)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为_____.【答案】【详解】如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=9,∴AE=EB=3,AD=AB=6,在Rt △AED 中,DE∴PB+PE 的最小值为∴点H 的纵坐标为 ∵AE ∥CD , ∴PC CDPA AE=2,∵AC =,∴PC =23=,∴点H 的横坐标为,∴H (,.故答案为(,.16.(2017·青海中考真题)如图,在正方形中,,动点自点出发沿方向以每秒的速度运动,同时动点自点出发沿折线以每秒的速度运动,到达点时运动同时停止,设的面积为,运动时间为(秒),则下列图象中能大致反映与之间的函数关系的是( )A .B .C .D .【答案】A 【详解】∵点N 自D 点出发沿折线DC ﹣CB 以每秒2cm 的速度运动,到达B 点时运动同时停止, ∴N 到C 的时间为:t=3÷2=1.5, 分两部分:①当0≤x≤1.5时,如图1,此时N在DC上,S△AMN=y=AM•AD=x×3=x,②当1.5<x≤3时,如图2,此时N在BC上,∴DC+CN=2x,∴BN=6﹣2x,∴S△AMN=y=AM•BN=x(6﹣2x)=﹣x2+3x,故选A.17.(2017·山东中考真题)如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是()A.①B.④C.②或④D.①或③【答案】D【详解】当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.故选D.18.(2015·广东中考真题)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【答案】D【详解】根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2-x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2-x,则S△AEG=AE×AG×sinA=x(2-x);故y=S△ABC-3S△AEG=-3x(2-x)=(3x 2-6x+4).故可得其图象为二次函数,且开口向上,19.(2017·湖北中考真题)如图,在中,点是的内心,连接过点作分别交于点,已知的周长为的周长为,则表示与的函数图象大致是()A.B.C.D.【答案】B【详解】∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x <4,即y与x的函数关系式为y=8﹣x(x<4),故选B.20.(2017·甘肃中考真题)如图①,在边长为4的正方形中,点以每秒的速度从点出发,沿的路径运动,到点停止.过点作,与边(或边)交于点,的长度与点的运动时间(秒)的函数图象如图②所示.当点运动2.5秒时,的长是( )A.B.C.D.【答案】B【详解】当点P运动2.5秒时,CP=4+4-2.5×2=3,所以△CPQ是一个腰长是3的等腰直角三角形,则,PQ=,故答案选B.21.(2017·内蒙古中考真题)如图,点在直线上方,且,于,若线段,,,则与的函数关系图象大致是()A.B.C.D.【答案】D【详解】∵PC⊥AB于C,∠APB=90°,∴∠ACP=∠BCP=90°,∴∠APC+∠BPC=∠APC+∠PAC=90°,∴∠PAC=∠BPC,∴△APC∽△PBC,∴,∵AB=6,AC=x,∴BC=6﹣x,∴PC2=x(6﹣x),∴PC=,∴y=AB•PC=3=3,故选:D.22.(2019·重庆中考真题)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.【答案】6000【详解】解:由题意可得,甲的速度为:4000÷(12-2-2)=500米/分,乙的速度为:40005002500222+⨯-⨯+=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),故答案为6000.23.如图所示,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,那么△ABC的面积是_____.【答案】10【详解】根据题意可得:AB=5,BC=4, ∴△ABC 的面积是:×4×5=10.故答案为1024.(2016·重庆中考真题)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第____秒.【答案】120 【详解】设直线OA 的解析式为y =kx ,代入A (200,800)得800=200k ,解得k =4,故直线OA 的解析式为y =4x ,设BC 的解析式为y 1=k 1x +b ,由题意得:1136060540150k b k b =+⎧⎨=+⎩,解得:12240k b =⎧⎨=⎩,∴BC 的解析式为y 1=2x +240,当y =y 1时,4x =2x +240,解得:x =120. 则她们第一次相遇的时间是起跑后的第120秒. 故答案为120.25.(2019·河南中考模拟)如图(图1),在△ABC 中,∠B =45°,点P 从△ABC 的顶点出发,沿A→B→C 匀速运动到点C ,(图2)是点P 运动时,线段AP 的长度y 随时间x 变化的关系图象,其中M ,N 为曲线部分的两个端点,则△ABC 的周长是_____.【答案】【详解】当P点从A到B运动时,AP逐渐增大,当P点到B点时,AP最大为AB长,从图2的图象可以看出AB=;当P点从B到C运动时,AP先逐渐减小而后逐渐增大,到C点时AP最大为AC长,从图2的图象可以看出AC=10.AB=8.过A点作AH⊥BC于H点,∵∠B=45°,∴AH=BH=2在Rt△ACH中,CH=6.∴BC=8+6=14.所以△ABC的周长为+10+14=故答案为.26.(2018·辽宁中考真题)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A 方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为__.【答案】24【详解】从图象②和已知可知:AB=4,BC=10-4=6,所以矩形ABCD的面积是4×6=24,故答案为:24.。