泰安市中考数学试题(带答案)

合集下载

(完整)泰安市中考数学试卷含解析(Word版),文档

(完整)泰安市中考数学试卷含解析(Word版),文档

2021 年山东省泰安市中考数学试卷一、选择题〔本大题共20 小题,每题 3 分,共 60 分〕1.以下四个数:﹣ 3,﹣,﹣π,﹣1,其中最小的数是〔〕A.﹣πB.﹣ 3 C.﹣ 1 D.﹣2.以下运算正确的选项是〔〕A.a2?a2=2a2B. a2+a2=a4C.〔1+2a〕2=1+2a+4a2D.〔﹣ a+1〕〔a+1〕=1﹣a23.以以下图案其中,中心对称图形是〔〕A.①②B.②③C.②④D.③④4.“ 2021年至 2021 年,中国同‘一带一路’沿线国家贸易总数高出 3 万亿美元〞,将数据 3 万亿美元用科学记数法表示为〔〕A.3×1014美元 B. 3× 1013美元 C. 3× 1012美元 D.3×1011美元5.化简〔 1﹣〕÷〔 1﹣〕的结果为〔〕A.B.C.D.6.下面四个几何体:其中,俯视图是四边形的几何体个数是〔〕A.1B.2C.3D.4.一元二次方程2﹣6x﹣6=0 配方后化为〔〕7xA.〔x﹣3〕2=15 B.〔x﹣3〕2=3 C.〔x+3〕2=15 D.〔 x+3〕2=38.袋内装有标号分别为1,2,3,4 的 4 个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,那么组成的两位数是 3 的倍数的概率为〔〕A.B.C.D.9.不等式组的解集为x<2,那么k的取值范围为〔〕A.k>1B.k<1C.k≥1 D.k≤ 110.某衣饰店用 10000 元购进一批某品牌夏季衬衫假设干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10 元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,那么所列方程为〔〕A.﹣10=B.+ 10=C.﹣10=D.+ 10=11.为认识中考体育科目训练情况,某校从九年级学生中随机抽取局部学生进行了一次中考体育科目测试〔把测试结果分为A,B,C,D 四个等级〕,并将测试结果绘制成了以以下图的两幅不完满统计图,依照统计图中供应的信息,结论错误的选项是〔〕A.本次抽样测试的学生人数是40B.在图 1 中,∠α的度数是 126°C.该校九年级有学生500 名,估计 D 级的人数为 80D.从被测学生中随机抽取一位,那么这位学生的成绩是 A 级的概率为12.如图,△ ABC内接于⊙ O,假设∠ A=α,那么∠ OBC等于〔〕A.180°﹣2αB. 2α C.90°+αD.90°﹣α13.一次函数 y=kx﹣ m﹣2x 的图象与 y 轴的负半轴订交,且函数值 y 随自变量 x 的增大而减小,那么以下结论正确的选项是〔〕A.k<2,m> 0 B. k<2,m< 0 C. k> 2, m>0 D.k<0,m<014.如图,正方形 ABCD中,M 为 BC上一点,ME⊥AM,ME 交 AD 的延长线于点 E.假设 AB=12,BM=5,那么 DE 的长为〔〕A.18B.C.D.15.二次函数y=ax2+bx+c 的 y 与x 的局部对应值以下表:x﹣ 1013y﹣ 3131以下结论:①抛物线的张口向下;②其图象的对称轴为x=1;③当x< 1 时,函数值y 随x 的增大而增大;④方程ax2+bx+c=0 有一个根大于4,其中正确的结论有〔〕A.1 个B.2 个C.3 个D.4 个16.某班学生积极参加献爱心活动,该班50 名学生的捐款统计情况以下表:金额 /元5102050100人数4161596那么他们捐款金额的中位数和平均数分别是〔〕A.10,B. 20,C. 10,D.20,17.如图,圆内接四边形 ABCD的边 AB 过圆心 O,过点 C 的切线与边 AD 所在直线垂直于点M ,假设∠ ABC=55°,那么∠ ACD等于〔〕A.20°B.35°C. 40°D.55°18.如图,在正方形网格中,线段 A′ B是′线段 AB绕某点逆时针旋转角α获取的,点 A′与 A 对α〕应,那么角的大小为〔A.30°B.60°C. 90°D.120°19.如图,四边形 ABCD是平行四边形,点 E 是边 CD上一点,且 BC=EC,CF⊥BE交 AB 于点 F,P 是 EB延长线上一点,以下结论:①BE均分∠ CBF;② CF均分∠ DCB;③ BC=FB;④ PF=PC,其中正确结论的个数为〔〕A.1B.2C.3D.420.如图,在△ ABC中,∠ C=90°,AB=10cm,BC=8cm,点 P 从点 A 沿 AC 向点 C 以 1cm/s 的速度运动,同时点 Q 从点 C 沿 CB向点 B 以 2cm/s 的速度运动〔点 Q 运动到点 B 停止〕,在运动过程中,四边形PABQ的面积最小值为〔〕A.19cm2B.16cm2C.15cm2D.12cm2二、填空题〔本大题共 4 小题,每题 3 分,共 12 分〕21.分式与的和为 4,那么 x 的值为..关于x 的一元二次方程x2+〔2k﹣ 1〕x+〔 k2﹣1〕=0 无实数根,那么 k 的取值范围为.2223.工人师傅用一张半径为24cm,圆心角为 150°的扇形铁皮做成一个圆锥的侧面,那么这个圆锥的高为.24.如图,∠ BAC=30°,M 为 AC上一点, AM=2,点 P 是 AB 上的一动点, PQ⊥ AC,垂足为点Q,那么 PM+PQ 的最小值为.三、解答题〔本大题共 5 小题,共 48 分〕25.如图,在平面直角坐标系中, Rt△AOB的斜边 OA 在 x 轴的正半轴上,∠ OBA=90°,且 tan ∠ AOB= ,OB=2 ,反比率函数 y= 的图象经过点 B.(1〕求反比率函数的表达式;(2〕假设△ AMB 与△ AOB关于直线 AB 对称,一次函数 y=mx+n 的图象过点 M 、A,求一次函数的表达式.26.某水果商从批发市场用 8000 元购进了大樱桃和小樱桃各 200 千克,大樱桃的进价比小樱桃的进价每千克多 20 元,大樱桃售价为每千克 40 元,小樱桃售价为每千克 16 元.(1〕大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2〕该水果商第二次仍用 8000 元钱从批发市场购进了大樱桃和小樱桃各 200 千克,进价不变,但在运输过程中小樱桃耗费了 20%.假设小樱桃的售价不变,要想让第二次赚的钱很多于第一次所赚钱的 90%,大樱桃的售价最少应为多少?27.如图,四边形ABCD中, AB=AC=AD,AC 均分∠ BAD,点 P 是 AC 延长线上一点,且PD⊥AD.(1〕证明:∠ BDC=∠PDC;(2〕假设 AC 与 BD 订交于点 E,AB=1,CE: CP=2:3,求 AE 的长..如图,是将抛物线2平移后获取的抛物线,其对称轴为x=1,与 x 轴的一个交点为 A 28y=﹣ x〔﹣ 1,0〕,另一个交点为B,与 y 轴的交点为 C.(1〕求抛物线的函数表达式;(2〕假设点 N 为抛物线上一点,且 BC⊥ NC,求点 N 的坐标;(3〕点 P 是抛物线上一点,点 Q 是一次函数 y= x+ 的图象上一点,假设四边形 OAPQ为平行四边形,这样的点 P、Q 可否存在?假设存在,分别求出点 P,Q 的坐标;假设不存在,说明原由.29.如图,四边形ABCD是平行四边形, AD=AC, AD⊥ AC,E 是 AB 的中点, F 是 AC延长线上一点.(1〕假设 ED⊥EF,求证: ED=EF;(2〕在〔 1〕的条件下,假设 DC 的延长线与 FB 交于点 P,试判断四边形 ACPE可否为平行四边形?并证明你的结论〔请先补全图形,再解答〕;〔 3〕假设 ED=EF,ED 与 EF垂直吗?假设垂直给出证明.2021 年山东省泰安市中考数学试卷一、选择题〔本大题共20 小题,每题 3 分,共 60 分〕1.以下四个数:﹣ 3,﹣,﹣π,﹣1,其中最小的数是〔〕A.﹣πB.﹣ 3 C.﹣ 1 D.﹣【考点】 2A:实数大小比较.【解析】将四个数从大到小排列,即可判断.【解答】解:∵﹣ 1>﹣>﹣ 3>﹣π,∴最小的数为﹣π,应选 A.2.以下运算正确的选项是〔〕2 22 2 a2422D.〔﹣ a 12A.a ?a =2a B. a + =a C.〔1 2a〕=1 2a 4a〕〔 a 1〕 =1﹣a++ +++【考点】 4F:平方差公式; 35:合并同类项; 46:同底数幂的乘法; 4C:完满平方公式.【解析】依照整式的乘法、加法法那么及完满平方公式和平方差公式逐一计算可得.【解答】解: A、a2?a2=a4,此选项错误;B、a2?a2=2a2,此选项错误;C、〔1+2a〕2=1+4a+4a2,此选项错误;D、〔﹣ a+1〕〔a+1〕=1﹣a2,此选项正确;应选: D.3.以以下图案其中,中心对称图形是〔〕 A.①②B.②③C.②④D.③④【考点】 R5:中心对称图形.【解析】依照中心对称图形的看法求解.【解答】解:①不是中心对称图形;②不是中心对称图形;③是中心对称图形;④是中心对称图形.应选:D.4.“ 2021年至 2021 年,中国同‘一带一路’沿线国家贸易总数高出 3 万亿美元〞,将数据 3 万亿美元用科学记数法表示为〔〕A.3×1014美元 B. 3× 1013美元 C. 3× 1012美元 D.3×1011美元【考点】 1I:科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤ | a| <10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点搬动了多少位,n 的绝对值与小数点搬动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解: 3 万亿 =3 0000 0000 0000=3× 1012,应选: C.5.化简〔 1﹣〕÷〔1﹣〕的结果为〔〕A.B.C.D.【考点】 6C:分式的混杂运算.【解析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分即可获取结果.【解答】解:原式=÷=?=,应选A6.下面四个几何体:其中,俯视图是四边形的几何体个数是〔〕A.1B.2C.3D.4【考点】 U1:简单几何体的三视图.【解析】依照俯视图是分别从物体上面看,所获取的图形进行解答即可.【解答】解:俯视图是四边形的几何体有正方体和三棱柱,应选:B..一元二次方程2﹣6x﹣6=0 配方后化为〔〕7xA.〔x﹣3〕2=15 B.〔x﹣3〕2=3 C.〔x+3〕2=15 D.〔 x+3〕2=3【考点】 A6:解一元二次方程﹣配方法.【解析】方程移项配方后,利用平方根定义开方即可求出解.【解答】解:方程整理得: x2﹣6x=6,配方得: x2﹣ 6x+9=15,即〔 x﹣3〕2=15,应选 A 8.袋内装有标号分别为1,2,3,4 的 4 个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,那么组成的两位数是 3 的倍数的概率为〔〕A.B.C.D.【考点】 X6:列表法与树状图法.【解析】画树状图显现所有16 种等可能的结果数,再找出所成的两位数是 3 的倍数的结果数,尔后依照概率公式求解.【解答】解:画树状图为:共有 16 种等可能的结果数,其中所成的两位数是 3 的倍数的结果数为5,所以成的两位数是 3 的倍数的概率 = .应选 B.9.不等式组的解集为x<2,那么k的取值范围为〔〕A.k>1B.k<1C.k≥1 D.k≤ 1【考点】 CB:解一元一次不等式组.【解析】求出每个不等式的解集,依照得出关于k 的不等式,求出不等式的解集即可.【解答】解:解不等式组,得∵不等式组的解集为 x<2,∴ k+1≥2,解得 k≥1.应选: C.10.某衣饰店用 10000 元购进一批某品牌夏季衬衫假设干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10 元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,那么所列方程为〔〕A.﹣10=B.+ 10=C.﹣10=D.+ 10=【考点】 B6:由实责问题抽象出分式方程.【解析】依照题意表示出衬衫的价格,利用进价的变化得出等式即可.【解答】解:设第一批购进x 件衬衫,那么所列方程为:+10=.应选: B.11.为认识中考体育科目训练情况,某校从九年级学生中随机抽取局部学生进行了一次中考体育科目测试〔把测试结果分为A,B,C,D 四个等级〕,并将测试结果绘制成了以以下图的两幅不完满统计图,依照统计图中供应的信息,结论错误的选项是〔〕A.本次抽样测试的学生人数是 40 B.在图 1 中,∠α的度数是 126°C.该校九年级有学生 500 名,估计 D 级的人数为 80D.从被测学生中随机抽取一位,那么这位学生的成绩是 A 级的概率为【考点】 X4:概率公式; V5:用样本估计整体; VB:扇形统计图; VC:条形统计图.【解析】利用扇形统计图以及条形统计图分别解析得出总人数以及结合α的度数、利用样本估计整体即可.【解答】解: A、本次抽样测试的学生人数是:12÷30%=40〔人〕,正确,不合题意;B、∵×360°=126°,∠α的度数是126°,故此选项正确,不合题意;C、该校九年级有学生500 名,估计 D 级的人数为:500×=100〔人〕,故此选项错误,吻合题意;D、从被测学生中随机抽取一位,那么这位学生的成绩A 级的概率为:,正确,不合是题意;应选: C.12.如图,△ABC内接于⊙ O,假设∠ A=α,那么∠ OBC等〕于〔A.180°﹣2αB. 2α C.90°+αD.90°﹣α【考点】 M5:圆周角定理.【解析】第一连接 OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠ OBC的度数.【解答】解:∵连接 OC,∵△ ABC内接于⊙ O,∠ A=α,∴∠ BOC=2∠A=2α,∵ OB=OC,∴∠ OBC=∠ OCB==90°﹣α.应选 D.13.一次函数 y=kx﹣ m﹣2x 的图象与 y 轴的负半轴订交,且函数值 y 随自变量 x 的增大而减小,那么以下结论正确的选项是〔〕A.k<2,m> 0 B. k<2,m< 0 C. k> 2, m>0 D.k<0,m<0【考点】 F5:一次函数的性质.【解析】由一次函数y=kx﹣ m﹣2x 的图象与y 轴的负半轴订交且函数值y 随自变量x 的增大而减小,可得出 k﹣2<0、﹣ m<0,解之即可得出结论.【解答】解:∵一次函数 y=kx﹣ m﹣2x 的图象与 y 轴的负半轴订交,且函数值y 随自变量 x 的增大而减小,∴ k﹣2<0,﹣ m<0,∴ k<2,m> 0.应选 A.14.如图,正方形 ABCD中,M 为 BC上一点,ME⊥AM,ME 交 AD 的延长线于点 E.假设 AB=12,DE 的长为〔〕BM=5,那么A.18B.C.D.【考点】 S9:相似三角形的判断与性质;KQ:勾股定理; LE:正方形的性质.【解析】先依照题意得出△ ABM∽△ MCG,故可得出 CG的长,再求出DG 的长,依照△ MCG∽△ EDG即可得出结论.【解答】解:∵四边形 ABCD是正方形, AB=12,BM=5,∴MC=12﹣ 5=7.∵ME⊥ AM,∴∠ AME=90°,∴∠AMB+∠CMG=90°.∵∠ AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ ABM∽△ MCG,∴=,即=,解得CG=,∴ DG=12﹣=.∵AE∥BC,∴∠ E=CMG,∠ EDG=∠ C,∴△ MCG∽△ EDG,∴=,即=,解得DE=.应选 B.15.二次函数 y=ax2+bx+c 的 y 与 x 的局部对应值以下表:x﹣ 1013y﹣ 3131以下结论:①抛物线的张口向下;②其图象的对称轴为x=1;③当 x< 1 时,函数值 y 随 x 的增大而增大;④方程 ax2+bx+c=0 有一个根大于 4,其中正确的结论有〔〕A.1 个 B.2 个 C.3 个 D.4 个【考点】 HA:抛物线与 x 轴的交点; H3:二次函数的性质.【解析】依照二次函数的图象拥有对称性和表格中的数据,可以获取对称轴为x==,再由图象中的数据可以获适当x= 获取最大值,进而可以获取函数的张口向下以及获取函数当x <时, y 随 x 的增大而增大,当 x>时, y 随 x 的增大而减小,尔后跟距x=0 时, y=1,x=﹣1 时, y=﹣3,可以获取方程 ax2+bx+c=0 的两个根所在的大体地址,进而可以解答此题.【解答】解:由表格可知,二次函数 y=ax2+bx+c 有最大值,当 x==时,获取最大值,∴抛物线的张口向下,故①正确,其图象的对称轴是直线x=,故②错误,当 x<时, y 随x 的增大而增大,故③正确,方程ax2 +bx+c=0 的一个根大于﹣1,小于0,那么方程的另一个根大于=3,小于 3+1=4,故④错误,应选 B.16.某班学生积极参加献爱心活动,该班50 名学生的捐款统计情况以下表:金额 /元5102050100人数4161596那么他们捐款金额的中位数和平均数分别是〔〕A.10,B. 20,C. 10,D.20,【考点】 W4:中位数; VA:统计表; W2:加权平均数.【解析】依照中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数;依照平均数公式求出平均数即可.【解答】解:共有 50 个数,∴中位数是第 25、26 个数的平均数,∴中位数是〔 20+20〕÷ 2=20;平均数=〔5×4 10×16 20× 15 50×9 100× 6〕;++++应选: D.17.如图,圆内接四边形 ABCD的边 AB 过圆心 O,过点 C 的切线与边 AD 所在直线垂直于点M ,假设∠ ABC=55°,那么∠ ACD等于〔〕A.20°B.35°C. 40°D.55°【考点】 MC:切线的性质; M6:圆内接四边形的性质.【解析】由圆内接四边形的性质求出∠ADC=180°﹣∠ ABC=125°,由圆周角定理求出∠ ACB=90°,得出∠ BAC=35°,由弦切角定理得出∠MCA=∠ABC=55°,由三角形的外角性质得出∠DCM=∠ADC﹣∠ AMC=35°,即可求出∠ ACD的度数.【解答】解:∵圆内接四边形ABCD的边 AB 过圆心 O,∴∠ ADC+∠ABC=180°,∠ ACB=90°,∴∠ ADC=180°﹣∠ ABC=125°,∠ BAC=90°﹣∠ ABC=35°,∵过点 C 的切线与边 AD 所在直线垂直于点M ,∴∠ MCA=∠ ABC=55°,∠ AMC=90°,∵∠ ADC=∠AMC+∠ DCM,∴∠ DCM=∠ ADC﹣∠ AMC=35°,∴∠ ACD=∠MCA﹣∠ DCM=55°﹣ 35°=20°;应选: A.18.如图,在正方形网格中,线段 A′ B是′线段 AB绕某点逆时针旋转角α获取的,点 A′与 A 对应,那么角α〕的大小为〔A.30°B.60°C. 90°D.120°【考点】 R2:旋转的性质.【解析】依照题意确定旋转中心后即可确定旋转角的大小.【解答】解:如图:显然,旋转角为90°,应选 C.19.如图,四边形 ABCD是平行四边形,点 E 是边 CD上一点,且 BC=EC,CF⊥BE交 AB 于点 F,P 是 EB延长线上一点,以下结论:①BE均分∠ CBF;② CF均分∠ DCB;③ BC=FB;④ PF=PC,其中正确结论的个数为〔〕A.1B.2C.3D.4【考点】 LA:菱形的判断与性质; KG:线段垂直均分线的性质;L5:平行四边形的性质.【解析】分别利用平行线的性质结合线段垂直均分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵ BC=EC,∴∠ CEB=∠CBE,∵四边形 ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠ CBE=∠EBF,∴① BE均分∠ CBF,正确;∵BC=EC,CF⊥BE,∴∠ ECF=∠BCF,∴② CF均分∠ DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵ FB=BC,CF⊥BE,∴B 点必然在 FC的垂直均分线上,即 PB 垂直均分 FC,∴PF=PC,故④正确.应选: D.20.如图,在△ ABC中,∠ C=90°,AB=10cm,BC=8cm,点 P 从点 A 沿 AC 向点 C 以 1cm/s 的速度运动,同时点 Q 从点 C 沿 CB向点 B 以 2cm/s 的速度运动〔点 Q 运动到点 B 停止〕,在运动过程中,四边形PABQ的面积最小值为〔〕A.19cm2B.16cm2C.15cm2D.12cm2【考点】 H7:二次函数的最值.【解析】在 Rt△ ABC中,利用勾股定理可得出AC=6cm,设运动时间为 t〔0≤t≤ 4〕,那么 PC=〔6﹣t〕cm,CQ=2tcm,利用切割图形求面积法可得出 S四边形PABQ=t2﹣ 6t+24,利用配方法即可求出四边形 PABQ的面积最小值,此题得解.【解答】解:在 Rt△ABC中,∠ C=90°,AB=10cm, BC=8cm,∴ AC==6cm.设运动时间为 t〔0≤t ≤4〕,那么 PC=〔 6﹣ t〕cm,CQ=2tcm,∴S四边形PABQ=S△ABC﹣S△CPQ= AC?BC﹣ PC?CQ= ×6×8﹣〔6﹣t 〕× 2t=t2﹣ 6t+24=〔t ﹣3〕2+15,∴当 t=3 时,四边形 PABQ的面积取最小值,最小值为15.应选 C.二、填空题〔本大题共 4 小题,每题 3 分,共 12 分〕21.分式与的和为4,那么x的值为3.【考点】 B3:解分式方程.【解析】第一依照分式与的和为4,可得:求出 x 的值为多少即可.【解答】解:∵分式与的和为4,+=4,尔后依照解分式方程的方法,∴+=4,去分母,可得: 7﹣ x=4x﹣8解得: x=3经检验 x=3 是原方程的解,∴x 的值为3.故答案为:3..关于x 的一元二次方程x2+〔 2k﹣1〕x+〔k2﹣1〕=0 无实数根,那么 k 的取值范围为k>.22【考点】 AA:根的鉴识式.【解析】依照鉴识式的意义获取△ =〔2k﹣ 1〕2﹣4〔k2﹣ 1〕< 0,尔后解不等式即可.【解答】解:依照题意得△ =〔2k﹣ 1〕2﹣4〔k2﹣ 1〕< 0,解得 k>.故答案为 k>.23.工人师傅用一张半径为24cm,圆心角为 150°的扇形铁皮做成一个圆锥的侧面,那么这个圆锥的高为2cm.【考点】 MP:圆锥的计算.【解析】直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【解答】解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,那么 2πr=,解得: r=10,故这个圆锥的高为:=2〔 cm〕.故答案为:2〔cm〕.24.如图,∠ BAC=30°,M 为 AC上一点, AM=2,点 P 是 AB 上的一动点, PQ⊥ AC,垂足为点Q,那么 PM+PQ 的最小值为.【考点】 PA:轴对称﹣最短路线问题.【解析】此题作点 M 关于 AB 的对称点 N,依照轴对称性找出点P 的地址,如图,依照三角函数求出 MN,∠ N,再依照三角函数求出结论.【解答】解:作点 M 关于 AB的对称点 N,过 N 作 NQ⊥ AC于 Q 交 AB 于 P,那么 NQ 的长即为 PM+PQ的最小值,连接 MN 交 AB 于 D,那么 MD⊥ AB,DM=DN,∵∠ NPB=∠APQ,∴∠ N=∠ BAC=30°,∵∠ BAC=30°,AM=2,∴MD= AM=1,∴MN=2,∴NQ=MN?cos∠ N=2× = ,故答案为:.三、解答题〔本大题共 5 小题,共 48 分〕25.如图,在平面直角坐标系中,Rt△AOB的斜边 OA 在 x 轴的正半轴上,∠ OBA=90°,且 tan∠ AOB= ,OB=2,反比率函数y=的图象经过点B.(1〕求反比率函数的表达式;(2〕假设△ AMB 与△ AOB关于直线 AB 对称,一次函数 y=mx+n 的图象过点 M 、A,求一次函数的表达式.【考点】 G6:反比率函数图象上点的坐标特色;F8:一次函数图象上点的坐标特色;T7:解直角三角形.【解析】〔1〕过点 B 作 BD⊥OA 于点 D,设 BD=a,经过解直角△ OBD获取 OD=2BD.尔后利用勾股定理列出关于 a 的方程并解答即可;(2〕欲求直线 AM 的表达式,只需推知点 A、M 的坐标即可.经过解直角△ AOB 求得 OA=5,那么 A〔5,0〕.依照对称的性质获取: OM=2OB,结合 B〔4,2〕求得 M〔8,4〕.尔后由待定系数法求一次函数解析式即可.【解答】解:〔1〕过点 B 作 BD⊥OA 于点 D,设 BD=a,∵ tan∠AOB= = ,∴OD=2BD.∵∠ ODB=90°,OB=2,∴a2+〔 2a〕2=〔 2 〕2,解得 a=±2〔舍去﹣ 2〕,∴a=2.∴OD=4,∴B〔4,2〕,∴k=4×2=8,∴反比率函数表达式为: y= ;(2〕∵ tan∠AOB= ,OB=2 ,∴ AB= OB= ,∴ OA===5,∴A〔5,0〕.又△ AMB 与△ AOB关于直线 AB 对称, B〔4,2〕,∴OM=2OB,∴M〔8,4〕.把点 M 、 A 的坐标分别代入y=mx+n,得,解得,故一次函数表达式为:y= x﹣.26.某水果商从批发市场用 8000 元购进了大樱桃和小樱桃各 200 千克,大樱桃的进价比小樱桃的进价每千克多 20 元,大樱桃售价为每千克 40 元,小樱桃售价为每千克 16 元.(1〕大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2〕该水果商第二次仍用 8000 元钱从批发市场购进了大樱桃和小樱桃各 200 千克,进价不变,但在运输过程中小樱桃耗费了 20%.假设小樱桃的售价不变,要想让第二次赚的钱很多于第一次所赚钱的 90%,大樱桃的售价最少应为多少?【考点】 C9:一元一次不等式的应用; 9A:二元一次方程组的应用.【解析】〔1〕依照用 8000 元购进了大樱桃和小樱桃各 200 千克,以及大樱桃的进价比小樱桃的进价每千克多20 元,分别得出等式求出答案;〔 2〕依照要想让第二次赚的钱很多于第一次所赚钱的90%,得出不等式求出答案.【解答】解:〔1〕设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,依照题意可得:,解得:,小樱桃的进价为每千克10 元,大樱桃的进价为每千克30 元,200× [ 〔 40﹣30〕+〔16﹣ 10〕] =3200〔元〕,∴销售完后,该水果商共赚了3200 元;(2〕设大樱桃的售价为 a 元 / 千克,(1﹣ 20%〕× 200×16+200a﹣ 8000≥ 3200× 90%,解得: a≥,答:大樱桃的售价最少应为41.6 元/ 千克.27.如图,四边形 ABCD中, AB=AC=AD,AC 均分∠ BAD,点 P 是 AC 延长线上一点,且PD⊥ AD.(1〕证明:∠ BDC=∠PDC;(2〕假设 AC 与 BD 订交于点 E,AB=1,CE: CP=2:3,求 AE 的长.【考点】 S9:相似三角形的判断与性质.【解析】〔1〕直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;〔 2〕第一过点 C 作 CM⊥PD 于点 M ,进而得出△ CPM∽△ APD,求出 EC的长即可得出答案.【解答】〔1〕证明:∵ AB=AD, AC均分∠ BAD,∴AC⊥BD,∴∠ ACD+∠BDC=90°,∵AC=AD,∴∠ ACD=∠ADC,∴∠ ADC+∠BDC=90°,∴∠ BDC=∠PDC;(2〕解:过点 C 作 CM⊥PD 于点 M ,∵∠ BDC=∠PDC,∴ CE=CM,∵∠ CMP=∠ADP=90°,∠P=∠P,∴△ CPM∽△ APD,∴ = ,设 CM=CE=x,∵ CE:CP=2:3,∴ PC= x,∵ AB=AD=AC=1,∴=,解得: x=,故 AE=1﹣=.28.如图,是将抛物线y=﹣ x2平移后获取的抛物线,其对称轴为x=1,与x 轴的一个交点为A 〔﹣ 1,0〕,另一个交点为B,与 y 轴的交点为 C.(1〕求抛物线的函数表达式;(2〕假设点 N 为抛物线上一点,且 BC⊥ NC,求点 N 的坐标;(3〕点 P 是抛物线上一点,点 Q 是一次函数 y= x+ 的图象上一点,假设四边形 OAPQ为平行四边形,这样的点 P、Q 可否存在?假设存在,分别求出点 P,Q 的坐标;假设不存在,说明原由.【考点】 HF:二次函数综合题.【解析】〔1〕抛物线的对称轴,所以可以设出极点式,利用待定系数法求函数解析式;(2〕第一求得 B 和 C 的坐标,易证△ OBC是等腰直角三角形,过点 N 作 NH⊥ y 轴,垂足是 H,设点 N 纵坐标是〔 a,﹣ a2+2a+3〕,依照 CH=NH即可列方程求解;(3〕四边形 OAPQ是平行四边形,那么 PQ=OA=1,且 PQ∥OA,设 P〔t ,﹣t 2+2t+3〕,代入y=x+,即可求解.【解答】解:〔1〕设抛物线的解析式是y=﹣〔 x﹣ 1〕2+k.把〔﹣ 1,0〕代入得 0=﹣〔﹣ 1﹣ 1〕2+k,解得 k=4,那么抛物线的解析式是y=﹣〔 x﹣1〕2+4,即 y=﹣x2+2x+3;(2〕在 y=﹣x2+2x+3 中令 x=0,那么 y=3,即 C 的坐标是〔 0, 3〕,OC=3.∵B 的坐标是〔3,0〕,∴ OB=3,∴ OC=OB,那么△ OBC是等腰直角三角形.∴∠ OCB=45°,过点 N 作 NH⊥y 轴,垂足是 H.∵∠ NCB=90°,∴∠ NCH=45°,∴ NH=CH,∴ HO=OC+CH=3+CH=3+NH,设点 N 纵坐标是〔 a,﹣a2+2a+3〕.∴ a+3=﹣ a2+2a+3,解得 a=0〔舍去〕或 a=1,∴ N 的坐标是〔 1,4〕;(3〕∵四边形 OAPQ是平行四边形,那么 PQ=OA=1,且 PQ∥ OA,设 P〔t ,﹣ t2 +2t+3〕,代入 y=x+ ,那么﹣ t 2+2t +3= 〔t +1〕 + ,整理,得 2t2﹣ t=0,解得 t=0 或.∴﹣ t2+2t+3 的值为 3 或.∴ P、 Q 的坐标是〔 0,3〕,〔 1, 3〕或〔,〕、〔,〕.29.如图,四边形ABCD是平行四边形, AD=AC, AD⊥ AC,E 是 AB 的中点, F 是 AC延长线上一点.(1〕假设 ED⊥EF,求证: ED=EF;(2〕在〔 1〕的条件下,假设 DC 的延长线与 FB 交于点 P,试判断四边形 ACPE可否为平行四边形?并证明你的结论〔请先补全图形,再解答〕;(3〕假设 ED=EF,ED 与 EF垂直吗?假设垂直给出证明.【考点】 LO:四边形综合题.【解析】〔1〕依照平行四边形的想知道的 AD=AC,AD⊥AC,连接 CE,依照全等三角形的判断和性质即可获取结论;〔 2〕依照全等三角形的性质获取 CF=AD,等量代换获取 AC=CF,于是获取 CP= AB=AE,依照平行四边形的判判定理即可获取四边形 ACPE为平行四边形;〔 3〕过 E 作 EM⊥DA 交 DA 的延长线于 M ,过 E 作 EN⊥FC交 FC的延长线于 N,证得△ AME ≌△ CNE,△ ADE≌△ CFE,依照全等三角形的性质即可获取结论.【解答】〔1〕证明:在 ?ABCD中,∵AD=AC, AD⊥AC,∴ AC=BC, AC⊥ BC,连接 CE,∵E 是 AB 的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠ CEF=∠AED=90°﹣∠ CED,在△ CEF和△ AED中,,∴△ CEF≌△ AED,∴ED=EF;(2〕解:由〔 1〕知△ CEF≌△ AED,CF=AD,∵ AD=AC,∴ AC=CF,∵DP∥AB,∴ FP=PB,∴ CP= AB=AE,∴四边形 ACPE为平行四边形;〔 3〕解:垂直,原由:过 E 作 EM⊥ DA 交 DA 的延长线于 M ,过 E 作 EN⊥FC交 FC的延长线于 N,在△ AME 与△ CNE中,,∴△ AME≌△ CNE,∴∠ ADE=∠CFE,在△ ADE与△ CFE中,,∴△ ADE≌△ CFE,∴∠ DEA=∠FEC,∵∠ DEA+∠DEC=90°,∴∠ CEF+∠DEC=90°,∴∠ DEF=90°,∴ED⊥EF.2021年7月4日。

2023年泰安市中考数学试卷及答案

2023年泰安市中考数学试卷及答案

2023年山东省泰安市区中考数学试卷一、选择题. 1. 23-的倒数是( ) A. 23 B. 23- C. 32 D. 32- 2. 下列运算正确的是( )A. 235a b ab +=B. 222()a b a b -=-C. ()3235ab a b =D. ()3253412a a a ⋅-=- 3. 2023年1月17日,国家航天局公布了我国嫦娥五号月球样品的科研成果.科学家们通过对月球样品的研究,精确测定了月球的年龄是20.3亿年,数据20.3亿年用科学记数法表示为( )A. 82.0310⨯年B. 92.0310⨯年C. 102.0310⨯年D. 920.310⨯年 4. 小亮以四种不同的方式连接正六边形的两条对角线,得到如下四种图形,则既是轴对称图形又是中心对称图形的是( )A. B. C. D. 5. 把一块直角三角板和一把直尺如图放置,若135∠=︒,则2∠的度数等于( )A. 65︒B. 55︒C. 45︒D. 60︒6. 为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误..的是( )A. 这组数据的众数是11B. 这组数据的中位数是10C. 这组数据的平均数是10D. 这组数据的方差是4.6 7. 如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是( )A. 25︒B. 30︒C. 35︒D. 40︒8. 一次函数y ax b =+与反比例函数ab y x=(a ,b 为常数且均不等于0)在同一坐标系内的图象可能是( ) A. B.C. D.9. 如图,O 是ABC ∆的外接圆,半径为4,连接OB ,OC ,OA ,若40CAO ∠=︒,70ACB ∠=︒,则阴影部分的面积是( )A. 4π3B. 8π3C. 16π3D. 32π310. 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金,银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金,白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两.根据题意得( )A. ()()11910813x y y x x y =⎧⎨+-+=⎩,. B. 10891311y x x y x y +=+⎧⎨+=⎩,. C. ()()91110813x y y x x y =⎧⎨+-+=⎩,. D. ()()91181013x y x y y x =⎧⎨+-+=⎩. 11. 如图,ABC 是等腰三角形,36AB AC A =∠=︒,.以点B 为圆心,任意长为半径作弧,交AB 于点F ,交BC 于点G ,分别以点F 和点G 为圆心,大于12FG 的长为半径作弧,两弧相交于点H ,作射线BH 交AC 于点D ;分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两孤相交于M ,N 两点,作直线MN 交AB 于点E ,连接DE .下列四个结论:①AED ABC ∠=∠;①BC AE =;①12ED BC =;①当2AC =时,1AD =.其中正确结论的个数是( )A. 1B. 2C. 3D. 412. 如图,在平面直角坐标系中,Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,;Rt COD 中,9030COD OD D ∠=︒=∠=︒,,连接BC ,点M 是BC 中点,连接AM .将Rt COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是( )A. 3B. 4C. 2D. 2二、填空题.13. 已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是_______. 14. 为了测量一个圆形光盘的半径,小明把直尺,光盘和三角尺按图所示放置于桌面上,并量出4cm AB =,则这张光盘的半径是_______cm .(精确到0.1cm 173≈.)15. 二次函数234y x x =--+的最大值是__________.16. 在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C 处,测得该塔顶端B 的仰角为50︒,后退60m (60m CD =)到D 处有一平台,在高2m (2m DE =)的平台上的E 处,测得B 的仰角为266︒..则该电视发射塔的高度AB 为_______m .(精确到1m .参考数据:tan50 1.2tan 26.60.5︒≈︒≈,)17. 如图,在ABC 中,16AC BC ==,点D 在AB 上,点E 在BC 上,点B 关于直线DE 的轴对称点为点B ',连接DB ',EB ',分别与AC 相交于F 点,G 点,若87,4AF DF B F '===,,则CG 的长度为__________.18. 已知,12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形,按下图所示摆放.点235,,,A A A 都在x 轴正半轴上,且2356891A A A A A A ====,则点2023A 的坐标是______.三、解答题.19. (1)化简:2211025224x x x x x -++⎛⎫-÷ ⎪+-⎝⎭; (2)解不等式组:2731132x x x +>⎧⎪+-⎨>⎪⎩. 20. 某市组织了一次知识竞赛,依据得分情况将获奖结果分为四个等级:A 级为特等奖,B 级为一等奖,C 级为二等奖,D 级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据相关信息解答下列问题:(1)本次竞赛共有______名选手获奖,扇形统计图中扇形C 的圆心角度数是______度;(2)补全条形统计图;(3)若该馆有一个入口,三个出口.请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.21. 如图,一次函数122y x =-+的图象与反比例函数2k y x=的图象分别交于点A ,点B ,与y 轴,x 轴分别交于点C ,点D ,作AE y ⊥轴,垂足为点E ,4OE =.(1)求反比例函数的表达式;(2)在第二象限内,当12y y <时,直接写出x 的取值范围;(3)点P 在x 轴负半轴上,连接PA ,且PA AB ⊥,求点P 坐标.22. 为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?23. 如图,矩形ABCD 中,对角线AC BD ,相交于点O ,点F 是DC 边上的一点,连接AF ,将ADF △沿直线AF 折叠,点D 落在点G 处,连接AG 并延长交DC 于点H ,连接FG 并延长交BC 于点M ,交AB 的延长线于点E ,且AC AE =.(1)求证:四边形DBEF 是平行四边形;(2)求证:FH ME =.24. 如图,ABC ,CDE 是两个等腰直角三角形,EF AD ⊥.(1)当AF DF =时,求AED ∠;(2)求证:EHG ADG ∽△△;(3)求证:AE AC EH HC=. 25. 如图1,二次函数24y ax bx =++的图象经过点(4,0),(1,0)A B --.(1)求二次函数的表达式;(2)若点P 在二次函数对称轴上,当BCP 面积为5时,求P 坐标;(3)小明认为,在第三象限抛物线上有一点D ,使90DAB ACB +=︒∠∠;请判断小明的说法是否正确,如果正确,请求出D 的坐标;如果不正确,请说明理由.2023年山东省泰安市区中考数学试卷答案一、选择题1.D2.D3.B4. D5. B6. B7. A8. D9. C10. C11. C①ABC 中,AB AC =,36A ∠=︒. ①()1180722ABC C A ∠=∠=︒-∠=︒. 由作图知,BD 平分ABC ∠,MN 垂直平分BD . ①1362ABD CBD ABC ∠=∠=∠=︒,EB ED =. ①EBD EDB ∠=∠.①EDB CBD ∠=∠.①DE BC ∥.①AED ABC ∠=∠,①正确; ADE C ∠=∠.①AED ADE ∠=∠.①AD AE =.①A ABD ∠=∠.①AD BD =.①72BDC A ABD ∠=∠+∠=︒.①BDC C ∠=∠.①BC BD =.①BC AE =,①正确;设ED x =,BC a =.则AD a =,BE x =.①CD BE x ==.①AED ABC △∽△. ①ED AD AD BC AC AD DC==+. ①x a a a x =+. ①220x ax a +-=.①0x >.①x =.即12ED BC =,①错误; 当2AC =时,2CD AD =-.①CD AD =.2AD AD =-,①1AD =,①正确 ①正确的有①①①,共3个.12. A解:如图所示,延长BA 到E ,使得AE AB =,连接OE CE ,.①Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,. ①46AB OB ==,.①4AE AB ==.①8BE =.①点M 为BC 中点,点A 为BE 中点.①AM 是BCE 的中位线.①12AM CE =;在Rt COD 中,9030COD OD D ∠=︒=∠=︒,.①4OC ==. ①将Rt COD 以点O 为旋转中心按顺时针方向旋转. ①点C 在以O 为圆心,半径为4的圆上运动.①当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值.①10OE ==.①CE 的最小值为1046-=.①AM 的最小值为3.故选A .二、填空题13. 4a >-14. 6.9 15. 25416. 55解:如图所示,过点E 作EF AB ⊥于F .由题意得,AB AD DE AD ⊥,⊥.①四边形ADEF 是矩形.①2m AF DE EF AD ===,.设m BF x =,则()2m AB AF BF x =+=+.在Rt ABC △中,tan AB ACB AC∠=.①()252m tan tan506AB x AC x ACB +==≈+︒∠. 在Rt BEF △中,tan BFBEF EF ∠=. ①2m tan tan 26.6BFxEF x BEF ==≈∠︒.①EF AD =. ①()522606x x =++.①53x ≈.①255m AB x =+≈.故答案为:55.17. 4.5解:①16AC BC ==.①A B ∠=∠.由折叠的性质可得B B '∠=∠.①A B '∠=∠.又①AFD B FG ∠=∠'.①AFD B FG '∽. ①AFDFB F GF =',即874GF =.① 3.5GF =.① 4.5CG AC AF GF =--=.故答案为:4.5.18. (2023,解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A如图:过1A 作1A B x ⊥轴.①12,OA A①111cos601,sin60OB OA A B OA =︒⨯==︒⨯=①(1A同理:(((4774,,,10,,A A A①()()(3133131,0,3,0,3n n n A n A n A n -+-+()31n +为偶数,(3131,n A n ++为奇数; ①202336741÷=,2023为奇数①(20232023,A .故答案为(2023,. 三、解答题19. (1)25x x -+;(2)25x -<< 20. (1)200,108 (2)见解析 (3)13 【小问1详解】 解:14480200360︒÷=︒名. ①本次竞赛共有200名选手获奖.①C 级的人数为2008020025%1060--⨯-=名.①扇形统计图中扇形C 的圆心角度数是60360108200︒⨯=度. 故答案为:200,108;【小问2详解】解:B 级的人数为20025%50⨯=名.补全统计图如下:【小问3详解】解:设这三个出口分别用E ,F ,G 表示,列表如下:由表格可知一共有9种等可能性的结果数,其中参赛选手小丽和小颖由馆内恰好从同一出口走出的结果数有3种.①参赛选手小丽和小颖由馆内恰好从同一出口走出的概率3193==. 21.(1)4y x=-; (2)10x -<<;(3)()9,0-.【小问1详解】①4OE =,AE y ⊥轴.①()0,4E ,点A 的纵坐标为4.①点A 在122y x =-+图象上.①当4y =时,422x =-+,解得:1x =-.①点A 坐标为()1,4-.①反比例函数2k y x=的图象过点A . ①144k =-⨯=-. ①反比例函数的表达式为:4y x =-; 【小问2详解】如图,在第二象限内,当12y y <时,10x -<<.【小问3详解】如图,过A 作AM x ⊥轴于点M .①AE y ⊥轴.①90AEO EOM OMA ∠=∠=∠=︒.①四边形AEOM 是矩形.①4AM OE ==,1OM AE ==.①PA AB ⊥.①90PAD ∠=︒,即:90PAM DAM ∠+∠=︒.①90DAM ADM ∠+∠=︒.①PAM ADM ∠=∠.①DAM APD ∠=∠.①PAD AMD ∽.①AD PD MD AD=. 由22y x =-+得:0y =时,220x -+=,解得:1x =.①点()1,0D .①AD ==2MD =.①2= ①10PD =.①点()9,0P -.22. 这个学校九年级学生有300人.解:设零售价为x 元,批发价为y .根据题意可得:50603600360060x y y x =⎧⎪⎨=+⎪⎩,解得:1210x y =⎧⎨=⎩. 则学校九年级学生360012300÷=人.答:这个学校九年级学生有300人.23. (1)证明见解析(2)证明见解析【小问1详解】 证明:①四边形ABCD 是矩形.①1902AB CD AD BC ADC ABC BAD AC BD ====︒=∥,,∠∠,. 由折叠的性质可得AD AG =,90AGF ADF ∠=∠=︒. ①90AGE DAB ==︒∠∠.①AC AE =,AC BD =.①AE BD =.①()Rt Rt HL ABD GEA △≌△.①AEG DBA ∠=∠.①BD EF ∥.又①BE DF ∥.①四边形DBEF 是平行四边形;【小问2详解】证明:①四边形DBEF 是平行四边形.①BE DF =.由折叠的性质可得GF DF =.①BE GF =.①CD AB ∥.①HFG E =∠∠.又①18090FGH AGF MBE ∠=︒-∠=︒=∠.①()ASA FGH EBM △≌△.①FH ME =.24. (1)60︒(2)见详解 (3)见详解【小问1详解】①EF AD ⊥.①90EFA EFD ∠=∠=︒.①EF EF =,AF DF =.①EFA EFD ≌.①EA ED =.①ABC ,CDE 是两个等腰直角三角形.①GC DE ⊥.①等腰直角CDE 中,EG GD =.①GC 是线段ED 的垂直平分线.①EA AD =.①EA AD DE ==,即EAD 是等边三角形.①60AED ∠=︒;【小问2详解】在(1)中有GC DE ⊥,EF AD ⊥.EHG ADG ∽△△;【小问3详解】过H 点作HK BC ⊥于点K ,如图.①HK BC ⊥,45BCH ∠=︒.①90HKB HKC ∠=∠=︒.①45KHC KCH ∠=∠=︒,即是等腰Rt KHC △.①HK KC =.①180EHK HKE HEK ∠=︒-∠-∠,45DEC ∠=︒,HEK HEG DEC ∠=∠+. ①45EHK HEG ∠=︒-∠.①GC 是线段ED 的垂直平分线.①EAG DAG ∠=∠.在(1)中已证明HEG DAG ∠=∠.①HEG EAG ∠=∠.①45BAE BAC EAG EAG ∠=∠-∠=︒-∠.①45BAE HEG EHK ∠=︒-∠=∠.①90B HKE ∠=∠=︒.①ABE HKE ∽. ①AE AB HE HK=. ①AB BC =,HK KC =. ①AE AB BC HE HK KC ==. ①HK BC ⊥,AB BC ⊥.①HK AB ∥.①ABC HKC ∽. ①BC AC KC HC=. ①AE AC HE HC =.25. (1)254y x x =++(2)5,42⎛⎫- ⎪⎝⎭或5,162⎛⎫-- ⎪⎝⎭(3)正确,820,39D ⎛⎫--⎪⎝⎭ 【小问1详解】解:将(4,0),(1,0)A B --代入24y ax bx =++得: 1644040a b a b -+=⎧⎨-+=⎩,解得:15a b =⎧⎨=⎩. ①抛物线解析式为:254y x x =++;【小问2详解】解:由抛物线254y x x =++可知,其对称轴为直线52x =-,()0,4C . 设直线BC 解析式为:y kx c =+.将()1,0B -,()0,4C 代入解得:44k c =⎧⎨=⎩. ①直线BC 解析式为:44y x =+.此时,如图所示,作PQ x ∥轴,交BC 于点Q .①点P 在二次函数对称轴上.①设5,2P m ⎛⎫- ⎪⎝⎭,则4,4m Q m -⎛⎫ ⎪⎝⎭.①456424m m PQ -+⎛⎫=--= ⎪⎝⎭. ①()116642242BCPC B m m S PQ y y ++=-=⨯⨯=. ①要使得BCP 面积为5. ①652m +=,解得:4m =或16m =-. ①P 的坐标为5,42⎛⎫-⎪⎝⎭或5,162⎛⎫-- ⎪⎝⎭; 【小问3详解】解:正确,820,39D ⎛⎫-- ⎪⎝⎭,理由如下: 如图所示,连接AC ,BC ,设AC 与对称轴交点为K ,对称轴与x 轴交点为H ,连接BK ,延长AD 与对称轴交于点M .由(1),(2)可得4OA OC ==,=90AOC ∠︒.①45CAO ∠=︒,AC =根据抛物线的对称性,AK BK =.①45KAB KBA ∠=∠=︒,90AKB ∠=︒.①3AB =.①2AK BK ==.①2CK AC AK =-=. 在Rt CKB 中,5tan 3CK CBK BK ∠==.①90CBK ACB ∠+∠=︒且90DAB ACB +=︒∠∠. ①DAB CBK ∠=∠. ①5tan tan 3DAB CBK ∠=∠=. 即:在Rt AHM 中,53HM AH =. ①()53422AH =---=. ①355232HM =⨯=. ①55,22M ⎛⎫-- ⎪⎝⎭. 设直线AM 解析式为:y sx t =+.将()4,0A -,55,22M ⎛⎫-- ⎪⎝⎭代入解得:53203s t ⎧=-⎪⎪⎨⎪=-⎪⎩. ①直线AM 解析式为:52033y x =--. 联立25452033y x x y x ⎧=++⎪⎨=--⎪⎩,解得:83209x y ⎧=-⎪⎪⎨⎪=-⎪⎩或40x y =-⎧⎨=⎩(不合题,舍去) ①小明说法正确,D 的坐标为820,39D ⎛⎫-- ⎪⎝⎭.。

泰安市中考数学试题含答案解析

泰安市中考数学试题含答案解析

山东省泰安市中考数学试卷(含解析)一、(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【分析】根据零指数幂和有理数的除法法则计算即可.【解答】解:原式=1+(﹣3)=﹣2,故选:B.【点评】本题考查的是零指数幂和有理数的除法运算,掌握任何不为0的数的零次幂为1、灵活运用有理数的除法法则是解题的关键.2.下列计算正确的是()A.2=﹣4a2C.m3m2=m6D.a6÷a2=a4【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(﹣2a)2=4a2,故此选项错误;C、m3m2=m5,故此选项错误;D、a6÷a2=a4,正确.故选:D.【点评】此题主要考查了同底数幂的乘除法运算法则以及积的乘方运算法则和幂的乘方运算等知识,正确掌握相关法则是解题关键.3.下列图形:任取一个是中心对称图形的概率是()A.B.C.D.1【分析】由共有4种等可能的结果,任取一个是中心对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.化简:÷﹣的结果为()A.B.C.D.a【分析】先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的加法即可.【解答】解:原式=×﹣=﹣=,故选:C.【点评】本题主要考查分式的混合运算,熟练掌握分式的混合运算顺序和运算法则是解题的关键.5.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120°C.135°D.150°【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是6,∴圆锥的母线长为=9,设扇形的圆心角为n°,∴=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.6.国家统计局的相关数据显示,我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.6.767×1012元D.6.767×1014元【分析】首先把5.3万亿化为53000亿,再用科学记数法表示53000,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67.67万亿元=6.767×1013元,故选:A.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形AB CD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.9.一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()A.无实数根B.有一正根一负根C.有两个正根D.有两个负根【分析】直接去括号,进而合并同类项,求出方程的根即可.【解答】解:∵(x+1)2﹣2(x﹣1)2=7,∴x2+2x+1﹣2(x2﹣2x+1)=7,整理得:﹣x2+6x﹣8=0,则x2﹣6x+8=0,(x﹣4)(x﹣2)=0,解得:x1=4,x2=2,故方程有两个正根.故选:C.【点评】此题主要考查了一元二次方程的解法,正确利用完全平方公式计算是解题关键.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.【点评】本题考查的是圆周角定理、平行四边形的性质定理、等边三角形的性质的综合运用,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、等腰三角形的三线合一是解题的关键.11.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数 40 60 100根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.12.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B. C.D.【分析】由y=ax2+bx+c的图象判断出a>0,b<0,于是得到一次函数y=ax+b的图象经过一,二,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向上,∴a>0,∵对称轴在y轴的左侧,∴b>0,∴一次函数y=ax+b的图象经过一,二,三象限.故选A.【点评】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可以判断a、b的取值范围.13.某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A. =B. =C. =D.×30=×20【分析】直接利用现要加工2100个A零件,1200个B零件,同时完成两种零件的加工任务,进而得出等式即可.【解答】解:设安排x人加工A零件,由题意列方程得:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出加工两种零件所用的时间是解题关键.14.当x满足时,方程x2﹣2x﹣5=0的根是()A.1±B.﹣1 C.1﹣D.1+【分析】先求出不等式组的解,再求出方程的解,根据范围即可确定x的值.【解答】解:,解得:2<x<6,∵方程x2﹣2x﹣5=0,∴x=1±,∵2<x<6,∴x=1+.故选D.【点评】本题考查解一元一次不等式、一元二次方程的解等知识,熟练掌握不等式组以及一元二次方程的解法是解题的关键,属于中考常考题型.15.在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.16.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.63【分析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PNsin∠PNA=60×0.6947≈41.68(海里)故选:B.【点评】此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.17.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A.1:B.1:C.1:2 D.2:3【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到=,求出AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,由CE平分∠ACB交⊙O于E,得到OE⊥AB,求出OE=AB,CE=AB,根据三角形的面积公式即可得到结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴,∵CE平分∠ACB交⊙O于E,∴=,∴AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,∵CE平分∠ACB交⊙O于E,∴=,∴OE⊥AB,∴OE=AB,CE=AB,∴S△ADE:S△CDB=(ADOE):(BDCE)=():()=2:3.故选D.【点评】本题考查了圆周角定理,三角形的角平分线定理,三角形的面积的计算,直角三角形的性质,正确作出辅助线是解题的关键.18.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.19.当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1 B.m<1 C.m>4 D.m<4【分析】设y=mx﹣4,根据题意列出一元一次不等式,解不等式即可.【解答】解:设y=mx﹣4,由题意得,当x=1时,y<0,即m﹣4<0,解得m<4,当x=4时,y<0,即4m﹣4<0,解得,m<1,则m的取值范围是m<1,故选:B.【点评】本题考查的是含字母系数的一元一次不等式的解法,正确利用函数思想、数形结合思想是解题的关键.20.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP 是关键.二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分,)21.将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为y=2(x+2)2﹣2.【分析】按照“左加右减,上加下减”的规律求得即可.【解答】解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.22.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.【分析】要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.【解答】解:连接OD,如右图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=,∵∠COE=90°,OC=3,∴OE=OCtan60°=,∴AE=OE﹣OA=,故答案为:.【点评】本题考查切线的性质,解题的关键是明确题意,找出所求问题需要的条件.23.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF 的面积为.【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF,根据勾股定理求出OF,根据三角形的面积公式计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD==10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴=,即=,解得,BF=,则OF==,则△BOF的面积=×OF×OB=,故答案为:.【点评】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.24.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l 上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为2n+1﹣2.【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为 2n+1﹣2.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.【分析】(1)由正方形OABC的顶点C坐标,确定出边长,及四个角为直角,根据AD=2DB,求出AD 的长,确定出D坐标,代入反比例解析式求出m的值,再由AM=2MO,确定出MO的长,即M坐标,将M与D坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)把y=3代入反比例解析式求出x的值,确定出N坐标,得到NC的长,设P(x,y),根据△OPM 的面积与四边形OMNC的面积相等,求出y的值,进而得到x的值,确定出P坐标即可.【解答】解:(1)∵正方形OABC的顶点C(0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=AB=2,∴D(﹣3,2),把D坐标代入y=得:m=﹣6,∴反比例解析式为y=﹣,∵AM=2MO,∴MO=OA=1,即M(﹣1,0),把M与D坐标代入y=kx+b中得:,解得:k=b=﹣1,则直线DM解析式为y=﹣x﹣1;(2)把y=3代入y=﹣得:x=﹣2,∴N(﹣2,3),即NC=2,设P(x,y),∵△OPM的面积与四边形OMNC的面积相等,∴(OM+NC)OC=OM|y|,即|y|=9,解得:y=±9,当y=9时,x=﹣10,当y=﹣9时,x=8,则P坐标为(﹣10,9)或(8,﹣9).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.26.某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最大值,最大值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.27.如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CDBC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.【分析】(1)欲证明AC2=CDBC,只需推知△ACD∽△BCA即可;(2)①连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH;②利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.【解答】证明:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴=,∴AC2=CDBC;(2)①证明:连接AH.∵∠ADC=∠BAC=90°,点H、D关于AC对称,∴AH⊥BC.∵EG⊥AB,AE=BE,∴点G是AB的中点,∴HG=AG,∴∠GAH=GHA.∵点F为AC的中点,∴AF=FH,∴∠HAF=∠FHA,∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH⊥GH;②∵EK⊥AB,AC⊥AB,∴EK∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又EK=EB,∴EK=AC,即AK=KE=EC=CA,∴四边形AKEC是菱形.【点评】本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30度角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题,难度较大.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴当x=﹣=时,∴S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.29.(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)【分析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=AD,即可得出结果.【解答】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(2)解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(3)解: =;理由如下:作DF∥BC交AC于F,如图3所示:同(1)得:△DBE≌△CFD(AAS),∴EB=DF,∵△ABC是等腰直角三角形,DF∥BC,∴△ADF是等腰直角三角形,∴DF=AD,∴=,∴=.【点评】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。

泰安中考数学试题及答案2024

泰安中考数学试题及答案2024

泰安中考数学试题及答案2024一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 7B. 2x + 3 = 5x + 7C. 2x - 3 = 5x + 7D. 2x - 3 = 5x - 7答案:D2. 圆的周长公式是什么?A. C = πdB. C = 2πrC. C = πr²D. C = 2πd答案:B3. 一个数的平方根是它本身的数是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. (-3) + (-2)D. (-3) - 2答案:A5. 以下哪个选项表示的是锐角?A. 90°B. 120°C. 45°D. 180°答案:C6. 一个等腰三角形的底角是45°,那么顶角是多少度?A. 45°B. 60°C. 90°D. 120°答案:C7. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A8. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 3:4 ≠ 6:8C. 3:4 = 6:9D. 3:4 ≠ 6:9答案:A9. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C10. 一个数除以-2等于-3,那么这个数是?A. 6B. -6C. 3D. -3答案:B二、填空题(每题2分,共20分)11. 一个数的立方是-8,这个数是______。

答案:-212. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。

答案:513. 一个数的倒数是1/3,那么这个数是______。

答案:314. 一个等差数列的首项是2,公差是3,那么第5项是______。

2022年山东省泰安市中考数学试题及答案解析

2022年山东省泰安市中考数学试题及答案解析

2022年山东省泰安市中考数学试卷一、选择题(本大题共12小题,共48分))的结果是()1.计算(−6)×(−12A. −3B. 3C. −12D. 122.下列运算正确的是()A. 6x−2x=4B. a−2⋅a3=a−6C. x6÷x3=x3D. (x−y)2=x2−y23.下列图形:其中轴对称图形的个数是()A. 4B. 3C. 2D. 14.2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力.将44.8万度用科学记数法可以表示为()A. 0.448×106度B. 44.8×104度C. 4.48×105度D. 4.48×106度5.如图,l1//l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A. 70°B. 65°C. 60°D. 55°6.如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A. 2√3B. 3√2C. 2√5D. √57.某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A. 最高成绩是9.4环B. 平均成绩是9环C. 这组成绩的众数是9环D. 这组成绩的方差是8.78.如图,四边形ABCD中,∠A=60°,AB//CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为()A. 6π−9√3B. 12π−9√3C. 6π−9√32D. 12π−9√329.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x−2−101y0466下列结论不正确的是()A. 抛物线的开口向下B. 抛物线的对称轴为直线x=12C. 抛物线与x轴的一个交点坐标为(2,0)D. 函数y=ax2+bx+c的最大值为25410.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A. 3(x−1)x=6210B. 3(x−1)=6210C. (3x−1)x=6210D. 3x=621011.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四S△ABC,其中正确结论的个数是()边形AECF是菱形;④S△BOE=14A. 4B. 3C. 2D. 112.如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A. 52B. 125C. √13−32D. √13−2二、填空题(本大题共6小题,共24分)=______.13.计算:√8⋅√6−3√4314.如图,四边形ABCD为平行四边形,则点B的坐标为______.15.如图,在△ABC中,∠B=90°,⊙O过点A、C,与AB交于点D,与BC相切于点C,若∠A=32°,则∠ADO=______.16. 如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC =30°,已知窗户的高度AF =2m ,窗台的高度CF =1m ,窗外水平遮阳篷的宽AD =0.8m ,则CP 的长度为______(结果精确到0.1m).17. 将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n 行,从左到右第m 个数,如(3,2)表示6,则表示99的有序数对是______.18. 如图,四边形ABCD 为正方形,点E 是BC 的中点,将正方形ABCD 沿AE 折叠,得到点B 的对应点为点F ,延长EF 交线段DC 于点P ,若AB =6,则DP 的长度为______.三、计算题(本大题共1小题,共10分) 19. (1)化简:(a −2−4a−2)÷a−4a 2−4;(2)解不等式:2−5x−23>3x+14.四、解答题(本大题共6小题,共68分)20. 2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A 组:75≤x <80,B 组:80≤x <85,C 组:85≤x <90,D 组:90≤x <95,E 组:95≤x ≤100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了______名学生的成绩,频数分布直方图中m =______,所抽取学生成绩的中位数落在______组; (2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.21. 如图,点A 在第一象限,AC ⊥x 轴,垂足为C ,OA =2√5,tanA =12,反比例函数y =kx 的图象经过OA 的中点B ,与AC 交于点D . (1)求k 值;(2)求△OBD 的面积.22.泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.23.如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.24.若二次函数y=ax2+bx+c的图象经过点A(−2,0),B(0,−4),其对称轴为直线x=1,与x轴的另一交点为C.(1)求二次函数的表达式;(2)若点M在直线AB上,且在第四象限,过点M作MN⊥x轴于点N.①若点N在线段OC上,且MN=3NC,求点M的坐标;②以MN为对角线作正方形MPNQ(点P在MN右侧),当点P在抛物线上时,求点M的坐标.25.问题探究(1)在△ABC中,BD,CE分别是∠ABC与∠BCA的平分线.①若∠A=60°,AB=AC,如图1,试证明BC=CD+BE;②将①中的条件“AB=AC”去掉,其他条件不变,如图2,问①中的结论是否成立?并说明理由.迁移运用(2)若四边形ABCD是圆的内接四边形,且∠ACB=2∠ACD,∠CAD=2∠CAB,如图3,试探究线段AD,BC,AC之间的等量关系,并证明.答案解析1.【答案】B)【解析】解:原式=+(6×12=3.故选:B.根据有理数的乘法法则计算即可.本题考查了有理数的乘法,掌握两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘都得0是解题的关键.2.【答案】C【解析】解:A选项,原式=4x,故该选项不符合题意;B选项,原式=a,故该选项不符合题意;C选项,原式=x3,故该选项符合题意;D选项,原式=x2−2xy+y2,故该选项不符合题意;故选:C.根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据完全平方公式判断D选项.本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,完全平方公式,掌握(a±b)2= a2±2ab+b2是解题的关键.3.【答案】B【解析】解:(1)是轴对称图形;(2)是轴对称图形;(3)不是轴对称图形;(4)是轴对称图形;故选:B.根据图形对称的定义判定就行.考查轴对称图形的定义,关键要理解轴对称图形的定义.4.【答案】C【解析】解:44.8万=44.8×104=4.48×105,故选:C.根据1万=104,然后写成科学记数法的形式:a×10n,其中1≤a<10,n为正整数即可.本题考查了科学记数法−表示较大的数,掌握1万=104是解题的关键.5.【答案】A【解析】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1//l2,∠1=60°,∴∠BEA=180°−60°−25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°−25°=70°.故选:A.利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.本题考查了等腰三角形的性质,平行线的性质以及三角形外角的性质,解决问题的关键是注意运用两直线平行,同旁内角互补.6.【答案】D【解析】解:连接CO并延长CO交⊙O于点E,连接AE,∵OA=OC,∴∠OAC=∠OCA,∵∠ACD=∠CAB,∴∠ACD=∠ACO,∴AE=AD=2,∵AB是直径,∴∠EAC=90°,在Rt△EAC中,AE=2,AC=4,∴EC=√22+42=2√5,∴⊙O的半径为√5.故选:D.根据圆周角定理及推论解答即可.本题主要考查了圆周角定理及推论,熟练掌握这些性质定理是解决本题的关键.7.【答案】D【解析】解:由题意可知,最高成绩是9.4环,故选项A不合题意;平均成绩是110×(9.4×2+8.4+9.2×2+8.8+9×3+8.6)=9(环),故选项B不合题意;这组成绩的众数是9环,故选项C不合题意;这组成绩的方差是110×[2×(9.4−9)2+(8.4−9)2+2×(9.2−9)2+(8.8−9)2+3×(9−9)2+(8.6−9)2]=0.096,故选项D符合题意.故选:D.根据题意分别求出这组数据的平均数、众数和方差即可判断.此题主要考查了折线统计图,加权平均数,众数和方差,掌握平均数和方差的计算公式是解题关键.8.【答案】B【解析】解:∵∠A=60°,AB//CD,DE⊥AD交AB于点E,∴∠GDE=∠DEA=30°,∵DE=EF,∴∠EDF=∠EFD=30°,∴∠DEF=120°,过点E作EG⊥DF交DF于点G,∵∠GDE=30°,DE=6,∴GE=3,DG=3√3,∴DF=6√3,阴影部分的面积=120π×36360−12×6√3×3=12π−9√3,故选:B.根据平行线的性质,扇形的面积公式,三角形面积公式解答即可.本题主要考查了扇形面积和平行线的性质,熟练掌握扇形面积公式是解决本题的关键.9.【答案】C【解析】解:由表格可得,{4a −2b +c =0a −b +c =4c =6,解得{a =−1b =1c =6,∴y =−x 2+x +6=−(x −12)2+254=(−x +3)(x +2), ∴该抛物线的开口向下,故选项A 正确,不符合题意; 该抛物线的对称轴是直线x =12,故选项B 正确,不符合题意,∵当x =−2时,y =0,∴当x =12×2−(−2)=3时,y =0,故选项C 错误,符合题意;函数y =ax 2+bx +c 的最大值为254,故选项D 正确,不符合题意;故选:C .根据表格中的数据,可以求出抛物线的解析式,然后化为顶点式和交点式,即可判断各个选项中的说法是否正确.本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,求出抛物线的解析式.10.【答案】A【解析】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文.依题意得:3(x −1)x =6210.故选:A .设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.【答案】A【解析】解:∵点E 为BC 的中点,∴BC =2BE =2CE ,又∵BC =2AB ,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠BEA=60°,∴∠EAC=∠ECA=30°,∴∠BAC=∠BAE+∠EAC=90°,即AB⊥AC,故①正确;在平行四边形ABCD中,AD//BC,AD=BC,AO=CO,∴∠CAD=∠ACB,在△AOF和△COE中,{∠CAD=∠ACB OA=OC∠AOF=∠COE,∴△AOF≌△COE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵AB⊥AC,点E为BC的中点,∴AE=CE,∴平行四边形AECF是菱形,故③正确;∴AC⊥EF,在Rt△COE中,∠ACE=30°,∴OE=12CE=14BC=14AD,故②正确;在平行四边形ABCD中,OA=OC,又∵点E为BC的中点,∴S△BOE=12S△BOC=14S△ABC,故④正确;正确的结论由4个,故选:A.通过判定△ABE为等边三角形求得∠BAE=60°,利用等腰三角形的性质求得∠EAC=30°,从而判断①;利用有一组邻边相等的平行四边形是菱形判断③,然后结合菱形的性质和含30°直角三角形的性质判断②;根据三角形中线的性质判断④.本题考查平行四边形的性质,等边三角形的判定和性质,菱形的判定和性质,含30°的直角三角形的性质,掌握菱形的判定是解题关键.12.【答案】D【解析】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠ADM+∠DAM=90°,∴∠AMD=90°,∵AO=OD=2,AD=2,∴OM=12∴点M的运动轨迹是以O为圆心,2为半径的⊙O.∵OB=√AB2+AO2=√32+22=√13,∴BM≥OB−OM=√13−2,∴BM的最小值为√13−2.故选:D.AD=2,点M的运动如图,取AD的中点O,连接OB,OM.证明∠AMD=90°,推出OM=12轨迹是以O为圆心,2为半径的⊙O.利用勾股定理求出OB,可得结论.本题考查矩形的性质,轨迹,勾股定理,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.13.【答案】2√3【解析】解:原式=√8×6−3×2√33=4√3−2√3=2√3,故答案为:2√3.化简二次根式,然后先算乘法,再算减法.本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.14.【答案】(−2,−1)【解析】解:∵四边形ABCD为平行四边形,且A(−1,2),D(3,2),∴点A是点D向左平移4个单位所得,∵C(2,−1),∴B(−2,−1).故答案为:(−2,−1).直接根据平移的性质可解答.本题考查了平行四边形的性质和平移的性质,属于基础题,解答本题的关键是找出平移的规律.15.【答案】64°【解析】解:连接OC,∵∠A=32°,∴∠DOC=2∠A=64°,∵BC与⊙O相切于点C,∴OC⊥BC,∵∠B=90°,∴∠B+∠OCB=180°,∴AB//OC,∴∠ADO=∠DOC=64°,故答案为:64°.连接OC,根据圆周角定理求出∠DOC,根据切线的性质得到OC⊥BC,证明AB//OC,根据平行线的性质解答即可.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.16.【答案】4.4m【解析】解:根据图形可知AD//CP.∵AD//CP,∠DPC=30°,在Rt△ABD中,∠ADB=30°,AD=0.8m,≈0.46m.∴AB=AD×tan∠ADB=0.8×√33∵AB=0.46m,AF=2m,CF=1m,∴BC=2.54m,在Rt△BCP中,∠BPC=30°,BC=2.54m,∴CP=BCtan∠BPC = 2.54tan30∘≈4.4m.答:CP的长度约为4.4m.故答案为:4.4m.本题涉及遮阳棚的计算问题,光线是平行光线,所以在直角三角形中,知道一个锐角的度数,一条边的长度,可以运用直角三角形边角的关系解决问题.考查直角三角形中边角的关系,关键是能正确的选择运用三角函数解决问题.17.【答案】(10,18)【解析】解:∵第n行的最后一个数是n2,第n行有(2n−1)个数,∴99=102−1在第10行倒数第二个,第10行有:2×10−1=19个数,∴99的有序数对是(10,18).故答案为:(10,18).根据第n行的最后一个数是n2,第n行有(2n−1)个数即可得出答案.本题考查了规律型:数字的变化类,掌握第n行的最后一个数是n2,第n行有(2n−1)个数是解题的关键.18.【答案】2【解析】解:如图,连接AP,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,点E是BC的中点,∴BE=CE=12AB=3,由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,{AP=APAF=AD,∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6−x)2,解得x=2.则DP的长度为2.故答案为:2.连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.19.【答案】解:(1)原式=[(a−2)2a−2−4a−2]⋅(a+2)(a−2)a−4=a2−4a+4−4a−2⋅(a+2)(a−2)a−4=a(a−4)a−2⋅(a+2)(a−2)a−4=a(a+2) =a2+2a;(2)2−5x−23>3x+14,去分母,得:24−4(5x−2)>3(3x+1),去括号,得:24−20x+8>9x+3,移项,得:−20x−9x>3−8−24,合并同类项,得:−29x>−29,系数化1,得:x<1.【解析】(1)先将小括号内的式子进行通分计算,然后算括号外面的除法;(2)根据“去分母,去括号,移项,合并同类项,系数化1”的步骤解一元一次不等式.本题考查分式的混合运算,解一元一次不等式,理解分式的基本性质,掌握分式混合运算的运算顺序和计算法则以及解一元一次不等式的基本步骤是解题关键.20.【答案】40060D【解析】解:(1)本次调查一共随机抽取的学生总人数为:96÷24%=400(名),∴B组的人数为:400×15%=60(名),∴m=60,∵所抽取学生成绩的中位数是第200个和第201个成绩的平均数,20+96+60=176,∴所抽取学生成绩的中位数落在D组,故答案为:400,60,D;(2)E组的人数为:400−20−60−96−144=80(人),补全学生成绩频数分布直方图如下:(3)3000×144+80400=1680(人),答:估计该校成绩优秀的学生有1680人;(4)画树状图如下:共有20种等可能的结果,其中抽取同学中恰有一名男生和一名女生的结果有12种,∴抽取同学中恰有一名男生和一名女生的概率为1220=35.(1)由C组的人数除以所占百分比得出本次调查一共随机抽取的学生成绩,即可解决问题;(2)求出E组的人数,补全学生成绩频数分布直方图即可;(3)由学校共有学生人数乘以成绩优秀的学生所占的比例即可;(4)画树状图,共有20种等可能的结果,其中抽取同学中恰有一名男生和一名女生的结果有12种,再由概率公式求解即可.此题考查了用树状图法求概率以及频数分布直方图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)∵∠ACO =90°,tanA =12,∴AC =2OC ,∵OA =2√5,由勾股定理得:(2√5)2=OC 2+(2OC)2,∴OC =2,AC =4,∴A(2,4),∵B 是OA 的中点,∴B(1,2),∴k =1×2=2;(2)当x =2时,y =1,∴D(2,1),∴AD =4−1=3,∵S △OBD =S △OAD −S △ABD=12×3×2−12×3×1 =1.5.【解析】(1)先根据tanA =12,可得AC =2OC ,根据OA =2√5,由此可得A 的坐标,由B 是OA 的中点,可得点B 的坐标,从而得k 的值;(2)先求点D 的坐标,根据面积差可得结论.本题考查反比例函数图象上点的特征,三角形面积,中点坐标公式,解题的关键是根据待定系数法求出反比例函数的解析式,本题属于中等题型.22.【答案】解:设第一次购进A 种茶的价格为x 元/盒,B 种茶的价格为y 元/盒,依题意得:{30x +20y =600020×(1+20%)x +15×(1+20%)y =5100, 解得:{x =100y =150. 答:第一次购进A 种茶的价格为100元/盒,B 种茶的价格为150元/盒.【解析】设第一次购进A 种茶的价格为x 元/盒,B 种茶的价格为y 元/盒,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【答案】(1)证明:如图,在矩形ABCD中,OD=OC,AB//CD,∠BCD=90°,∴∠2=∠3=∠4,∠3+∠5=90°,∵DE=BE,∴∠1=∠2,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,∴∠6+∠5=90°,∴BF⊥AC;(2)解:与△OBF相似的三角形有△ECF,△BAF,△EBC,理由如下:由(1)可得∠1=∠4,BF⊥AC,∴∠AFB=∠BFC=90°,∴△ABF∽△BOF,∵∠1=∠3,∠EFC=∠BFO,∴△ECF∽△BOF,∵∠1=∠6,∠CFB=∠BCD=90°,∴△EBC∽△OBF;(3)解:∵△ECF∽△BOF,∴EFOF =CFBF,∴23=CFBF,即3CF=2BF,∴3OA=2BF+9①,∵△ABF∽△BOF,∴OFBF =BFAF,∴BF2=OF⋅AF,∴BF2=3(OA+3)②,联立①②,可得BF=1±√19(负值舍去),∴DE=BE=2+1+√19=3+√19.【解析】(1)根据矩形的性质和角平分线的定义,求得∠3=∠6,从而求证BF ⊥AC ;(2)根据相似三角形的判定进行分析判断;(3)利用相似三角形的性质分析求解.本题考查矩形的性质,相似三角形的判定和性质以及勾股定理,掌握相似三角形的判定和性质是解题关键.24.【答案】解:(1)∵二次函数y =ax 2+bx +c 的图象经过点B(0,−4),∴c =−4,∵对称轴为直线x =1,经过A(−2,0),∴{−b 2a =14a −2b −4=0,解得{a =12b =−1,∴抛物线的解析式为y =12x 2−x −4;(2)①如图1中,设直线AB 的解析式为y =kx +n ,∵A(−2,0),B(0,−4),∴{−2k +n =0n =−4,解得{k =−2n =−4,∴直线AB 的解析式为y =−2x −4,∵A ,C 关于直线x =1对称,∴C(4,0),设N(m,0),∵MN ⊥x 轴,∴M(m,−2m −4),∴NC =4−m ,∵MN=3NC,∴2m+4=3(4−m),∴m=85,∴点M(85,−365);②如图2中,连接PQ,MN交于点E.设M(t,−2t−4),则点N(t,0),∵四边形MPNQ是正方形,∴PQ⊥MN,NE=EP,NE=12MN,∴PQ//x轴,∴E(t,−t−2),∴NE=t+2,∴ON+EP=ON+NE=t+t+2=2t+2,∴P(2t+2,−t−2),∵点P在抛物线y=12x2−x−4上,∴12(2t+2)2−(2t+2)−4=−t−2,解得t1=12,t2=−2,∵点P在第四象限,∴t=−2舍去,∴t=12,∴点M坐标为(12,−5).【解析】(1)利用待定系数法求出a,b,c即可;(2)①求出直线AB的解析式为y=−2x−4,因为A,C关于直线x=1对称,推出C(4,0),设N(m,0),则M(m,−2m−4),NC=4−m,根据MN=3NC,构建方程求解;②如图2中,连接PQ,MN交于点E.设M(t,−2t−4),则点N(t,0),利用正方形的性质求出点P的坐标,代入抛物线的解析式,构建方程求解.本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.【答案】(1)①证明:如图1中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=AC,∵BD,CE分别平分∠ABC,∠ACB,∴点D,E分别是AC,AB的中点,∴BE=12AB=12BC,CD=12AC=12BC,∴BE+CD=BC;②解:结论成立.理由:如图2中,设BD交CE于点O,在BC上取一点G,使得BG=BE,连接OG.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD,CE分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=60°,∴∠BOC=180°−60°=120°,∴∠BOE=∠COD=60°,∵BE=BG,∠EBO=∠GBO,BO=BO,∴△EBO≌△GBO(SAS),∴∠BOE=∠BOG=60°,∴∠COD=∠COG=60°,∵CO=CO,∠DCO=∠GCO,∴△OCD≌△OCG(ASA),∴CD=CG,∴BE+CD=BG+CG=BC;(2)解:结论:AC=AD+BC.理由:如图3中,作点B关于AC的对称点E,连接AE,EC.∵四边形ABCD是圆内接四边形,∴∠DAB+∠BCD=180°,∵∠ACB=2∠ACD,∠CAD=2∠CAB,∴3∠BAC+3∠ACD=180°,∴∠BAC+∠ACD=60°,∵∠BAC=∠EAC,∴∠FAC+∠FCA=60°,∴∠AFC=120°,∴∠AFD=∠EFC=60°,∵∠DAF=∠FAC,∠FCA=∠FCE,由②可知AD+EC=AC,∵EC=BC,∴AD+BC=AC.【解析】(1)①证明△ABC是等边三角形,可得结论;②结论成立.如图2中,设BD交CE于点O,在BC上取一点G,使得BG=BE,连接OG.证明△EBO≌△GBO(SAS),推出∠BOE=∠BOG=60°,再证明△OCD≌△OCG(ASA),推出CD= CG,可得结论;(2)结论:AC=AD+BC.如图3中,作点B关于AC的对称点E,连接AE,EC.证明满足②条件,利用②中结论解决问题.本题属于圆综合题,考查了圆内接四边形的性质,角平分线的定义,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

【中考真题】2022年山东省泰安市中考数学试卷(附答案)

【中考真题】2022年山东省泰安市中考数学试卷(附答案)

2022年山东省泰安市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.5-的倒数是【】A.15B.15-C.5D.5-2.计算(a3)2•a3的结果是()A.a8B.a9C.a10D.a113.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.4.如图,△ABC的外角△ACD的平分线CP与内角△ABC的平分线BP交于点P,若△BPC=40°,则△CAP=()A.40°B.45°C.50°D.60°5.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,15 6.某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x 1x x 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭D .1x 1x x 3+=+ 7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.已知方程3a 1a a 44a--=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤B .34b <≤C .23b ≤<D .34b ≤<9.如图,点I 为的ABC 内心,连接AI 并延长交ABC 的外接圆于点D ,点E 为弦AC 的中点,连接CD ,EI ,IC ,当2AI CD =,6IC =,5ID =时,IE 的长为( )A .5B .4.5C .4D .3.510.一元二次方程2152121543x x x -++=-+根的情况是( )A .有一个正根,一个负根B .有两个正根,且有一根大于9小于12C .有两个正根,且都小于12D .有两个正根,且有一根大于12 11.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B . 2.8,6()3.--C .(3.8,2.6)D .( 3.8, 2.6)--12.如图,30AOB ∠=︒,点M 、N 分别在边OA OB 、上,且3,5OM ON ==,点P 、Q 分别在边OB OA 、上,则MP PQ QN ++的最小值是( )A B C 2 D 2二、填空题13.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)14.如图,△ ABC 中,△BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____15.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是__________________.16.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.17.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.18.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB △△APD △△AEB ;△点B 到直线AE 的;△EB △ED ;△S △APD +S △APB △S 正方形ABCD .其中正确结论的序号是 .三、解答题19.(1)若单项式14m n x y -与单项式33812m nx y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =.20.如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.21.为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组织学生参加《党史知识》测试(满分100分).为了解学生对党史知识的掌握程度,从七、八年级中各随机抽取10名学生的测试成绩,进行统计、分析,过程如下:收集数据:七年级:8688959010095959993100八年级:100989889879895909089整理数据:分析数据:应用数据:(1)填空:=a______,b=______,c=______,d=______;(2)若八年级共有200人参与答卷,请估计八年级测试成绩大于95分的人数; (3)从测试成绩优秀的学生中选出5名语言表达能力较强的学生,其中八年级3名,七年级2名.现从这5名学生中随机抽取2名到当地社区担任党史宣讲员.请用画树状图或列表的方法,求恰好抽到同年级学生的概率.22.某电子商品经销店欲购进A 、B 两种平板电脑,若用9000元购进A 种平板电脑12台,B 种平板电脑3台;也可以用9000元购进A 种平板电脑6台,B 种平板电脑6台.(1)求A 、B 两种平板电脑的进价分别为多少元?(2)考虑到平板电脑需求不断增加,该商城准备投入3万元再购进一批两种规格的平板电脑,已知A 型平板电脑售价为700元/台,B 型平板电脑售价为1300元/台.根据销售经验,A 型平板电脑不少于B 型平板电脑的2倍,但不超过B 型平板电脑的2.8倍.假设所进平板电脑全部售完,为使利润最大,该商城应如何进货?23.正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形; (2)求证:AG CG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.24.如图,抛物线2321y mx mx m =+-+的图象经过点C ,交x 轴于点()()12,0,,0A x B x (点A 在点B 左侧),且215x x -=连接BC ,D 是AC 上方的抛物线一点.(1)求抛物线的解析式;(2)连接BC ,CD ,:DCE BCE S S △△是否存在最大值?若存在,请求出其最大值及此时点D 的坐标;若不存在,请说明理由.(3)第二象限内抛物线上是否存在一点D ,DF 垂直AC 于点F ,使得DCF 中有一个锐角等于与BAC 的两倍?若存在,求点D 得横坐标,若不存在,请说明理由. 25.如图,四边形ABCD 中,AB=AD=CD ,以AB 为直径的△O 经过点C ,连接AC ,OD 交于点E . (1)证明:OD△BC ;(2)若tan△ABC=2,证明:DA 与△O 相切;(3)在(2)条件下,连接BD 交于△O 于点F ,连接EF ,若BC=1,求EF 的长.参考答案:1.A 【解析】 【详解】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以结合绝对值的意义,得5-的倒数为1115==55÷--.故选A . 2.B 【解析】 【分析】先计算幂的乘方,然后再计算同底数幂的乘法即可. 【详解】(a 3)2•a 3=6 a •39 a a =, 故选:B . 【点睛】本题考查了幂的运算,熟记幂的乘方和同底数幂的乘法公式是解决此题的关键. 3.C 【解析】 【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C 4.C 【解析】 【分析】根据外角与内角性质得出△BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出△CAP =△F AP ,即可得出答案. 【详解】解:延长BA ,作PN △BD ,PF △BA ,PM △AC , 设△PCD =x °, △CP 平分△ACD ,△△ACP =△PCD =x °,PM =PN , △BP 平分△ABC ,△△ABP =△PBC ,PF =PN , △PF =PM , △△BPC =40°,△△ABP =△PBC =△PCD ﹣△BPC =(x ﹣40)°,△△BAC =△ACD ﹣△ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°, △△CAF =100°,在Rt △PF A 和Rt △PMA 中, {PA PA PM PF==,△Rt △PF A △Rt △PMA (HL ), △△F AP =△P AC =50°. 故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键. 5.D 【解析】 【详解】根据图中信息可知这些队员年龄的平均数为: 132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选:D . 6.D【解析】【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x天,由题意可得,11x221x x3x3-⎛⎫+⨯+=⎪++⎝⎭,整理得2x1x x3+=+,或2x1x x3=-+或23x x3=+.则ABC选项均正确,故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.B【解析】【详解】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8.D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a-a2+4a=-1,即a2-3a-4=0,分解因式得:(a-4)(a+1)=0,解得:a=-1或a=4,经检验a=4是增根,分式方程的解为a=-1,当a=-1时,由a<x≤b只有4个整数解,得到3≤b<4.故选:D.【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.9.C【解析】【分析】延长ID到M,使DM=ID,连接CM.想办法求出CM,证明IE是△ACM的中位线即可解决问题.【详解】解:延长ID到M,使DM=ID,连接CM.△I是△ABC的内心,△△IAC=△IAB,△ICA=△ICB,△△DIC=△IAC+△ICA,△DCI=△BCD+△ICB,△△DIC=△DCI,△DI=DC=DM,△△ICM=90°,△CM,△AI=2CD=10,△AI=IM,△AE=EC,△IE是△ACM的中位线,△IE=1CM=4,2故选:C.【点睛】本题考查三角形的内心、三角形的外接圆、三角形的中位线定理、直角三角形的判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.10.D【解析】【分析】将方程转化为一次函数与二次函数的交点问题求解.画出函数图象,找准图象与坐标轴的交点,结合图象可选出答案.【详解】解:如图,由题意二次函数y =212124x x -++,与y 交与点(0,12)与x 轴交于(-4,0)(12,0),一次函数y =5153x -+,与y 交与点(0,15)与x 轴交于(9,0) 因此,两函数图象交点一个在第一象限,一个在第四象限,所以两根都大于0,且有一根大于12故选:D .【点睛】本题考查了抛物线与x 轴的交点,利用数形结合的思想,画图象时找准关键点,与坐标轴的交点,由图象得结果.11.A【解析】【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题.详解:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1.△P (1.2,1.4),△P 1(﹣2.8,﹣3.6).△P 1与P 2关于原点对称,△P 2(2.8,3.6).故选A .点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12.A【解析】【分析】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值;证出△ONN ′为等边三角形,△OMM ′为等边三角形,得出△N ′OM ′=90°,由勾股定理求出M ′N ′即可.【详解】解:作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,如图所示:连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:5ON ON '==,3OM OM '==,△N ′OQ =△M ′OB =30°, △△NON ′=60°,'60MOM ∠=︒,△△ONN ′为等边三角形,△OMM ′为等边三角形,△△N ′OM ′=90°,△在Rt△M ′ON ′中,M ′N故选:A .【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.13.7.1×10-7【解析】【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】△地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,△地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.14.7 5【解析】【详解】如图,过点A作AH△BC于点H,连接BE交AD于点O,△△ABC中,△BAC=90°,AB=3,AC=4,点D是BC的中点,△BC5=,AD=BD=2.5,△12BC·AH=12AC·AB,即2.5AH=6,△AH=2.4,由折叠的性质可知,AE=AB,DE=DB=DC,△AD是BE的垂直平分线,△BCE是直角三角形,△S△ADB=12AD·OB=12BD·AH,△OB=AH=2.4,△BE=4.8,△CE 75.故答案为:75.【点睛】本题的解题要点有:(1)读懂题意,画出符合要求的图形;(2)作AH △BC 于点H ,连接BE 交AD 于点O ,利用面积法求出AH 和OB 的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角.15.23π 【解析】【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为△AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,△将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,△AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒△△OAO ′是等边三角形,△60AOO '∠=︒,OO OA '=,△点O '在△O 上,△△AOB =120°,△60O OB '∠=︒,△OO B '是等边三角形,△120AO B '∠=︒,△120AO B ''∠=︒,△120B O B ''∠=︒,△11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒,△180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,△24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '△图中阴影部分的面积=2160222=223603B OB O OB SS ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】 本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点. 16.不存在【解析】【分析】首先根据n =1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n =1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:△n =1时,“•”的个数是3=3×1;n =2时,“•”的个数是6=3×2;n =3时,“•”的个数是9=3×3;n =4时,“•”的个数是12=3×4;……△第n 个图形中“•”的个数是3n ;又△n =1时,“○”的个数是1=1(11)2⨯+; n =2时,“○”的个数是2(21)32⨯+=, n =3时,“○”的个数是3(31)62⨯+=,n =4时,“○”的个数是4(41)102⨯+=, ……△第n 个“○”的个数是()12n n +, 由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=△,()1320222n n n +-=△ 解△得:无解解△得:12n n == 故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.17.(20m +【解析】【分析】过D 作DF △BC 于F ,DH △AB 于H ,设DF =x m ,CFm ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH ,即可求解. 【详解】解:过D 作DF △BC 于F ,DH △AB 于H ,△DH =BF ,BH =DF ,△斜坡的斜面坡度i =1△:DF CF =设DF =x m ,CFm ,△CD220==,x△x=10,△BH=DF=10m,CF=,△DH=BF=(m),△△ADH=30°,△AH10=+m),△AB=AH+BH=20103(m),+.故答案为:(20m【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.18.△△△【解析】【分析】△利用同角的余角相等,易得△EAB=△P AD,再结合已知条件利用SAS可证两三角形全等;△过B作BF△AE,交AE的延长线于F,利用△中的△BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;△利用△中的全等,可得△APD=△AEB,结合三角形的外角的性质,易得△BEP=90°,即可证;△连接BD,求出△ABD的面积,然后减去△BDP的面积即可;△在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【详解】△△△EAB+△BAP=90°,△P AD+△BAP=90°,△△EAB=△P AD,又△AE=AP,AB=AD,△在△APD和△AEB中,AE AP EAB PAD AB AD =⎧⎪∠=∠⎨⎪=⎩,△△APD △△AEB (SAS );故此选项成立;△△△APD △△AEB ,△△APD =△AEB ,△△AEB =△AEP +△BEP ,△APD =△AEP +△P AE , △△BEP =△P AE =90°,△EB △ED ;故此选项成立;△过B 作BF △AE ,交AE 的延长线于F , △AE =AP ,△EAP =90°,△△AEP =△APE =45°,又△△中EB △ED ,BF △AF , △△FEB =△FBE =45°,又△BE =2PE ==△BF =EF =故此选项不正确;△如图,连接BD ,在Rt△AEP 中,△AE =AP =1,△EP =,又△PB =△BE =△△APD △△AEB ,△PD =BE =△S△ABP +S △ADP =S △ABD -S △BDP = 12S 正方形ABCD - 12×DP ×BE = 12×(4+)- 12××12+ 故此选项不正确.△△EF =BF =AE=1,△在Rt△ABF 中,AB 2=(AE +EF ) 2+BF 2=4+△S 正方形ABCD =AB 2=4+ 故此选项正确. 故答案为△△△. 【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识. 19.(1)m =2,n =-1;(2)21x +,4-【解析】 【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,△-△3⨯,可得:55n -=, 解得:1n =-,把1n =-代入△,可得:(1)3m --=, 解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x =时,原式21)12114=+=-+=- 【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键. 20.(1)y =12x;y =12-x +7;(2)点E 的坐标为(0,6)或(0,8).【解析】 【分析】(1)把点A 的坐标代入y =m x ,求出反比例函数的解析式,把点B 的坐标代入y =mx,求出n 的值,即可得点B 的坐标,再把A 、B 的坐标代入直线y =kx +b ,求出k 、b 的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m ),连接AE ,BE ,先求出点P 的坐标(0,7),得出PE =|m ﹣7|,根据S △AEB =S △BEP ﹣S △AEP =5,求出m 的值,从而得出点E 的坐标. 【详解】解:(1)把点A (2,6)代入y =mx,得m =12, 则y =12x. 把点B (n ,1)代入y =12x,得n =12, 则点B 的坐标为(12,1).由直线y =kx +b 过点A (2,6),点B (12,1)得26121k b k b +=⎧⎨+=⎩,解得127k b ⎧=-⎪⎨⎪=⎩, 则所求一次函数的表达式为y =12-x +7;(2)如图,直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE , 则点P 的坐标为(0,7).△PE =|m ﹣7|.△S △AEB =S △BEP ﹣S △AEP =5, △12×|m ﹣7|×(12﹣2)=5 △|m ﹣7|=1 △m 1=6,m 2=8△点E 的坐标为(0,6)或(0,8). 21.(1)1,4,92.5,95;(2)80;(3)25【解析】 【分析】(1)利用唱票的形式得到a 、b 的值,根据中位数的定义确定c 的值,根据众数的定义确定d 的值;(2)用200乘以样本中八年级测试成绩大于95分所占的百分比即可;(3)画树状图展示所有20种等可能的结果,找出两同学为同年级的结果数,然后根据概率公式求解. 【详解】解:(1)1a =,4b =,八年级成绩按由小到大排列为:87,89,89,90,90,95,98,98,98,100, 所以八年级成绩的中位数909592.52c +==, 七年级成绩中95出现的次数最多,则95d =; 故答案为1,4,92.5,95; (2)42008010⨯=, 估计八年级测试成绩大于95分的人数为80人; (3)画树状图为:共有20种等可能的结果,其中两同学为同年级的结果数为8,所以抽到同年级学生的概率82 205==.【点睛】本题考查了列表法与树状图法:通过列表或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了统计图.22.(1)A、B两种平板电脑的进价分别为500元、1000元(2)为使利润最大,购进B种平板电脑13台,A种平板电脑34台.【解析】【分析】(1)设A和B的进价分别为x和y,台数×进价=付款,可得到一个二元一次方程组,解即可.(2)设购买B平板电脑a台,则购进A种平板电脑300001000500a-台,由题意可得到不等式组,解不等式组即可.(1)设A、B两种平板电脑的进价分别为x元、y元.由题意得,1239000 669000x yx y+=⎧⎨+=⎩,解得5001000xy=⎧⎨=⎩,答:A、B两种平板电脑的进价分别为500元、1000元;(2)设商店准备购进B种平板电脑a台,则购进A种平板电脑300001000500a-台,由题意,得30000100025003000010002.8500aaaa-⎧≤⎪⎪⎨-⎪≤⎪⎩,解得12.5≤a≤15,△a为整数,△a=13或14或15.设总利润为w,则:w=(700-500)×300001000500a-+(1300-1000)a=-100a+12000,△-100<0,△w随a的增大而减小,△为使利润最大,该商城应购进B 种平板电脑13台,A 种平板电脑30000100000135-⨯=34台.答:购进B 种平板电脑13台,A 种平板电脑34台. 【点睛】本题考查了一次函数的应用以及二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解. 23.(1)见解析 (2)见解析【解析】 【分析】(1)根据线段垂直平分线的定义得到AF =AD ,根据等腰三角形的性质、角平分线的定义证明即可;(2)作CH △DP ,交DP 于H 点,证明△ADE △△DCH (AAS ),得到CH =DE ,DH =AE =EG,证明CG ,AG DH ,计算即可.(3)过点F 作FN CD ⊥交,AB CD 分别于点,M N ,则四边形AMND 是矩形,根据DFN ADF ∠=∠,得出tan tan ADP DFN ∠=∠,AP DN PM AD FN FM ==12=,设MB x =,则1PM x =-,则222FM PM x ==-,进而根据勾股定理建立方程求得BM ,在Rt FMB 中,勾股定理即可求解. (1)证明:△DE =EF ,AE △DP , △AF =AD , △△AFD =△ADF ,△△ADF +△DAE =△P AE +△DAE =90°, △△AFD =△P AE , △AG 平分△BAF , △△F AG =△GAP . △△AFD +△F AE =90°, △△AFD +△P AE +△F AP =90°△2△GAP +2△P AE =90°, 即△GAE =45°,△△AGE 为等腰直角三角形; (2)证明:作CH △DP ,交DP 于H 点,△△DHC =90°. △AE △DP , △△AED =90°, △△AED =△DHC .△△ADE +△CDH =90°,△CDH +△DCH =90°, △△ADE =△DCH . △在△ADE 和△DCH 中,AED DHC ADE DCH AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ADE △△DCH (AAS ), △CH =DE ,DH =AE =EG . △EH +EG =EH +HD , 即GH =ED , △GH =CH . △CG. △AG, △AG,△CG +AG, △CG +AGGH +HD ),即CG +AG DG . (3)如图,过点F 作FN CD ⊥交,AB CD 分别于点,M N ,则四边形AMND 是矩形, ∴AD FN ∥, ∴2MN AD ==,P 为AB 的中点,2AB =,则112AP AB ==, AD FN ∥,DFN ADF ∴∠=∠, tan tan ADP DFN ∴∠=∠,AP DN PM AD FN FM ∴==12=, 设MB x =,则1PM x =-,则222FM PM x ==-,Rt AFM △中,2,2AF AB AM AB MB x ===-=-,222AF FM AM =+, 即()()2222222x x =-+-,解得25x =或2x =(舍去), 25BM ∴=,262255FM =-⨯=,Rt FMB 中,FB ==. 【点睛】本题考查的是正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质,解直角三角形,掌握正方形的性质、解直角三角形,全等三角形的判定定理和性质定理是解题的关键.24.(1)2132;22y x x =--+(2)存在,:DCE BCE S S △△的最大值是45,()2,3D -(3)存在,点D 的横坐标为2-或2911- 【解析】 【分析】(1)根据一元二次方程根与系数的关系求得m 的值进而即可求解;(2)令y =0,解方程得到x 1=-4,x 2=1,求得()4,0A -,()10B ,,进而求得直线AC 的解析式,,过D 作DM △x 轴于M ,过B 作BN △x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;(3)根据勾股定理的逆定理得到△ABC 是以△ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到P A =PC =PB =52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,情况一:如图2,△DCF =2△BAC =△DGC +△CDG ,情况二,△FDC =2△BAC ,解直角三角形即可得到结论. (1)由2321y mx mx m =+-+,令0y =,即23210mx mx m +-+= 则12122112,3m x x x x m m-+⋅==-++=- 交x 轴于点()()12,0,,0A x B x (点A 在点B 左侧),且215x x -= ∴()12225x x -=即()21212425x x x x +-= ∴()2134225m ⎛⎫--⨯-+= ⎪⎝⎭解得12m =-∴ 抛物线的函数表达式为213222y x x =--+;(2)由213222y x x =--+,令0y =,则213x x 2022--+=解得124,1x x =-=则()4,0A -,()10B , 令0x =,则2y = 即()0,2C设直线AC 的解析式为y kx b =+则402k b b -+=⎧⎨=⎩ 解得122k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的解析式为122y x =+过D 作DM △x 轴交AC 于M ,过B 作BN △x 轴交AC 于N , △DM △BN , △△DME △△BNE ,△:DCE BCE S S △△=DE :BE =DM :BN , 设D (a ,213222a a --+),△M (a ,12a +2), △B (1.0),△N (1,52),△:DCE BCE S S △△=DM :BN =(-12a 2-2a ):52∴:DCE BCE S S △△=-15(a +2)2+45;△当a =-2时,S 1:S 2的最大值是45;213222a a --+3=,则()2,3D ; (3)△A (-4,0),B (1,0),C (0,2),△AC BC AB =5, △AC 2+BC 2=AB 2,△△ABC 是以△ACB 为直角的直角三角形, 取AB 的中点P , △P (-32,0),△P A =PC =PB =52,△△CPO =2△BAC ,△tan △CPO =tan (2△BAC )=43,过作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,情况一:如图2,△△DCF =2△BAC =△DGC +△CDG , △△CDG =△BAC ,△tan △CDG =tan △BAC =12,即RC :DR =12,令D (a ,-12a 2-32a +2), △DR =-a ,RC =-12a 2-32a , △(-12a 2-32a ):(-a )=1:2, △a 1=0(舍去),a 2=-2,△xD =-2,情况二:△△FDC =2△BAC ,△tan △FDC =43, 设FC =4k ,△DF =3k ,DC =5k ,△tan △DGC =3k :FG =1:2,△FG =6k ,△CG =2k ,DG△,RC RG ==,DR DG RG =-=,△213.:):)():()22DR RC a a a ==---, 解得a 1=0(舍去),a 2=-2911, 综上所述:点D 的横坐标为-2或-2911. 【点睛】本题考查了二次函数综合题,一元二次方程根与系数的关系,待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形,直角三角形的性质等知识点,正确的作出辅助线是解题的关键.25.(1)证明见解析;(2)证明见解析;(3)2【解析】【详解】【分析】(1)连接OC ,证△OAD△△OCD 得△ADO=△CDO ,由AD=CD 知DE△AC ,再由AB 为直径知BC△AC ,从而得OD△BC ;(2)根据tan△ABC=2可设BC=a 、则AC=2a 、,证OE 为中位线知OE=12a 、AE=CE=12AC=a ,进一步求得,在△AOD 中利用勾股定理逆定理证△OAD=90°即可得;(3)先证△AFD△△BAD 得DF•BD=AD 2△,再证△AED△△OAD 得OD•DE=AD 2△,由△△得DF•BD=OD•DE ,即DF DE OD BD =,结合△EDF=△BDO 知△EDF△△BDO ,据此可得EF DE OB BD=,结合(2)可得相关线段的长,代入计算可得. 【详解】(1)如图,连接OC ,在△OAD 和△OCD 中,OA OC AD CD OD OD =⎧⎪=⎨⎪=⎩,△△OAD△△OCD (SSS ),△△ADO=△CDO ,又AD=CD ,△DE△AC ,△AB 为△O 的直径,△△ACB=90°,△△ACB=90°,即BC△AC ,△OD△BC ;(2)△tan△ABC=AC BC=2, △设BC=a 、则AC=2a ,,△OE△BC ,且AO=BO , △OE=12BC=12a ,AE=CE=12AC=a ,在△AED 中,,在△AOD 中,AO 2+AD 2=)2+)2=254a 2,OD 2=(OF+DF )2=(12a+2a )2=254a 2, △AO 2+AD 2=OD 2,△△OAD=90°,则DA 与△O 相切;(3)如图,连接AF ,△AB 是△O 的直径,△△AFD=△BAD=90°,△△ADF=△BDA ,△△AFD△△BAD , △DF AD AD BD=,即DF•BD=AD 2△, 又△△AED=△OAD=90°,△ADE=△ODA ,△△AED△△OAD , △AD DE OD AD=,即OD•DE=AD 2△, 由△△可得DF•BD=OD•DE ,即DF DE OD BD =, 又△△EDF=△BDO ,△△EDF△△BDO , △EF DE OB BD=, △BC=1,OD=52、ED=2、,=,【点睛】本题考查了切线的判定、等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及勾股定理的逆定理等,综合性较强,有一定的难度,准确添加辅助线构造图形是解题的关键.。

2023年山东省泰安市中考数学试卷(含答案)061950

2023年山东省泰安市中考数学试卷(含答案)061950

2023年山东省泰安市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的倒数是( )A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3.报告数据显示,年中国国防预算将为亿美元,将亿用科学记数法表示应为( )A.B.C.D.4. 下列四个圆形图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.33−313−132+3=5a 2a 2a 4=+ab +(a +b)2a 2b 2=−8(−2)a 23a 6−2⋅3=−6a 2a 2a 220191776.11776.117.761×10101.7761×10111.7761×10100.17761×10115. 如图,将一块三角板的直角顶点放在直尺的一边上,当时,的度数为( )A.B.C.D.6. 立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( )A.众数是B.平均数是C.中位数是D.方差是7. 如图,,,,是 上的点,则图中与 相等的角是( )A.B. C.D.8. 函数与在同一坐标系内的图象可以是( )A.B.∠2=37∘∠153∘54∘43∘37∘2.32.42.50.01A B C D ⊙O ∠A ∠B∠C∠DEB∠Dy =x+m y =(m≠0)m xC. D.9. 如图,内接于,连结、.若=,=,则图中阴影部分的面积为(  )A. B. C.D.10. 我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有个和尚分个馒头,正好分完;如果大和尚一人分个,小和尚人分一个,试问大、小和尚各几人?设大、小和尚各有,人,以下列出的方程组正确的是( )A.B.C.D.11. 如图,在中,,以点为圆心,适当长为半径画弧,分别交、于点,,再分别以点、为圆心,大于为半径画弧,两弧交于点,作射线交边于点,若,则的面积是 ( )A.△ABC ⊙O OA OB OA 4∠C 45∘π−24π−810010033x y { x+y =100+3y =100x 3{ x+y =1009x+y =100{ x+y =1003x+=100y 3{ x+y =100x+9y =100Rt △ABC ∠B =90∘A AB AC D E D E DE 12F AF BC C BG =1,AC =4△ACG 13B.C.D.12. 如图,在平面直角坐标系中,点的坐标为,以原点为中心,将点顺时针旋转得到点,则点的坐标为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 抛物线与坐标轴的交点个数是________.14. 如图,菱形的顶点,,在上,过点作的切线交的延长线于点.若的半径为,则的长为________.15. 当________时,二次函数有最小值________.16. 如图,在大楼的楼顶处测得另一栋楼底部的俯角为度,已知、两点间的距离为米,那么大楼的高度为________米.(结果保留根号)17. 如图,在中, ,,是边上的动点,连接,若为直角三角形,则的度数________.18. 如图,在直角坐标系中,第一次将变换成,第二次将变换成,第三次将变换成.已知,,,,,,,.32252A (−1,)3–√O A 150∘A'A'(0,−2)(1,−)3–√(2,0)(,−1)3–√y =−3−x+4x 2OABC A B C ⊙O B ⊙O OA D ⊙O 1BD x =y =−2x+6x 2AB B CD C 60A C 15AB △ABC AB =AC ∠B =35∘D BC AD △ABD ∠DAC △OAB △OA 1B 1△OA 1B 1△OA 2B 2△OA 2B 2△OA 3B 3A(1,4)(2,4)A 1(4,4)A 2(8,4)A 3B(2,0)(4,0)B 1(8,0)B 2(16,0)B 3观察每次变换后的三角形有何变化,找出规律,按此规律再将变换成,则点的坐标是________,的坐标是________.若按第一题找到的规律将进行了次变换,得到,比较每次变换中三角形顶点坐标有何变化,找出规律,推测的坐标是________,的坐标是________.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. (1)解不等式组(2) 20. 为弘扬安徽传统文化,某校开展“汉剧进课堂”的活动,该校随机抽取部分学生,按四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对汉剧的喜欢情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:这次共抽取________名学生进行统计调查,扇形统计图中,类所对应的扇形圆心角的度数为________;将条形统计图补充完整;若调查的类学生中有名男生,其余为女生,现从中抽人进行采访,请画树状图或列表法求选中名学生恰好是男女的概率. 21. 如图,直角坐标系中,直线分别与轴、轴交于,两点,与双曲线交于点,点,关于轴对称,连接,将沿方向平移,使点移动到点,得到.(1)的值是________,点的坐标是________;(2)在 的延长线上取一点 ,过点作轴,交于点,连接,求直线的解析式;(3)直接写出线段 扫过的面积.22. 如下图,左边是某公司的一份进货单,该公司会计欲查询乙商品的进价,发现进货单已被墨水污染.于是,会计向商品采购员和仓库保管员了解情况.商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:(1)△OA 3B 3△OA 4B 4A 4B 4(2)△OAB n △OA n B n A n B nx+1>3x−122x−(x−3)≥5(+a −2)÷3a +2−2a +1a 2a +2A B C D (1)D (2)(3)A 22211xOy :y =l 1tx−t(t ≠0)x y A B :y =(k ≠0)l 2k x D(2,2)B C x AC Rt △AOC AD A D Rt △DEF k A ED M(4,2)M MN//y l 2N ND ND AC李阿姨:我记得甲商品进价比乙商品进价每件高;王师傅:甲商品比乙商品的数量多件.请你根据上面的信息,求出乙商品的进价,并帮助他们补全进货单.23. 如图,在▱中,对角线,相交于点,,分别是,的中点,交于点,连接,.求证:线段与线段互相平分.24. 如图,中,,是斜边上一点,且,过点作垂直于,垂直延长线于.求证:;如图,若是的中点,试判断的形状,并进行证明.25. 在平面直角坐标系中,抛物线的顶点在轴上,与轴交于点.用含的代数式表示;若,求的值;横、纵坐标都是整数的点叫做整点.若抛物线在点,之间的部分与线段所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出的取值范围.50%40ABCD AC BD O E F AB BC EF BD G OE OF OB EF Rt △ABC AB =AC D BC BD >DC B BE AD E CF AD F (1)AE =CF (2)2M BC △EMF xOy y=a +4ax+b(a >0)x 2A x y B (1)a b (2)∠BAO=45∘a (3)A B AB a参考答案与试题解析2023年山东省泰安市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】C【考点】倒数【解析】根据乘积是的两个数互为倒数计算即可得解.【解答】解:乘积是的两个数互为倒数.∵,∴的倒数是.故选.2.【答案】C【考点】幂的乘方与积的乘方合并同类项完全平方公式单项式乘单项式【解析】分别根据同底数幂的乘法和除法,幂的乘方和积的乘方以及合并同类项的法则计算即可判断正误.【解答】解:应为,故本选项错误;,应为,故本选项错误;,,正确;,应为,故本选项错误.故选.3.【答案】B【考点】科学记数法--表示较大的数113×=113313C A 2+3a 2a 2=5a 2B (a +b =+2ab +)2a 2b 2C =−8(−2)a 23a 6D −2⋅3=−6a 3a 2a 5C此题暂无解析【解答】解:由科学记数法的性质可知,是把一个数表示成与的次幂相乘的形式(为整数),所以亿应表示为.故选.4.【答案】C【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答5.【答案】A【考点】平行线的性质【解析】由平行线的性质求出==,根据平角的定义,垂直的定义,角的和差求得=.【解答】解:如图所示:∵,∴,又∵,∴.又∵,,∴.故选.6.【答案】Ba 10n 1≤a <10,n 1776.1 1.7761×1011B ∠2∠337∘∠153∘a//b ∠2=∠3∠2=37∘∠3=37∘∠1+∠3+∠4=180∘∠4=90∘∠1=53∘A方差中位数众数算术平均数【解析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:这组数据中出现次数最多的是,众数是,选项不符合题意;∵,∴这组数据的平均数是,∴选项符合题意.,,,,的中位数是,选项不符合题意.,∴这组数据的方差是,∴选项不符合题意.故选7.【答案】D【考点】圆周角定理【解析】此题暂无解析【解答】解:根据同弧所对的圆周角相等,则.故选.8.【答案】C【考点】一次函数的图象反比例函数的图象2.4 2.4A (2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4 2.4B 2.5 2.4 2.4 2.4 2.3 2.4C =×[(2.3−2.4+(2.4−2.4s 215)2)2+(2.5−2.4+(2.4−2.4+(2.4−2.4])2)2)2=×(0.01+0+0.01+0+0)15=×0.0215=0.0040.004D B.∠A =∠D D由一次函数系数=,可得出一次函数在其定义域内单调递增,由此可排除、选项,再根据函数图象分析、选项中得的取值范围,即可得出结论.【解答】解:∵一次函数中,∴一次函数图象单调递增,∴,选项不符合题意;,一次函数图象过第一、三、四象限,,反比例函数图象在第一、三象限,,∴不符合题意;,一次函数图象过第一、二、三象限,,反比例函数图象在第一、三象限,,∴符合题意.故选.9.【答案】D【考点】扇形面积的计算三角形的外接圆与外心【解析】此题暂无解析【解答】此题暂无解答10.【答案】C【考点】数学常识由实际问题抽象出二元一次方程组【解析】分别利用大、小和尚一共人以及馒头大和尚一人分个,小和尚人分一个,馒头一共个分别得出等式得出答案.【解答】设大、小和尚各有,人,则可以列方程组:.11.【答案】C【考点】k 1>0B D A C m y =x+m k =1>0B D A m<0m>0A C m>0m>0C C 10033100x y { x+y =1003x+=100y 3作图—基本作图线段垂直平分线的性质角平分线的性质【解析】【解答】解:由作法得平分,∴点到的距离等于的长,即点到的距离为,所以的面积.故选.12.【答案】D【考点】坐标与图形变化-旋转勾股定理含30度角的直角三角形【解析】作轴于点,由、=可得=,从而知将点顺时针旋转得到点后如图所示,=,=,继而可得答案.【解答】解:作轴于点,∴,,在中,.∴,∴.∴将点顺时针旋转得到点后,,,∴,,即.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】根的判别式AG ∠BAC G AC BG G AC 1△ACG =×4×1=212C AB ⊥x B AB =3–√OB 1∠AOy 30∘A 150∘A'OA'OA ==2(+3–√)212−−−−−−−−−√∠A'OC 30∘AB ⊥x B AB =3–√OB =1Rt △ABO OA ==2A +O B 2B 2−−−−−−−−−−√OB =OA 12∠OAB =,∠AOB =30∘60∘A 150∘A'OA'=OA =2∠A'OC =30∘A'C =1OC =3–√A'(,−1)3–√D 3【解析】此题考查了抛物线与坐标轴交点个数的判定求法以及一元二次方程的解法。

山东省泰安市中考数学试题(含答案)

山东省泰安市中考数学试题(含答案)

2022年中考往年真题练习: 山东省泰安市中考数学试卷一.挑选题 1.(2021泰安) 下列各数比﹣3小的 数是 ( ) A .0 B .1 C .﹣4 D .﹣1 考点分析: 有理数大小比较。

解答: 解: 根据两负数比较大小, 其绝对值大的 反而小, 正数都大于负数, 零大于一切负数, ∴1>﹣3, 0>﹣3,∵|﹣3|=3, |﹣1|=1, |﹣4|=4,∴比﹣3小的 数是 负数, 是 ﹣4. 故选C . 2.(2021泰安) 下列运算正确的 是 ( )A .2(5)5-=-B .21()164--= C .632x x x ÷= D .325()x x =考点分析: 二次根式的 性质与化简;幂的 乘方与积的 乘方;同底数幂的 除法;负整数指数幂。

解答: 解: A 、 2(5)55-=-=, 所以A 选项不正确;B 、 21()164--=, 所以B 选项正确;C 、 633x x x ÷=, 所以C 选项不正确; D 、 326()x x =, 所以D 选项不正确.故选B . 3.(2021泰安) 如图所示的 几何体的 主视图是 ( )A .B .C .D .考点分析: 简单组合体的 三视图。

解答: 解: 从正面看易得第一层有1个大长方形, 第二层中间有一个小正方形. 故选A . 4.(2021泰安) 已知一粒米的 质量是 0. 000021千克, 这个数字用科学记数法表示为( ) A .42110-⨯千克 B .62.110-⨯千克 C .52.110-⨯千克 D .42.110-⨯千克 考点分析: 科学记数法—表示较小的 数。

解答: 解: 0. 000021=52.110-⨯; 故选: C .5.(2021泰安) 从下列四张卡片中任取一张, 卡片上的图形是中心对称图形的概率是()A.0B.C.D.考点分析: 概率公式;中心对称图形。

解答: 解: ∵在这一组图形中, 中心对称图形只有最后一个,∴卡片上的图形是中心对称图形的概率是.故选D.6.(2021泰安) 将不等式组841163x xx x+<-⎧⎨≤-⎩的解集在数轴上表示出来, 正确的是()A.B.C.D.考点分析: 在数轴上表示不等式的解集;解一元一次不等式组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年泰安市中考数学试题(带答案)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.在,0,﹣1,﹣这四个数中,最小的数是()A.B.0 C.﹣D.﹣12.下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2 D.(a﹣b)2=a2﹣b23.下列几何体,主视图和俯视图都为矩形的是()A. B. C. D.4.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣55.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180° D.∠3+∠7>180°(5题图) (8题图)6.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.47.方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣88.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.109.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,9010.在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个11.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()2mA.B.C.D.12.如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()21·cn·jy·comA.cm B.2cm C.2cm D.3cm13.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=1514.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A. B. C. D.15.若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣3616.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10° B.20° C.7.5°D.15°(16题图)(17题图)17.已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C. D.18.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个(18题图)(19题图)19.如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2 B.(+1)cm2 C.1cm2 D.cm220.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:21教育名师原创作品X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个二、填空题(本大题共4小题,满分12分。

只要求填写最后结果,每小题填对得3分)21.化简(1+)÷的结果为_________ .22.七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):月均用水量x/m3 0<x≤55<x≤1010<x≤1515<x≤20x>20频数/户12 20 3频率0.12 0.07若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有_________ 户.23.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为_________.24.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为_________ .三、解答题(本大题共5小题,满分48分。

解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?26.(8分)如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.27.(10分)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE 的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.28.(11分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.29.(11分)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB 于点M,求MN的最大值;【出处:21教育名师】(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.2014年山东泰安市学生学业水平测试数学试题参考答案一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.D.2.C.3.D.4.B. 5.D. 6.C. 7.D. 8.C. 9.B. 10.B. 11.C.12.A. 13.A. 14.B. 15.C.16.D. 17.C. 18.A. 19.A. 20.B.二、填空题(本大题共4小题,满分12分。

只要求填写最后结果,每小题填对得3分)21.x﹣1 .22.560 .23..24.10070 .三、解答题(本大题共5小题,满分48分。

解答应写出必要的文字说明、证明过程或推演步骤)25.解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.26.解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△A OB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(m+4﹣2,1)∴2m=m+2,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.27.(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.28.证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,又∵∠ADB=∠ACB=∠ABD,∴∠ADB=∠CBD=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.29.解:(1)由题设可知A(0,1),B(﹣3,),根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,故当N(﹣1,4)时,MN和NC互相垂直平分.。

相关文档
最新文档