《分式》常考题型演练
分式方程常考经典练习题(6套)附带详细的答案

练习(一)1.(2008安徽)分式方程112x x =+的解是( ) A . x=1 B . x =-1 C . x=2 D . x =-22.(2008荆州)方程21011x x x-+=--的解是( ) A .2 B .0 C .1 D .33.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修米,所列方程正确的是( )A .B .C .D . 4.(2008襄樊)当m = 时,关于x 的分式方程213x m x +=--无解. 5.(2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.6.(2008泰州)方程22123=-+--x x x 的解是=x __________. 7.解方程:(1)(2008赤峰) (2)(2008南京)22011x x x -=+-8.(2008咸宁) A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?9.(2008镇江)汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半. x 12012045x x-=+12012045x x -=+12012045x x -=-12012045x x -=-2112323x x x -=-+首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?10.(2008山西)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
初二下册分式专题全部题型

分式专题题型一:分式的观点:【例题 1】以下各式:2, x 2 , xxy,3x y , 3x, 3x24,此中分式有 ______个.()x2x3 2 0.5A、1B、2C、3D、4【练一练】1.下列式子中,属于分式的是()A、1B、xC、1D、23x 152. 以下式子中, 2 , x , m 1, 3x2 ,5,a2,2.哪些是整式哪些是分式a3m a3整式有:________________________________;分式有:;题型二:分式存心义,分式值为0:【例题 2】以下各式中,( 1)m;(2)1;(3)3m. m 取何值时,分式存心义m2| m | 2m291.x为任意实数,分式必定存心义的是()A、x21B、x21C、x21D、 x 1 x x1x1x 12.若代数式x存心义,则实数 x 的取值范围是________________.x43.(1) 若分式1存心义,则 x 的取值范围是________________;x1(2) 已知分式x3,当 x 2 时,分式无心义,则a_______________________.25xx a4.若不论 x 取何实数,分式2x3总有意义,则 m的取值范围是6x mx2______________________.【例题 3】当 x 为什么值时,(1)2x1;( 2)x2x;(3)x22.各式的值为 0.23x2x1x4【练一练】1.已知分式x1的值是零,那么x的值是x1()A、-1B、0C、1D、12. 若分式x21的值是零,则x的值为x1A 、-1B 、0C 、1D 、 13.(1) 假如分式x 1 2的值为零,那么 x 的值为 _____________________;xx 2(2) 当 x ______________时,分式3x2的值是零; (3) 当 x______________时,分式x 11 x2 x 1的值为零 .【例题 4】当 x 知足什么条件时,分式x 22x 1的值是负数正数x2【练一练】1.(1) 若分式a 23a的值为负数,则 a 的取值范围为 __________________;12(2) 当整数 x _____________时,分式6的值是负整数;x 12 (3) 已知点 (2018n,2017) 在第四象限,则 n 的取值范围是 ______________________.n 2n 82. 当 x 为什么值时,分式 x 2的值为正数负数3x 2题型三:分式的基天性质 I ( 分子、分母同乘或除以一个不等于 0 的数或整式 ) :【例题 5】假如把分式2x中的 x, y都扩大 3倍,那么分式的值2 y3x()A、扩大 3倍B、不变C、减小3倍D、扩大2倍【例题 6】不改变分式的值,将以下分式的分子、分母中的系数化为整数.1 x 1 y(2)341x 1 y2 3【练一练】1.假如把分式xy中的 x 和y都扩大为原来的2倍,那么分式的值x y()A、扩大为本来的 4 倍B、扩大为本来的 2 倍C、不变 D 、减小为本来的122. 如果把分式x 2 y中的 x 和y都缩小为原来的1,那么分式的值x y3()A、扩大为本来的 3倍B、减小为本来的1C、减小为本来的1D 、不39变3. 分式1可变形为1x()A、1B、1C、1D、1x11x 1 x x 1 4.不改变分式的值,将以下分式的分子、分母中的系数化为整数.并将较大的系数化成正数 .题型四:分式的基天性质II ( 约分和通分 ) :【例题 7】约分:(1);(2);(3) a 28a 16,此中 a 5(4) 4x2y2,此中 x 3, y 1 a 2 162x y【练一练】1.约分:(1)10a3bc(2)2a(a b)(3) (ax) 2(4) x39(5)2x2 y 2xy 2(6)5a 2b3 c23b(a b)( x a)3x3x22xy y2(1x) 2 (1 x) 2( x21) 22.先化简,再求值:(1) 4(x2x)(x 2)2,此中x 7(2)已知x y2, x y 1,求x22x2 2 y 22x122xy y的值 .【例题 8】通分:(1) 分式 2 1 ,3的最简公分母是 ________;(2) 分式 7 2mn的最简公分母是, 2 abc , 22ab a bm n mn____________;(3) 分式3 ,1 ,2 的最简公分母是 ______________________;2a4a2a1 4a2 1 1(4)分式2a2 ,2b2 ,2c2的最简公 分母是b 2ab 2ab ba aba;(5)分式1 , 11的最简公分母是, 29y 26x 4 y 6x 4 y 4 y;4a3c 7b(6)分式5b 2c ,2a 2b ,10ac 的最简公分母是__________,通分时,这三个分式的分子分母依次乘以 _______________,____________, _______________.【练一练】通分:( 1)1 4 5( 2 )xy , z( 3 )3, 2 ,, 1) 2 a) 3 2 x y 3xz 4xz 1a (a (1a , bca 24a 4 8a 8 ,42a 2 2a【例题 8】已知 x y4xy ,求2x3xy2y 的值x2xy y【练一练】1. 若ab2,则 a 2ab b2___________;若11 3 ,则代数式2 x14 xy 2 yb a a24ab b2x y x2xy y____________;2. 已知11 3 ,求2x3xy2 y的值 . x y x2xy y题型五:分式的加减:【例题 9】计算:( 1)2a ba 2b a b(2) x22x 4x2(3)a22aba2b2 3a2b3a2b 3a2b x 2 2 x a2b2b2a2b2(4)11(5)312x(6) a2 a 1.3a22ab x 2 2 x 4 x2a1【练一练】1. (1)x1=_________ ; (2)y x=_________ ;(3)5a3b2ax 1 x 1x y y x a2b2a2b2 =__________.2. (1) 已知a b3, ab 1 ,则ab___________; (2) 已知a23ab b20 ,则ab b a b a__________.5a6b3b 4a a 3b( 2)2a2b x24x 4x23(.1)2bc3ba2 c3cba22(b a) 2(3)24x223a(a b)x2x 【例题 10】已知3x 4A B,求整式 A,B.(x 1)(x 2)x 1x 2【练一练】1. 若x 3A B,求整式 A,B.(x1)( x 1)x 1x1题型六:分式的乘除:【例题 11】计算:(1)4a4b29x(2)a24a 4 a 1(3)a2b3a2b(4) 15x28a4b a22a 1 a242c24cdx2 4 y2x 2 y.x22xy y22x22xy【练一练】1.计算:2 y22(x2)3(2)x22x 1 x 1(1)( 3 )y x 21x2xx2.先化简,再求值:(1) 4x214x24x 1, 此中 x1(2) a 4a2b2a(a b).b2 , 此中 a1, b=2 4x x4(a b) 2b2a2- 1.3.已知|3a b 1| (5a 5)20. 求(3a 2.(ab33(6b 2 的值.2b b)a3b2)a2)题型七:分式方程:【例题 12】解分式方程:(1)1052( 2)510(3)2 x12 2x 1 1 2x x23x x2x x 3 3 x【练一练】(1)210(2)x32(3)x313(4)231xx 2 x x 1 2x 2x2 2 x x x x 1题型七:分式方程增根问题:【例题 13】(1)若分式方程2mx3有增根,求 m 值;x2x24x2( 2)若分式方程k 11xk5有增根 x 1 ,求 k 的值.x21x2x2x【练一练】1、若对于x的方程m1x0 有增根,则m的值是x1x 1()A、3B、2C、1D、-1、若对于 x 的分式方程m x1有增根,则m的值是2x223 x()A、 m1B、 m 2 C 、 m 3D、m0 或 m33、若对于x 的方程2x m0有增根,则 m的值是x5x 5()A、-2B、-3C、5D、34、假如方程131x有增根,那么增根是 _____.若方程x14 1 有增根,x22x x1x 21则增根是 ______.5、已知分式方程x15m有增根,则 m 的值为.x3 3 x6、(1) 若对于x的分式方程2mx12有增根,则该方程的增根为 ________________;x3x(2) 若对于x的方程2x m2有增根,则 m 的值是__________________.22xx7、若对于x的分式方程x2m2有增根,则 m 2的值为________________.x3x3题型八:分式方程无解问题:【例题 14】若对于 x 的分式方程1a2总无解,求 a 的值。
分式计算题分类训练(5种类型50道)—2024学年八年级数学上册专题训练+备考提分专项训练(解析版)

分式计算题分类训练(5种类型50道)【答案】(1)23x ;(2)5ac −【分析】(1)根据分式乘法法则,可得答案;(2)根据分式的除法,除以一个分式等于乘以这个分式的倒数,可得答案;【详解】解:(1)3324423263x y xy y xx y x ⋅==; (2)32233222222254422425105ab a b ab cd ab cd bd ccd c a b a b c ac −÷=⋅=−=−−. 【点睛】本题考查了分式的乘除法,根据法则计算是解题关键. 2442a a a a −++【答案】(1)12;(2)a【分析】(1)由分式的除法运算法则进行计算,即可得到答案; (2)由分式的乘法运算法则进行计算,即可得到答案.【详解】解:(1)原式=21x x +14x x +=12;(2)原式=()22a a a +−()222a a −+=2a a −; 【点睛】本题考查了分式的乘法、除法运算法则,解题的关键是掌握运算法则,正确的进行化简.【答案】(1)2152()ab a b +;(2)2(2)x x y x y +−+ 【分析】(1)先对分子、分母分解因式,再约分,即可求解;(2)先对分子、分母分解因式,再把除法化为乘法,然后约分即可求解.【详解】解:(1)原式=()()()2332510a b a b ab a b a b −⋅−+ =2352ab a b ⋅+ =2152()ab a b +;(2)原式=()()()()22222y x y x x yx x y x y +−−÷++=()()()()22222y x y x x x y x y x y +−+⋅−+ =2(2)x x y x y +−+. 【点睛】本题主要考查分式的乘除法,掌握因式分解以及约分是解题的关键.【答案】(1)2(1)(2)a a a −−+;(2)7m m −+【分析】(1)先把分式的分子分母因式分解,再约分化简即可;(2)先把分式的分子分母因式分解,再除法变乘法,最后约分化简即可.【详解】(1)222441214a a a a a a −+−⋅−+−22(2)1(1)(2)(2)a a a a a −−=⋅−−+ 22(2)(1)(1)(2)(2)a a a a a −−=−−+2(1)(2)a a a −=−+;(2)2211497m m m ÷−−()221(7)749(7)(7)m m m m m m m −=−⋅−=−−+−7mm =−+.【点睛】本题考查分式的乘除运算,一般都是先把分子分母因式分解,最后约分化简.【答案】(1)224a ab+(2)22239x x x --+【分析】(1)根据分式的乘法运算法则进行计算即可;(2)根据除以一个数等于乘以这个数的相反数进行计算即可.【详解】(1)解:22234246a b a b a b ab −⋅− =3a 2b2(a −2b )∙(a +2b)(a −2b)6ab (2)4a a b += 224a ab =+;(2)2222133218412x x x x x x −+−÷−−2(1)4(3)2(3)(3)3(1)x x x x x x --=×+-- 2(1)3(3)x x x -=+22239x x x --+=.【点睛】本题考查了分式的乘法运算以及除法运算,熟练掌握相关运算法则是解本题的关键.【答案】(1)22b(2)2−【分析】(1)直接根据分式的乘除运算法则解答即可;(2)分式的分子、分母先分解因式,把除法转化为乘法,再约分即可得到答案.【详解】(1)原式2222245353422a b c d d cd ab abc b =⋅⋅=;(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握分式的乘除运算法则是解题的关键.【答案】(1)234a c −;(2)21−−ab b . 【分析】分式相乘的法则是:用分子的积作为积的分子,分母的积作为积的分母,并将乘积化为既约分式或整式,作分式乘法时,也可先约分后计算.【详解】(1)解:原式2232162b a a bc a b ⎛⎫− ⎪⎝=⋅⎭⋅ 3221216a b ab c =−234a c =−(2)解:原式()22122()a b ab ab b a −=−⋅⋅−()2222()ab a b b a ab −=−−()1b a b =−−21ab b =−− 【点睛】本题考查分式的乘除运算.分式的除法运算实质上是乘法运算.掌握分式的乘法运算法则是解题关键.【答案】(1)()()()()3242x x x x −++−(2)22aa −+【分析】根据分式的乘除混合计算法则求解即可.【详解】(1)解:原式()()()()()()2232444322x x x x x x x x −+−=⋅⋅+−−+−()()()()3242x x x x −+=+−;(2)解:原式()()()()()211221112a a a a a a a −++−=⋅⋅+−+22aa −=+.【点睛】本题主要考查了分式的乘除混合计算,熟知相关计算法则是解题的关键.【答案】(1)2a −(2)12x x ++【分析】(1)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算;(2)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算.【详解】(1)原式()()()()()244214222a a a a a a a +−−=⋅⋅+−−−42a a −=−.(2)原式()()()()()()()()2314444322x x x x x x x x x x −−++−=⋅⋅+−−+−12x x +=+. 【点睛】本题考查了分式的乘除混合运算,正确分解因式是关键,属于基础题.【答案】(1)42b a -(2)-2【分析】(1)先将除法转化为乘法,再约分即可得出答案;(2)先利用完全平方公式整理,将除法化为乘法,最后约分即可得出答案.【详解】(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握运算法则是解题的关键.【答案】(1)a b +(2)x y −【分析】(1)根据同分母分式的运算法则计算即可;(2)根据同分母分式的运算法则计算即可.【详解】(1)解:原式()()a b a b a b a b +−==+−.(2)解:原式222x y xy x y x y +=−−− 222x y y x y x −+=−()2x y x y −=−x y =−.【点睛】本题考查了同分母分式的加减法以及平方差公式,熟练掌握同分母分式的加减法法则是解题的关键.【答案】(1)1x +(2)12x y +【分析】(1(2)先将异分母分式化为同分母分式,再进行同分母分式加减运算即可;【详解】(1)原式2221311x x x x x +−=+−−22131x x x x ++−=−22121x x x +−=−()()()2111x x x +=−−11x x −=+; (2)原式()()2222422x y x y x y x y x −++−−+=2224y xy x −−=12x y =+. 【点睛】本题考查了异分母分式相加减的运算,熟练掌握运算法则并你能将异分母分式互为同分母分式是解题的关键.【答案】(1)21m m −(2)224x x −【分析】(1)根据分式与整式的加法进行计算即可求解;(2)根据异分母的加法进行计算即可求解.【详解】(1)解:111m m ++−()()11111m m m m +−=+−−2111m m +−=−21m m =−; (2)解:2242x x x x −−− ()()()2222x x x x x −+=+−22224x x x x −−=−224x x =−.【点睛】本题考查了分式的加减计算,熟练掌握分式的运算法则是解题的关键.【答案】(1)3a +(2)221212a a a a −−++【分析】(1)先将分子分母能因式分解的进行因式分解,再通分计算即可;(2)先将分子分母能因式分解的进行因式分解,再通分计算即可.【详解】(1)解:22193a a a −−−()()21333a a a a =−+−− ()()()()233333a a a a a a +=−+−+− ()()2333a a a a −−=+− ()()333a a a −=+− 13a =+;(2)解:221121a a a a a a −−++++()()21111a a a a a −−=+++ ()()()()()2211111a a a a a a −−+=+++()()()21211a a a −+=+221212a a a a =−−++.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算的运算顺序和运算法则.【答案】(1)221x −−;(2)2x x −+【分析】(1)根据异分母分式相加减法则,异分母分式相加减,先通分,分母都变为()()11x x +−,变为同分母分式,再加减计算即可;(2)根据异分母分式相加减法则,异分母分式相加减,先通分,使前两项分数的分母都变为()()22x x +−,变为同分母分式,再加减计算,约分化简,再把1−这项写成同分母的形式22x x +−+,再加减计算即可.【详解】(1)原式()()()()111111x x x x x x −+=−+−+−()()()1111x x x x −−+=+−221x −=−;(2)原式()()()()()22412222x x x x x x +=−−+−−+()()()22122x x x −=−+−2222x x x +=−++2x x =−+. 【点睛】本题考查了异分母分式相加减,熟练掌握异分母分式相加减法则是解题的关键.【答案】(1)a b +(2)21m m +【分析】(1)先通分计算括号内,再根据分式的除法法则进行计算即可;(2)先算除法,再通分进行加法运算即可.【详解】(1)解:原式()2222a ab b ab a b a b ab −+=⋅−+()()2a b ab ab b a a b −=⋅+−a ba b −=+;(2)原式()()()()23313321m m m m m m −+=−+⋅+−+111m m =−++ 2111m m −+=+21m m =+.【点睛】本题考查分式的混合运算,解题的关键是掌握分式的混合运算法则,正确的计算.【答案】(1)26m +(2)11x −【分析】(1)通分计算加减法,再约分计算乘除法即可求解; (2)通分计算加减法,再约分计算乘除法即可求解.【详解】(1)解:原式()22224523m m m m m ⎛⎫−=−⋅ ⎪−−−−⎝⎭ ()222923m m m m −−=⋅−−()()()332223m m m m m +−−=⋅−−26m =+;(2)解:原式22121x x x x x x ⎛⎫++=÷− ⎪⎝⎭211x x x x +−=÷()()111x x x x x +=⋅+−11x =− 【点睛】本题考查分式的混合运算.异分母分式的加减运算关键是通分,分式的乘除运算关键是将分子分母因式分解后进行约分.【答案】3x − 【分析】先将括号内的两个式子通分并化简,然后将除法改为乘法,分子分母调换位置,最后再约分,可得最终化简结果.【详解】解:2569122x x x x −+⎛⎫−÷ ⎪++⎝⎭ 22569222x x x x x x +−+⎛⎫=−÷ ⎪+++⎝⎭()23322x x x x −−=÷++()23223x x x x −+=+−g13x =−.【点睛】本题考查了用公式法因式分解、约分、通分、分式的化简等知识点.熟知分式的化简步骤是解题的关键,同时要将结果化为最简分式或整式.【答案】232a a −++【分析】根据分式的混合运算顺序和运算法则化简原式,即可求解.【详解】解:22231211a a a a a a −⎛⎫÷−+ ⎪+++⎝⎭ ()()22231111a a a a a a −⎛⎫−=÷− ⎪+++⎝⎭()()()()221221a a a a a a −+=⋅+−+()()12a a a =−++ 232aa a =−++.【点睛】本题主要考查分式的化简,解题的关键是掌握分式的混合运算顺序和运算法则.【答案】1 【分析】通分,计算括号内,再将除法变成乘法,约分即可.【详解】解:原式()()2a ab a b a a b −−=⋅−1=.【点睛】本题考查分式的混合运算.熟练掌握相关运算法则,是解题的关键.【答案】2241x xx ++【分析】再括号外的分式2乘法运算即可化简原式.【详解】解:231111x x x x x x ⎛⎫⋅ ⎭−⎝−−++⎪ ()()()()()()31111111x x x x x x x x x +−−−+=⋅−++22331x x x x x +−+=+2241x x x +=+.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.【答案】1aa −【分析】先计算括号里边的式子,通分化成同分母的分式相加,再计算除法运算即可. 【详解】解:+⎛⎫+÷ ⎪−−−+⎝⎭2a 11a a 1a 1a 2a 1=(a +1a −1+1(a −1)2)÷a a −1=a 2(a−1)2÷a a−1 =a 2(a−1)2×a−1a 1aa =−.【点睛】此题考查学生分式运算,以及完全平方公式、平方差公式的运用,解答此题的关键是把分式化到最简.【答案】26x + 【分析】先通分括号内的式子,然后将括号外的除法转化为乘法,再约分即可.【详解】解:532224x x x x −⎛⎫+−÷ ⎪−−⎝⎭ ()()()2252223x x x x x +−−−=⋅−− ()222923x x x x −−=⋅−− ()()()332223x x x x x +−−=⋅−− ()23x =+ 26x =+.【点睛】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.【答案】2x +,1.【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】解:原式()22121x x x x +−=⨯+− 2x =+,当=1x −时,原式121=−+=.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.【答案】1x −,4 【分析】先计算括号内加法,再计算除法即可得到化简结果,再把字母的值代入计算即可.【详解】解:22121124x x x x −+⎛⎫+÷ ⎪−−⎝⎭ 222121224x x x x x x −−+⎛⎫=+÷ ⎪−−−⎝⎭()()()211222x x x x x −−=÷−+− ()()()222121x x x x x +−−=⋅−− 21x x +=− 当3x =−时, 原式32113144−+−===−−− 【点睛】此题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.【答案】1x −,2−(答案不唯一) 【分析】根据分式的减法和除法可以化简题目中的式子,然后从1−,0,1和2中选一个使得原分式有意义的值代入化简后的式子,即可解答本题.【详解】解: 原式211(2)(2)1(2)x x x x x −−+−=⋅−−2212x x x x −+=⋅−−21x x +=−,∵1x ≠,2x ≠±∴当0x =时,原式02201+==−−(答案不唯一).【点睛】本题考查分式的化简求值,解答本题的关键是掌握分式混合运算法则.【答案】2,当2m =时,值为12−【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的m 的值代入进行计算即可.【详解】解:22221369m m m m −⎛⎫+÷ ⎪−−+⎝⎭()()2323321m m m m −+−=⋅−−()()231321m m m m −−=⋅−−32m −=, 3010m m −≠−≠,,31m m ∴≠≠,,∴当2m =时,原式23122−==−【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解题的关键.【答案】3a b −+,11− 【分析】先根据分式混合运算的法则把原式进行化简,再求出a 、b 的值代入进行计算即可.【详解】解:原式()()()()2232251=222a b a b a b b a a b a b a b a ⎡⎤−+−÷−−⎢⎥−−−⎣⎦ ()()()2222531=224a b a b a a b a b a b −−−÷−−−()()222321=29a b a b a a b a b a −−−−⋅−()()()()23321=32a b a b a a b a b a b a −−+−−−⋅()31=3a b a a b a −−+ ()()()=3333b a b a a b a b a a +−++− 23a b =−+, 解方程组51a b a b +=⎧⎨−=−⎩得23a b =⎧⎨=⎩,当2,3a b ==时,原式有意义,∴原式2223311=−=−+⨯.【点睛】本题考查了分式的化简求值,掌握分式混合运算的法则是解题的关键.【答案】4【分析】根据2222244x y x y A x xy y x y −+=⋅+++,即可化简求值. 【详解】解:∵2222244x y x y A x xy y x y −+÷=+++ ∴()()()22222224422x y x y x y x y x y x y A x xy y x y x y x y x y +−−++−=⋅=⋅=++++++ 当2,1x y ==时,2112214A −==+⨯ 【点睛】本题考查分式的化简求值.将分子分母正确的进行因式分解是解题关键.【答案】2a +,5【分析】根据分式的减法和除法可以化简题目中的式子,然后从2−,2,3中选取一个使得原分式有意义的值代入化简后的式子即可. 【详解】解:22224a a a a a ⎛⎫−÷ ⎪−−⎝⎭ ()()22222222a a a a a a a a +−⎛⎫−=−⨯ ⎪−−⎝⎭()()22222a a a a a +−=⋅−2a =+,∵要使分式有意义,a 不能取0和2±,∴当3a =时,原式325=+=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式除法和减法的运算法则.【答案】26x −−;6− 【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】解:233139x x x +⎛⎫+÷ ⎪−−⎝⎭ ()()333333x x x x x ++−=÷−+− ()()33363x x x +−=−⋅− ()23x =−+26x =−−,当()()330x x +−=,即3x =或3x =−时,分式没有意义,当0x =时,原式266x =−−=−.【点睛】此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.【答案】()122x −;14042【分析】先根据分式混合运算法则进行化简,然后再代入数据求值即可. 【详解】解:2142422x x x x x +⎛⎫+÷ ⎪+−+⎝⎭ ()2142222x x x x x ⎡⎤++÷⎢⎥+−+⎣⎦=()()()()()()224222222222x x x x x x x x x ⎡⎤−++÷⎢⎥+−+−⎣⎦++= ()()22422224x x x x x ++=⋅+−+()122x =−,当2023x =时,原式()112202324042==⨯−.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.【答案】3a +【分析】先根据分式的加法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【详解】解:()()()()23333233231339323323a a a a a a a a a a a a a a a a −+−+−+−−⎛⎫+÷=⋅=⋅=+ ⎪−−−−−−⎝⎭,当3=a 时,原式33=+=【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.【答案】(1)无解(2)无解【分析】(1)去分母,化为整式方程求解,注意检验;(2)去分母,化为整式方程求解,注意检验;【详解】(1)解:2216124x x x ++=−−−,两边同时乘以2(4)−x ,得22(2)16(4)x x −++=−−, 44164x −−+=,2x =,2x =时,240x −=∴原方程无解.(2)解:两边同时乘以2(9)x −,得32(3)12x x −++=,39x =,3x =,3x =时,290x -=∴原方程无解.【点睛】本题考查分式方程的求解;掌握分式方程的求解步骤,注意检验是解题的关键.【答案】(1) 1.5x =(2)无解【分析】(1)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可;(2)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【详解】(1)解:2111x x x +=−−, 去分母得:12x x +−=,移项合并同类项得:23x =,系数化为1得: 1.5x =,检验:把 1.5x =代入1x −得:1.510.50−=≠,∴ 1.5x =是原方程的解.(2)解:2216124x x x −−=+−,去分母得:()222164x x −−=−,去括号得:2244164x x x −+−=−,移项合并同类项得:48x −=,系数化为1得:2x =−,检验:把2x =−代入得:()2240−−=,∴2x =−是原方程的增根,∴原方程无解. 【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的一般步骤,准确计算,注意最后要对方程的解进行检验.【答案】(1)4x =;(2)原分式方程无解.【分析】(1)方程两边乘以最简公分母()22x x −,把分式方程转化成整式方程求解即可; (2)方程两边乘以最简公分母()()22x x +−,把分式方程转化成整式方程求解即可.【详解】(1)解:()21522x x x x +=−, 方程两边同乘()22x x −,得482510x x −+=−,解得:4x =,检验:当4x =时,()22160x x −=≠,4x ∴=是原方程的解,∴原方程的解为4x =;(2)解:2224162424x x x x x −++=+−−,()()()()2221622222x x x x x x +−−=+−+−,()()22162222x x x x x x −+−=+−+−,方程两边都乘()()22x x +−,得:()()222216x x −−+=,解得:2x =−,检验:当2x =−时,()()220x x +−=,∴2x =−是增根,即原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的方法是解题的关键. ) ).【答案】见解析【详解】解:(1),去分母,方程两边同时乘以x (x ﹣1),得:x2﹣2(x ﹣1)=x (x ﹣1),x2﹣2x+2=x2﹣x ,﹣x=﹣2,x=2,经检验:x=2是原分式方程的解;(2)去分母,方程两边同时乘以x2﹣1,得:(x+1)2﹣4=x2﹣1,x2+2x+1﹣4=x2﹣1,2x=2,x=1,经检验:x=1不是原分式方程的解,原分式方程无解.【点评】本题是解分式方程,明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论;注意去分母时,要同时乘以所有分母的最简公分母,解分式方程时,一定要检验.【答案】(1)1x =(2)2x =【分析】(1)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母,得32x x +−−,解,得1x =,经检验知1x =是分式方程的解;(2)原方程变形得()()23111111x x x x +=+−+− 去分母,得()()213111x x −++=, 解,得2x =,经检验知2x =是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。
分式经典题型分类练习题

分式的运算(一)、分式定义及有关题型 题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值. 第二讲 分式方程(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)bxa211+=)2(a b ≠;(2))(11b a x b b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
分式练习题(附答案)

分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式方程重点题型

分式易考题型※【典例剖析】例1(分式概念)(1) 当x 时,分式x -13无意义; (2)当x 时,分式392--x x 的值为零.随堂练习11要使式子33-+x x ÷42-+x x 有意义,x 的取值应为 。
2、当x 时,分式33+-x x 的值为0。
3、使分式1122+-a a 有意义的a 的取值是( ) A 、a ≠1 B 、a ≠±1 C 、a ≠-1 D 、a 为任意实数4、当x = -3时,下列分式中有意义的是( )A 、33-+x xB 、33+-x x C 、)2)(3()2)(3(--++x x x x D 、)2)(3()2)(3(-++-x x x x 5、判断下列各分式中x 取什么值时,分式的值为0?x 取什么值时,分式无意义⑴)1)(3(2x x x --+; ⑵2522+-x x ; ⑶2231--+x x . 例2(分式的约分) 已知311=-y x ,求yxy x y xy x ---+55的值. 随堂练习21、下列变形不正确的是( ) A.2222+-=---a a a a B.11112--=+x x x (x ≠1) C.1212+++x x x =21 D.2126336-+=-+y x y x 2、若2x =-y ,则分式22y x xy -的值为________. 3、化简求值:(1)222222484y x y xy x -+- 其中x =2,y =3. (2)已知yx =2,求222263y xy x y xy x +++-的值.例3(分式的乘除法)使分式22222)(y x ay ax y a x a y x ++⋅--的值等于5的a 的值是( ) A.5 B.-5 C.51 D.-51 随堂练习3计算:(1)(xy -x 2)÷xy y x - (2)24244422223-+-÷+-+-x x x x x x x x 例4(分式加减法)例4-1化简求值:当x =21时,求1121122-+-++-x x x x x 的值. 例4-2(1)上述计算过程中,从哪一步开始出现错误:(2)从B 到C 是否正确; 。
分式精讲精练55道

2022-2023学年八年级数学下学期复习备考高分秘籍(苏科版)专题1.5分式精讲精练(11大核心考点深度分类导练,例题11道+变式44道)【知识梳理】1.分式的有关概念:分式有意义的条件是 不为零;分式无意义的条件是分母 ;分式值为零的条件是 为零且 不为零.注意:分式有意义的条件是分母不为0,无意义的条件是分母为0.分式值为0要满足两个条件,分子为0,分母不为0.2.分式的性质分式的分子与分母都乘以(或除以)同一个 的整式,分式的值 .用式子表示为)0()0(≠÷÷=≠⋅⋅=C C B C A B A C CB C A B A注意:(1) 是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;(2)将分式化简,即 ,要先找出分子、分母的 ,如果分子、分母是多项式,要先将它们分别 ,然后再 ,约分应彻底;(3)巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.3.分式的加减运算 加减法法则:① 同分母的分式相加减:分母 , 相加减②异分母的分式相加减:先,变为同分母的分式,然后再加减.注意:(1)分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.(2)异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母.4.分式的乘除运算(1)乘法法则:分式乘分式,用作为积的分子,作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式.注意:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.5.分式的混合运算:在分式的混合运算中,应先算,再将除法化为,进行化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是分式或整式.【典例剖析】【例1】要使分式x1(x1)(x2)有意义,x的取值应满足( )A.x≠﹣2B.x≠1C.x≠﹣2或x≠1D.x≠﹣2且x≠1【变式训练】1.(2023春•洛江区校级月考)下列各式中,分式的个数为( )a2x1,xπ1,―3ab,12x+y,12x y,12x+y.A.5B.4C.3D.22.(2023•余姚市校级模拟)若代数式x1x1有意义,则x的取值范围是( )A.x≠1B.x≠﹣1C.x>1D.x>﹣1 3.(2023春•原阳县月考)下列各式中,无论x取何值,分式都有意义的是( )A .x a|x|2B .x 2x 1C .3x 1x2D .x 22x 214.(2023•河北模拟)式子2a ﹣a ÷b 可以化为( )A .abB .―abC .2a ―abD .2a ―b a【例2】若分式|x|2x 2的值为零,则x 的值为 ﹣2 .【变式训练】5.(2023•瑞安市模拟)若分式2x 4x 3的值为0,则x 的值为( )A .x =2B .x =3C .x =﹣2D .x =06.(2022秋•大连期末)分式x 249x 7的值为零,则x 的值为( )A .±7B .7C .﹣7D .07.(2023春•鼓楼区校级月考)下列关于分式的判断,正确的是( )A .当x =2时,x 1x 2的值为零B .当x 为任意实数时,3x 21的值总为正数C .无论x 为何值,3x 1不可能得整数值D .当x ≠3时,x 3x有意义8.(2023春•原阳县月考)有一个分式,两位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是m ≠1;请你写出满足上述全部特点的一个分式: .【例3】将分式x yx 2y 中x 、y 的值都变为原来的2倍,则该分式的值( )A .变为原来的2倍B .变为原来的4倍C .不变D .变为原来的一半【变式训练】9.(2023春•西乡塘区校级月考)如果把分式3xyx y 中的x 、y 同时扩大为原来的2倍,那么分式的值( )A .缩小为原来的12B .扩大为原来的2倍C .扩大为原来的4倍D .不变10.(2023春•宜宾月考)下列各分式正确的是( )A .b a =b 2a2B .x 6x3=x 2C .x 25xx 210x 25=xx 5 D .―x 1x y =x 1x y11.(2023春•原阳县月考)不改变分式3x 1x 27x 2的值,使分式的分子、分母中x 的最高次项的系数都是正数,应该是( )A .3x 1x 27x 2B .3x 1x 27x 2C .3x 1x 27x 2D .3x 1x 27x 212.(2023•佛山一模)已知b >a >0,下列选项正确的是( )A .ab <a 1b 1B .a b >a 1b 1C .1a 21<1(a 1)2D .ab <a mb m【例4】分式a3b 2和59a 2b的最简公分母是 .【变式训练】13.(2023春•宜宾月考)下列各分式中,是最简分式的是( )A .xyx 2B .y 2yxyC .x 2y 2x yD .x 2y 2x y14.(2022秋•思明区期末)若9x9△是一个最简分式,则△可以是( )A .xB .13C .3D .3x15.(2023春•宜宾月考)23x 2(x y),23x 3y ,12xy 的最简公分母是 .16.(2022秋•新华区校级期末)有分别写有x ,x +1,x ﹣1的三张卡片,若从中任选一个作为分式()x 21的分子,使得分式为最简分式,则应选择写有 的卡片.【例5】化简x 2y 2(y x)2的结果是 .【变式训练】17.约分①36xy 2z 36yz 2②m 242m m 2③82mm216.18.约分:(1)36xy2z36yz2(2)82mm216(3)m244m 2m m2.19.通分:(1)x6ab2,y9a2bc;(2)1x216,12x8.20.通分:(1)4a5b2c,3c10a2b,5b2ac2(2)x(2x4)2,16x3x2,2xx24.【例6】已知1a―1b=13,则abb a的值等于 3 .【变式训练】21.(2023•海曙区校级一模)若ab=2,则2a bb= .22.(2023•荔湾区校级开学)已知3m6的值为正整数,则整数m的值为 .23.(2022秋•福清市期末)已知分式2x ax b(a,b为常数)满足表格中的信息:x的取值20.5c 分式的值无意义03则c的值是 .24.(2022秋•九龙坡区校级期末)已知x2=y3=z5≠0,则分式3x2y z5x2y3z的值为 .【例7】计算(xy﹣x2)÷x yxy的结果( )A.1yB.x2y C.﹣x2y D.﹣xy【变式训练】25.(2022秋•阳谷县期末)计算(x2x)2÷x24x22x的结果是 .26.(2023•襄州区开学)计算(ab)2÷(2a25b)⋅a5b= .27.计算:(1)ab⋅ba2;(2)(a2―a)÷aa1;(3)x21y÷x1y2.28.计算:(1)8m2n4⋅(―3m4n3)÷(―m2n2);(2)xx21÷x2yx2x;(3)―(mn)5⋅(―n2m)4÷(―mn)4;(4)(xy+x2)÷x22xy y2xy⋅x yx3.【例8】计算:x2x1―x+1= .【变式训练】29.(2023•阳城县一模)化简x2x24―x22xx24x4的结果是( )A.1xx2B.x1x2C.xx2D.1x230.(2023•东港区校级一模)观察下列各式:a1=1,a2=25,a3=14,…,它们按一定规律排列,第n个数记为a n,且满足则1a n+1a n+2=2a n+1,则a2023= .31.计算:(1)21a+a22a3(a1)2(2)11x+2x1x2.32.计算:(1)x2x1―x―1(2)x2x22x―x1x24x4(3)(xy―x2)(1x+1y x)(4)(x﹣1―8x1)÷x3x1.【例9】同学们在生活中都有过陪同爸爸妈妈去加油站加油的经历,小明发现一个有趣的现象:爸爸和妈妈加油习惯有所不同.爸爸每次加油都说“师傅,给我加300元的油”,而妈妈则说“师傅帮我把油箱加满”,这个时候小明若有所思,如果爸爸、妈妈加油两次,第一次加油汽油单价为x元/升,第二次加油汽油单价是y元/升(x≠y),妈妈每次加满油箱,需加油a升,我们规定谁的平均单价低谁就合算,请问爸爸、妈妈谁更合算呢?( )A.爸爸B.妈妈C.一样D.不确定【变式训练】33.(2022秋•南岗区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,可求得提速前列车的平均速度为 km/h.34.(2022秋•裕华区校级期末)某生产车间要制造a个零件,原计划每天制造x个,后为了供货需要,每天多制造6个,可提前 天完成任务.35.(2022•思明区校级模拟)生活中有这么一个现象:“有一杯a克的糖水里含有b克糖,如果在这杯糖水里再加入m克糖(仍不饱和),则糖水更甜了”,其中a>b>0,m>0.(1)加入m克糖之前糖水的含糖率A= ;加入m克糖之后糖水的含糖率B= ;(2)请你解释一下这个生活中的现象.36.有A,B两箱水果,A箱水果重量为(a﹣1)2kg,B箱水果重量为(a2﹣1)kg(其中a>1),售完后,两箱水果都卖了120元.(1)哪箱水果的单价要高些?(2)两箱水果中高的单价是低的单价的多少倍?【例10】化简(1)2a4a24+1 (2)x2y2x22xy y2÷(x2―xyx y)【变式训练】37.(2023春•沙坪坝区校级月考)计算:(1)x22xx1―11x;(2)x4x3÷(x―3―7x3).38.(2023春•兴化市月考)计算:(1)2x2―xx2;(2)2aa24⋅a2a+aa2.39.(2023•南京一模)计算(1a1―a21a22a1)÷a2aa1.40.(2023•榆次区一模)下面是小敏同学化简分式(5x2―1)⋅x3x29的过程,请认真阅读并完成相应任务.解:原式=(5x2―1)⋅x3(x3)(x3)……第一步=51x2⋅1x3……第二步=4x2⋅1x3⋯⋯第三步=4x2x6……第四步任务一:填空:①第一步中分母的变形用到的公式是 ;②第 步开始出现错误,错误的原因是 ;任务二:请直接写出该分式化简后的正确结果.【例11】已知ab=54,求aa b+ba b―b2a2b2的值.【变式训练】41.(2023•镇海区校级模拟)先化简,再求值:x1x22x1÷(x2x1x1―x﹣1)―1x2,然后从﹣1,0,1,2中选择一个合适的数作为x的值代入求值.42.(2023•雁塔区校级四模)先化简,再求值:x2x2x÷(1x1+1―x),其中x=﹣3.43.(2023•天长市一模)已知A=xy y2y2x2÷(1x y―1x y).(1)化简A;(2)当x2+y2=13,xy=﹣6时,求A的值.44.(2018秋•闵行区期末)阅读材料:已知xx21=13,求x2x41的值解:由xx21=13得,x21x=3,则有x+1x=3,由此可得,x41x2=x2+1x2=(x+1x)2﹣2=32﹣2=7;所以,x2x41=17.xx2x1=a,用a的代数式表示x2x4x21的值.请理解上述材料后求:已知。
分式重难点专练(解析版)

专题01分式重难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列分式中不是最简分式的是( )A .293a a ++B .222x y xy y x-+-C .2242x x x -+-D .3333ab a ab b ++【答案】C 【分析】根据最简分式的定义逐一判断即可.【详解】解:A. 293a a ++分子分母没有公因式,不能约分,所以它是最简分式,故A 选项不符合题意;B. 222x y xy y x-+-是最简分式,故B 选项不符合题意;C. 2242x x x -+-=()()()2x)x 221x x -++-(=21x x --,故C 选项符合题意;D. 3333ab a ab b++是最简分式, 故D 选项不符合题意.故应选C.【点睛】本题考查了最简分式的概念及分式的化简,掌握相关知识是解题的关键.2.若分式21aa -的值总是正数,则a 的取值范围是( )A .0a >B .12a >C .102a <<D .0a <或12a >【答案】D 【分析】分两种情况分析:当0a >时210a ->;或当0a p 时,210a -p ,再分别解不等式可得.【详解】若分式21aa -的值总是正数:当0a >时,210a ->,解得12a >;当0a p 时,210a -p ,解得12a <,此时a 的取值范围是0a p ;所以a 的取值范围是0a <或12a >.故选:D .【点睛】考核知识点:分式值的正负.理解分式取值的条件是解的关键点:分式分子和分母的值同号,分式的值为正数.3.下列代数式222222615,,,,321xy y x x y x xx x y x y x x p--+--+++中,最简分式的个数有( )A .1个B .2个C .3个D .4个【答案】A 【分析】根据最简分式的定义对每项进行判断即可.【详解】623xyy x-=-,不是最简分式;22y x x y x y-=---,不是最简分式;22x y x y++,是最简分式;2211211x x x x x --=+++,不是最简分式;5xp,不是分式;∴最简分式的个数有1个故答案为:A .【点睛】本题考查了最简分式的问题,掌握最简分式的定义是解题的关键.4.下列各式中是最简分式的是( )A .55x x--B .2211x x -+C .22222a ab b a b -+-D .128x y【答案】B 【分析】根据最简分式的定义,只要判断出分子分母是否有公因式即可.【详解】A 、该分式的分子分母中含有公因式(x ﹣5),不是最简分式,故本选项不符合题意;B 、该分式符合最简分式的定义,故本选项符合题意;C 、该分式的分子分母中含有公因式(a ﹣b ),不是最简分式,故本选项不符合题意;D 、该分式的分子分母中含有公因数4,不是最简分式,故本选项不符合题意.故选:B .【点睛】此题考查了最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.5.下列变形从左到右一定正确的是().A .22a ab b -=-B .a ac b bc =C .ax a bx b=D .22a ab b =【答案】C 【分析】根据分式的基本性质依次计算各项后即可解答.【详解】选项A ,根据分式的基本性质,分式的分子和分母都乘以或除以同一个不是0的整式,分式的值不变,分式的分子和分母都减去2不一定成立,选项A 错误;选项B ,当c≠0时,等式才成立,即()0a ac c b bc=¹,选项B 错误;选项C ,axbx 隐含着x≠0,由等式的右边分式的分子和分母都除以x ,根据分式的基本性质得出ax abx b=,选项C 正确;选项D ,当a=2,b=-3时,左边≠右边,选项D 错误.故选C .【点睛】本题考查了分式的基本性质的应用,主要检查学生能否正确运用性质进行变形,熟练运用分式的基本性质是解决问题的关键.6.下列分式是最简分式的是()A.22x xyx-;B.222a ab ba b-+-;C.2211xx+-;D.211xx+-【答案】C【分析】直接利用最简分式的定义进而判断得出答案.【详解】A、22x xyx-=()22x x y x yx--=,不是最简分式,不合题意;B、222a ab ba b-+-=2()a ba ba b-=--,不是最简分式,不合题意;C、2211xx+-无法化简,是最简分式,符合题意;D、21 1x x +-=11(1)(1)1xx x x+=+--,不是最简分式,不合题意.故选:C【点睛】此题主要考查了最简分式,正确把握最简分式的定义是解题关键.7.下列式子正确的是()A.22b ba a=B.0a ba b+=+C.1a ba b-+=--D.0.10.330.22a b a ba b a b--=++【答案】C【分析】根据分式的基本性质,即可解答.【详解】A.分子乘以b,分母乘以a,所以22b ba a¹,故A错误;B.a ba b+=+1,故B错误;C.()a ba ba b a b---+==---1,故C正确;D.0.10.330.2210a b a ba b a b--=++,故D错误.故选C.【点睛】本题考查了分式的基本性质,解决本题的关键是熟记分式的基本性质.8.若分式293xx--的值为0,则x的值是( )A.﹣3B.3C.±3D.0【答案】A【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意,得x2﹣9=0且x﹣3≠0,解得,x=﹣3;故选:A.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.分式26 9x-有意义的条件是( )A.x≠3B.x≠9C.x≠±3D.x≠﹣3【答案】C【分析】根据分式有意义的条件是分母不等于零列出关于x的不等式,解之可得.【详解】解:当x2﹣9≠0时,分式有意义,由x2﹣9≠0得:x2≠9,则x≠±3,故选:C.【点睛】本题主要考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.10.在代数式2p,15x+,221xx--,33x-中,分式有()A.1个B.2个C.3个D.4个【答案】B【分析】根据分式的定义逐个判断即可得.【详解】常数2p是单项式,15x+是多项式,221x x --和33x -都是分式,综上,分式有2个,故选:B .【点睛】本题考查了分式的定义,掌握理解分式的定义是解题关键.11.下列变形不正确的是( )A .1122x x x x +-=---B .b a a bc c--+=-C .a b a bm m-+-=-D .22112323x x x x--=---【答案】A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A 、1122x xx x +--=---,故A 不正确;B 、b a a bc c --+=-,故B 正确;C 、a b a bm m-+-=-,故C 正确;D 、22112323x x x x--=---,故D 正确.故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.12.下列各式中,正确的是()A .22a ab b =B .11a ab b+=+C .2233a b a ab b=D .232131a ab b ++=--【答案】C 【分析】利用分式的基本性质变形化简得出答案.【详解】A .22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确;D .232131a ab b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C .【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.13.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子1(0)x x x+>的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是12x x æö+ç÷èø;当矩形成为正方形时,就有1(0)x x x =>,解得1x =,这时矩形的周长124x x æö+=ç÷èø最小,因此1(0)x x x +>的最小值是2.模仿张华的推导,你求得式子24(0)x x x+>的最小值是( ).A .2B .4C .6D .8【答案】B 【解析】在面积是4的矩形中,设矩形的一边长为x ,则另一边是4x,矩形的周长是2(x +4x ),当矩形成为正方形时,就有x =4x ,解得x =2,这时矩形的周长2(x +4x)=8最小,因此x +4x 的最小值是4,而24x x += x +4x ,所以24(0)x x x+>的最小值是4.故选B.点睛:本题关键在于理解已知结论的推导过程.14.如果m 为整数,那么使分式31m m ++的值为整数的m 的值有( )A .2个B .3个C .4个D .5个【答案】C 【分析】分式32111m m m +=+++,讨论21m +就可以了,即1m +是2的约数即可完成.【详解】∵32111m m m +=+++若原分式的值为整数,那么12,1,12m +=--,由12m +=-得,3m =-;由11+=-m 得,2m =-;由11m +=得,0m =;由12m +=得,1m =;∴3,2,0,1m =--,共4个故选C 【点睛】本题主要考查分式的值,熟练掌握相关知识点并全面讨论是解题关键.15.已知:2222233+=´,2333388+=´,244441515+=´,255552424+=´,……,若21010b b a a+=´(a 、b 为正整数)符合前面式子的规律,则a+b 的值是( ).A .109B .218C .326D .436【答案】A 【分析】通过观察已知式子可得分子与第一个加数相同,分母等于分子的平方减1,即可求解.【详解】解:由2222233+=´,2333388+=´,244441515+=´,255552424+=´,……,可知分子与第一个加数相同,分母等于分子的平方减1,∴在21010b ba a+=´中,b =10,a =102-1=99,∴a +b =109,故选:A .【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律是解题的关键.16.若x 是整数,则使分式8221x x +-的值为整数的x 值有( )个.A .2B .3C .4D .5【答案】C 【分析】先将假分式8221x x +-分离可得出6421x +-,根据题意只需21x -是6的整数约数即可.【详解】解:824(21)664212121x x x x x +-+==+---由题意可知,21x -是6的整数约数,∴211,2,3,6,1,2,3,6x -=----解得: 37151,,2,,0,,1,2222x =---,其中x 的值为整数有:0,1,1,2x =-共4个.故选:C .【点睛】本题考查的知识点是分式的值是整数的条件,分离假分式是解此题的关键,通过分离假分式得到6421x +-,从而使问题简单.二、填空题17.如果24422x a bx x x =--+-,那么+a b 的值是______.【答案】0【分析】先将分式方程每一部分的分母通分,然后观察方程的左边和右边,使方程两边的分子部分相同即可解决.【详解】解:224422444x ax a bx bx x x -+=----224()2()44x a b x a b x x --+=--所以4a b -=,0a b +=故答案是:0【点睛】本题考查了分式通分,将方程两边变为同分母,然后比较分子得出结论是解决本题的关键.18.若分式2228x x x ---的值为零,则x 的值为______________.【答案】2【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:由分式的值为零的条件得2-x =0,x 2-2x-8≠0,∴x=±2且x≠4且x≠-2,∴x=2时,分式的值为0,故答案为2.【点睛】本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.19.若113x y +=,则分式323x xy yx xy y-+++的值为_________.【答案】74【分析】根据分式基本性质,分子和分母同时除以xy 可得.【详解】()()333322323323111111x xy y xy x xy y y x y x x xy y x xy y xy y x y x-++--+¸-+===++++¸++++若113x y +=则32392744x xy y x xy y -+-==++故答案为:74【点睛】考核知识点:分式基本性质运用.熟练运用分式基本性质是关键.20.当x =_________时,分式242x x--的值为0.【答案】2-【分析】分式有意义的条件是分母不为0;分式的值是0的条件是分母≠0且分子=0.【详解】若分式的值为0,则2-x≠0且24x -=0,即x=-2.故答案为:-2.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义,并考查了分式值是0的条件.21.如果分式32x x x x--值为零,那么x =_________.【答案】1-【分析】根据分式的值为零,可得30-=x x 且20x x -¹,求解即可.【详解】∵320x x x x-=-∴30-=x x 且20x x -¹∴()()()321110x x x x x x x -=-=+-=且()210x x x x -=-¹∴123011x x x ==-=,,且01x x ¹¹,∴1x =-故答案为:1-.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.22.分式1753xy x y+中的,x y 同时扩大为原来的3倍,则分式的值扩大为原来的_____________倍.【答案】3【分析】将,x y 同时扩大为原来的3倍得到17353xy x y æö´ç÷+èø,与1753xy x y +进行比较即可.【详解】分式1753xy x y+中的,x y 同时扩大为原来的3倍,可得17335333x yx y´´´+´17353xyx y´=+17353xy x y æö=´ç÷+èø故答案为:3.【点睛】本题考查了分式的运算,掌握分式的运算法则是解题的关键.23.已知213x x =+,则1x x-=__________.【答案】3【分析】将213x x =+两边同时除以x ,即可得出答案.【详解】解:∵213x x=+∴两边同时除以x .,得:13=+x x ∴1-=3x x故答案为:3【点睛】本题考查了代数式求值,利用分式的性质,两边同时除以x ,将式子进行变形是解题的关键.24.下列各式中,最简分式有_____个.①11x -;②422y x +;③3x p ;④10+452a a +;⑤9+73+5p p ;⑥241025y y y ++.【答案】1.【分析】根据最简分式的定义,只要判断出分子分母是否有公因式即可.【详解】①11x-符合最简分式的定义,符合题意.②422y x+ 的分子、分母中含有公因数2,不是最简分式,不符合题意;③3x p ⑤9+73+5p p不是分式,不符合题意;④10+452a a + 的分子、分母中含有公因式(5+2a ),不是最简分式,不符合题意;⑥241025y y y ++的分子、分母中含有公因式(2y+5),不是最简分式,不符合题意;故答案为:1.【点睛】此题考查了最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.25.当x_____________时,分式21x x x+-的值为0;【答案】=-1【解析】由题意得:x+1=0,且x 2-x≠0,解得:x=-1,故答案为=-1.26.当x=__________时,分式22121x x x --+的值为零.【答案】-1【分析】根据分式的解为0的条件,即可得到答案.【详解】解:∵分式22121x x x --+的值为零,∴2210210x x x ì-=í-+¹î,解得:11x x =±ìí¹î,∴1x =-;故答案为:1-.【点睛】本题主要考查分式的值为0的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.27.当x =______时,分式293x x--的值为0.【答案】-3【分析】根据分式的值为零的条件可以求出x 的值.【详解】由分式的值为零的条件得290x -=,30x -¹,由290x -=,得29x =,∴3x =或3x =-,由30x -¹,得3x ¹.综上,得3x =-.故答案是:3-.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.28.如果分式126xx--的值为零,那么x=________ .【答案】1【分析】根据分式的值为零可得10x-=,解方程即可得.【详解】由题意得:10x-=,解得1x=,Q分式的分母不能为零,260x\-¹,解得3x¹,1x\=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.29.要使分式2xx1+有意义,那么x应满足的条件是________ .【答案】1x¹-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x+¹,解得:1x¹-,故答案为:1x¹-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.30.已知215aa+=,那么2421aa a=++________.【答案】1 24【分析】将215aa+=变形为21a+=5a,根据完全平方公式将原式的分母变形后代入21a+=5a,即可得到答案.【详解】∵215a a+=,∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+-故答案为:124.【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)aa +-形式,再代入计算是解题的关键.31.化简:22x x x-=_____.【答案】12x -【分析】直接利用分式的性质化简得出答案.【详解】解:22xx x -=(2)x x x -=12x -.故答案为:12x -.【点睛】此题主要考查了分式的化简,熟练掌握运算法则是解答此题的关键.32.已知:x 满足方程11200620061x x =--,则代数式2004200620052007x x -+的值是_____.【答案】20052007-【解析】因为11200620061xx =--,则200420062005200520062006001120072007x x x x x x x --=Þ=Þ=Þ=---+ .故答案:20052007-.33.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++¸+有意义,则x 的取值范围是x≠﹣2且x≠0.其中正确的是________【答案】①③【解析】【分析】根据分式有意义的条件对各式进行逐一分析即可.【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21a a +都有意义;②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误;③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确;④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++¸+有意义,则x 的取值范围是即20010x x x x ìï+¹ï¹íï+ï¹î,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③.【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.34.已知210ab a -+-=,则111(1)(1)(2016)(2016)ab a b a b +++=++++L _______.【答案】20172018【解析】【分析】先根据绝对值的非负性求出a 和b 的值,代入代数式中根据分数的性质对原式进行变形即可求出答案.【详解】∵210ab a -+-=,所以20-=ab ,10a -=∴a =1,b =2,∴原式=111.....122320172018+++´´´ =111111.....22320172018-+-++- =112018- =20172018【点睛】本题考查非负数的性质,绝对值.本题解题关键有两个,①任意数的绝对值都大于或等于0,而两个非负数(或式)的和要等于0,那么这两个数(或式)都要为0;②注意分数的等量变形111(1)1=-++a a a a .35.端午节前后,人们除了吃粽子、插艾叶以外,还会佩减香囊以避邪驱瘟.“行知”精品店也推出了“求真”香囊、“乐群”香囊、“创造”香囊三种产品,所有香囊的外包装都由回收材料制成, 不计成本.其中“求真”香囊的里料是20克艾叶,“乐群”香囊的里料是10克艾叶和20克薄荷,“创造”香囊的里料是20克艾叶和 20 克薄荷.端午节当天,店长发现“乐群”香囊的销量是“求真”香囊的2倍,且“求真”香囊与“乐群”香囊的利润和是“创造”香囊利润的32倍,当天的总利润率是50% .第二天店内促销,“求真”香囊、“乐群”香囊的售价均不变,“创造”香囊的售价打八折,当三种产品的销量分别与前一天相同时,总利润率为___________.【答案】38%【分析】设1g 艾叶成本价为a 元,利润率为x ,1g 薄荷成本价为b 元,利润率为y ,端午节当天“求真”香囊的销量为m 件,则“乐群”香囊的销量为2m 件,“创造”香囊的销量为n 件,先根据利润倍数关系可求出43n m =,再根据端午节当天的总利润率可得2a b ax by ++=,然后根据新的售价和销量列出总利润率的计算式子,化简求值即可得.【详解】设1g 艾叶成本价为a 元,利润率为x ,1g 薄荷成本价为b 元,利润率为y ,端午节当天“求真”香囊的销量为m 件,则“乐群”香囊的销量为2m 件,“创造”香囊的销量为n 件,Q “求真”香囊与“乐群”香囊的利润和是“创造”香囊利润的32倍,3202(1020)(2020)2axm m ax by n ax by \++=+,整理得:43n m =,Q 端午节当天的总利润率是50%,3)(2020)250%202(1020)(2(1020)n ax by am m a b n a b +++\+=++,即54(2020)2350%4202(1020)(2020)3m ax by am m a b m a b ´+=++++,整理得:2a b ax by ++=,Q 第二天店内促销,“求真”香囊、“乐群”香囊的售价均不变,“创造”香囊的售价打八折,且三种产品的销量分别与前一天相同,\第二天总利润率为[][]420(1)210(1)20(1)20(1)20(1)80%314202(1020)(2020)3ma x m a x b y m a x b y ma m a b m a b +++++++++×-++++,[]4620(1)20(1)15110(2020)3m a x b y m a b +++=-+,23()125()a b ax by a b +++=-+,23()2125()a b a b a b +++=-+,69()150()a b a b +=-+,1950=,38%=,故答案为:38%.【点睛】本题考查了分式求值,依据题意,正确设立未知数得出已知等式和所求分式是解题关键.36.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z++++的值为______【答案】16-【分析】先由题意2x−y+4z=0 ,4x+3y−2z=0,得出用含x 的式子分别表示y ,z ,然后带入要求的式中,化简便可求出.【详解】2x-y+4z= 0①,4x+3y- 2z= 0②,将②×2得: 8x+ 6y-4z=0③.①+③得: 10x+ 5y= 0,∴y= -2x ,将y= - 2x 代入①中得:2x- (-2x)+4z=0∴z=-x将y= -2x ,z=-x ,代入上式222xy yz zxx y z ++++=()()()()()()222·22··2x x x x x xx x x -+--+-+-+-=222222224x x x x x x -+-++=226x x -=16-故答案为:16-【点睛】本题考查了分式的化简求值,解题的关键是根据题目,得出用含x 的式子表示y ,z.本题较难,要学会灵活化简.三、解答题37.计算:32222((y y x x-×-.(结果用正整数指数幂的形式表示)【答案】24y 【分析】根据幂的乘方法则是底数不变,指数相乘,负指数次可以把底数变为原来的倒数.负指数变为正的,最后将式子化成最简.【详解】解:原式6222(2y x x y -=×62244y x x y =×24y =.【点睛】本题考查了幂的乘方和负指数幂的预算,解决本题的关键是熟练掌握幂的乘方运算和负指数幂的运算法则.38.(1)3455318x yx y(2)()()2328x y x y --(3)2918933x x x -+- (4)22b a a b --(5)22222222a b c bca b c ab--++-+(6)()()2235221215x y x y x y x y --【答案】(1)216x y ;(2)144x y -;(3)33x -;(4)1a b -+;(5)a b ca b c-+++;(6)2454455x yx y xy -+【分析】(1)根据分式的除法运算法则计算即可;(2)将分式的分子、分母约去相同的因式即可;(3)将分式的分子、分母分别因式分解后约去相同的因式即可;(4)将分式的分母因式分解后约去相同的因式即可;(5)将分式的分子、分母分别应用分组分解法因式分解后约去相同的因式即可;(6)将分式的分母因式分解后约去相同的因式即可.【详解】(1)3455318x y x y 21=6x y;(2)()()2328x y x y --1=4)x y -(144x y=-;(3)2918933x x x -+-29(21)=3(1)x x x -+-23(1)(1)x x -=-3(1)x =-33x =-;(4)22b a a b --()=()()a b a b a b ---+1a b=-+(5)22222222a b c bc a b c ab--++-+222222(2)=2a b bc c a ab b c --+++-2222()()a b c a b c --=+-()()()()a b c a b c a b c a b c -++-=+-++a b ca b c-+=++;(6)()()2235221215x y x y x y x y --()()244=5()x y xy x y x y --+44()5()x y xy x y -=+2454455x yx y xy -=+.【点睛】本题主要考查了分式加减乘除混合运算,解题的关键是对分式的分子与分母分别因式分解,然后约去公因式,分式的约分是分式运算的基础,应重点掌握.39.对于正数x ,规定:()1xf x x =+.例如:11(1)112f ==+,22(2)213f ==+,111212312f æö==ç÷èø+.(1)填空:()3f =________;13f æö=ç÷èø_______;1(4)4æö+=ç÷èøf f _________;(2)猜想:1()æö+=ç÷èøf x f x _________,并证明你的结论;(3)求值:111(1)(2)(2019)(2020)202020192æöæöæö+++×××++++×××++ç÷ç÷ç÷èøèøèøf f f f f f f .【答案】(1)34,14,1;(2)1()1f x f x æö+=ç÷èø,证明见解析;(3)120192.【分析】(1)根据给出的规定计算即可;(2)根据给出的规定证明;(3)运用加法的交换律结合律,再根据规定的运算可求得结果.【详解】解:(1)()3f =33+1 =34,13f æö=ç÷èø131+13=14,,1(4)4æö+=ç÷èøf f 34+14=1,(2)1()1f x f x æö+=ç÷èø,理由为:11111111æö==×=ç÷++èø+x xf x x x x x()1xf x x =+,则111()1111+æö+=+==ç÷+++èøx x f x f x x x x .(3)原式111(2020)(2019)(2)(1)202020192éùéùéùæöæöæö=++++×××+++ç÷ç÷ç÷êúêúêúèøèøèøëûëûëûf f f f f f f 1201912=´+120192=.【点睛】本题考查的是分式的加减,根据题意找出规律是解答此题的关键.40.先化简:221111x x x æö+¸ç÷--èø,再选一个你喜欢的数代入并求值.【答案】11x +,13.【解析】【分析】根据分式的混合运算,先算括号里面的,再算除法,然后取一个分式有意义的数值代入求解即可.【详解】解:原式()()22222111111111x x x x x x x x x x -+--=´=´=-+++,0x Q ¹,1,1-,2x \=时,原式11213==+.【点睛】此题主要考查了分式的化简求值,把分式通分、约分进行化简是关键,代入求值时,代入的数值必须让分式有意义,容易出错.41. 已知22ab a b ab ++=32,求2a -3b 的值.【答案】0【详解】试题分析:根据分式的基本性质,约去分子分母的公因式,得到a 、b 的关系,然后代入求值即可.试题解析:原式=a b =32,∴2a =3b ,∴2a -3b =0.42. 若2a =3b =4c ≠0,求a b c+的值.【答案】54【详解】试题分析:根据比例的基本性质,设出参数,直接代入可求解.试题解析:设a =2k ,b =3k ,c =4k ,k ≠0,∴a b c+=234k k k +=54.43.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金;(2)设第k 所民办学校所得到的奖金为k a 元(1k n ££),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.【答案】(1)211()(1)bb a b n n n n =-´=- ,23111()(1(1)b b a b n n n n n=-´-=-;(2)11(1k k b a nn-=- ;(3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少.【解析】【试题分析】(1)根据第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,得:22311111((1),()(1)(1).b b b ba b a b n n n n n n n n n=-´=-=-´-=-(2)根据(1)中的两个式子,11(1k k ba n n-=- ;(3)11(1k k b a n n -=-,+11(1)k k ba n n=-,则1111+121111111(1(1)(11(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----éù-=---=---=-××=-×>êúëû,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【试题解析】(1)根据题意得:22311111((1),()(1)(1.bb b ba b a b nn n n n n n n n=-´=-=-´-=- (2)根据(1)中的两个式子,11(1k k ba n n-=- (3)11(1k k b a n n -=-,+11(1)k k ba n n=-,则1111+121111111(1(1)(11(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----éù-=---=---=-××=-×>êúëû,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.44.已知分式2 218 x3 x-+(1)当x取什么值时,分式有意义?(2)当x取什么值时,分式为零?(3)当x取什么值时,分式的值为负数?【答案】(1)x≠-3;(2)x=3;(3)x<3且x≠-3【解析】【分析】(1)根据分式有意义的条件即可求出答案.(2)根据分式值为零的条件是:分子等于零且分母不等于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式》常考题型演练
1.(武汉中考)若分式在实数范围内有意义,则实数x的取值范围是()
A. B.
C. D.
2.)
A.-2
B.-
C.
D.2
3.(荆州中考)解分式方程时,去分母可得()
A.1-3(x-2)=4
B.1-3(x-2)=-4
C.-1-3(2-x)=-4
D.1-3(2-x)=4
4.(威海中考)化简的结果是()
A. B.1 C. D.1
5.(青海中考)某班举行趣味项目运动会,从商场购买了一定数量的乒乓球拍和羽毛球拍作为奖品.若每副羽毛球拍的价格比每副乒乓球拍的价格贵6元,且用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同.设每副乒乓球拍的价格为x元,则下列方程正确的是()
A. B.
C. D.
6.(无锡中考)方程的解是_________
7.如果把分式中的,b都扩大2倍,那么该分式的值__________
8.(缓化中考)当x=2的值是____________.
9.(潍坊中考改编)当m=__________时,分式方程无解
10.
11.,并在2,3,4,5这四
个数中去一个合适的数作为的值代入求值
12.(盘锦中考)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元
(1)求第一批悠悠球每套的进价是多少元;
(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
参考答案
1.D
2.D
3.B
4.A
5.B
6.
7.扩大2倍
8.3
9.2
10.解:原式=
11.解:原式=.,当,原式=7;当时,原式=8
12. 解:(1)第一批悠悠球每套的进价是25元,
(2)每套悠悠球的售价至少是35元.。