一次函数与一元一次方程、一元一次不等式的教学设计范文.doc
19.2.3.1一次函数与一元一次方程、不等式教案

在今天的教学过程中,我发现学生们对一次函数与一元一次方程、不等式的关系掌握得还算不错。在导入新课环节,通过提问方式引起学生的兴趣,他们能够积极参与,分享自己在生活中遇到的相关问题。但在新课讲授环节,我发现有些学生对一次函数图像与一元一次方程之间的联系还不够理解,需要我在这里多花一些时间进行讲解和举例。
-举例:在计算成本问题时,学生需将问题抽象为一次函数y=2x+3(成本=固定成本+变动成本),然后根据实际问题求解方程或不等式。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数与一元一次方程、不等式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”比如,买东西时,如何根据总价和数量来确定单价。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数与一元一次方程、不等式的奥秘。
19.2.3.1一次函数与一元一次方程、不等式教案
一、教学内容
本节课选自教材第19章第2节第3小节,主题为“一次函数与一元一次方程、不等式”。教学内容主要包括以下三个方面:
1.一次函数与一元一次方程的关系ห้องสมุดไป่ตู้引导学生理解一次函数图像上的点都满足一元一次方程,反之亦然。
2.一次函数与一元一次不等式的关系:探讨一次函数图像在不同区间内的取值情况,从而引出一元一次不等式的概念。
2.在实践活动和小组讨论中,部分学生的依赖性较强,需要我多关注并引导他们独立思考。
3.学生在分析问题时容易忽视细节,导致结论不准确,我需要在教学中加强训练学生的观察能力和逻辑思维能力。
针对今天的课堂教学,我认为在今后的教学中,可以从以下几个方面进行改进:
八年级数学下册第19章一次函数 一次函数与一元一次方程不等式说课稿新版新人教版

一次函数与一元一次方程、不等式一、教材分析1、地位和作用本大节内容是在学生已有对一元一次方程、一元一次不等式和二元一次方程组等的认识之后,从变化和对应的角度,对一次运算进行更深入的讨论,是站在更高起点上的动态分析。
通过讨论一次函数与方程(组)及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用,构建和发展相互联系的知识体系。
本节课的主要内容是对前两小节内容的复习,但不是简单的回顾复习,而是居高临下的进行动态分析,使新旧知识融会贯通,加大学生对已经学习过的相关内容之间联系的认识,进一步体验函数的重要性,提高灵活分析问题和解决问题的能力。
2、教材的重点与难点:本节的教学重点是巩固一次函数与一元一次方程及一元一次不等式的关系;由于从图象的角度认识方程及不等式涉及到变化、对应以及数形结合的思想,这对学生来说有一定困难,所以本节的教学难点为从函数图象的角度认识一元一次方程及一元一次不等式。
二、目标分析:1、知识技能:充分利用图象巩固一次函数与一元一次方程及一元一次不等式的关系。
2、数学思考:通过对一次函数与一元一次方程及一元一次不等式的关系的探究及相关实际问题的解决,体会数形结合的思想。
3、解决问题:能利用一次函数与一元一次方程及一元一次不等式的关系,解决实际问题。
4、情感态度:(1)、通过对一次函数与一元一次方程及一元一次不等式的关系的探索,培养学生的探究精神,体会事物之间的相互联系;(2)、通过利用一次函数与一元一次方程及一元一次不等式的联系解决实际问题,进一步感受数学的价值。
三、学法分析1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。
合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析本节课以启发激励为主,让学生在习题的逐层升华中乐学、会学、善学。
一元一次不等式与一次函数优秀教案

一元一次不等式与一次函数【课时安排】2课时【第一课时】【教学目标】一、教学知识点。
(一)一元一次不等式与一次函数的关系。
(二)会根据题意列出函数关系式,画出函数图像,并利用不等关系进行比较。
二、能力训练要求。
(一)通过一元一次不等式与一次函数的图像之间的结合,培养学生的数形结合意识。
(二)训练大家能利用数学知识去解决实际问题的能力。
三、情感与价值观要求。
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
【教学重点】了解一元一次不等式与一次函数之间的关系。
【教学难点】自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答。
【教学方法】研讨法。
即主要由学生自主交流合作来解决问题,老师只起引导作用。
【教学准备】投影片两张。
【教学过程】一、创设问题情境,引入新课。
[师]上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用。
二、新课讲授。
(一)一元一次不等式与一次函数之间的关系。
[师]大家还记得一次函数吗?请举例给出它的一般形式。
[生]如y=2x -5为一次函数。
[师]在一次函数y=2x -5中, 当y=0时,有方程2x -5=0; 当y >0时,有不等式2x -5>0; 当y <0时,有不等式2x -5<0。
由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式。
下面我们来探讨一下一元一次不等式与一次函数的图像之间的关系。
(二)做一做。
请大家讨论后回答:[生](1)当y=0时,2x -5=0,∴x=25,∴当x=25时,2x -5=0。
(2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图像上可知,y >0时,图像在x 轴上方,图像上任一点所对应的x 值都满足条件,当y=0时,则有2x-5=0,解得x=25。
6.6一次函数、一元一次方程和一元一次不等式教学设计

5.拓展延伸,提升能力
-设计富有挑战性的拓展题目,激发学生的求知欲,提升学生的数学思维能力。
-结合现实问题,引导学生运用所学知识解决实际问题,培养学生的创新意识。
6.关注情感,营造氛围
-关注学生的情感需求,营造轻松、愉快的学习氛围,降低学生对数学的恐惧感。
(四)课堂练习,500字
在课堂练习阶段,我将设计不同难度的习题,帮助学生巩固所学知识,形成技能。
首先,我设计一些基础题,让学生独立完成,检验学生对一次函数、一元一次方程和一元一次不等式的基本概念和性质的掌握程度。然后,我逐步提高题目难度,让学生在练习中提高解题能力。
在练习过程中,我关注学生的解题方法,引导学生总结解题策略。对于学生在解题过程中遇到的问题,我及时给予解答,帮助学生突破难点。
(2)在实际问题中,如何将一元一次方程和一元一次不等式应用于求解?
5.思考题:请同学们思考以下问题,下节课分享自己的观点:
(1)一次函数、一元一次方程和一元一次不等式在实际生活中的应用有哪些?
(2)如何运用所学知识解决现实生活中的问题?
作业要求:
1.请同学们认真完成作业,书写工整,保持卷面整洁。
2.对于拓展题和小组合作探究题,同学们可以互相讨论、交流,但需独立完成作业。
-掌握一元一次不等式的符号规则,如不等式两边加减、乘除同一正数时不等号方向的变化。
-学会使用数轴、区间表示不等式的解集,并能够通过图像直观理解不等式的解。
-能够将现实生活中的不等关系抽象为一元一次不等式,并求解。
(二)过程与方法
在教学过程中,注重以下方法与过程:
1.通过情境导入、问题引导的方式,激发学生对一次函数、一元一次方程和一元一次不等式的探究兴趣。
沪科版数学八年级上册第12章一次函数一次函数与一元一次方程、一元一次不等式教学设计

-设想:组织小组讨论,让学生在讨论中互相启发,共同解决问题,教师适时给予指导和评价。
3.运用信息技术手段,结合传统教学方式,提高课堂效果。
-设想:利用多媒体展示一次函数图像,结合板书解析,让学生在视觉和听觉上更好地理解数学概念。
4.设计分层作业,针对不同层次的学生制定合适的练习题,巩固所学知识。
1.基础知识巩固题:包括一次函数的定义、表达式、图像特点等相关知识点,让学生通过完成这类题目,进一步熟练掌握一次函数的基本概念。
-例题:已知一次函数的表达式为y = 2x + 3,求该函数的斜率和截距。
2.实践应用题:结合生活实例,让学生将实际问题抽象为一元一次方程、不等式,并运用一次函数的知识解决。
在小组讨论过程中,我会巡回指导,关注每个小组的讨论进度,适时给予提示和解答疑问,确保讨论的有效性。
(四)课堂练习
课堂练习是检验学生对知识掌握程度的重要环节。我会设计以下类型的题目:
1.基础题:直接应用一次函数的知识解决简单问题,巩固基本概念。
2.提高题:结合一元一次方程、不等式,让学生解决稍微复杂的问题,提高学生运用知识的能力。
-设想:根据学生的学习情况,设置基础题、提高题和拓展题,使每个学生都能在课后得到有效的巩固和提升。
5.重视课堂小结,引导学生总结所学知识,形成知识网络。
-设想:在课堂尾声,邀请学生分享学习心得,总结一次函数与一元一次方程、一元一次不等式之间的关系,帮助其他同学巩固记忆。
6.注重过程性评价,关注学生在学习过程中的表现,激发学生的学习积极性。
1.让学生用自己的语言概括一次函数的定义和图像特点。
2.回顾如何利用一次函数解决实际问题,总结数学建模的方法。
3.强调一次函数图像与方程、不等式之间的关系,培养学生的数形结合思想。
初中数学八年级下册《一次函数与一元一次方程、不等式》优秀教学设计

19.2.3一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式【学习目标】1.理解一次函数与一元一次方程、一元一次不等式之间的关系,会根据一次函数的图象解决一元一次方程和一元一次不等式的求解问题.2.学习用函数的观点看待方程及不等式的方法,初步感受用全面的观点处理局部问题的思想.【学习重点】用一次函数解一元一次方程、一元一次不等式.【学习难点】理解一次函数与一元一次方程、一元一次不等式之间的关系.情景导入生成问题1.已知直线经过点A(2,4)和点B(0,-2),那么这条直线的解析式是( )A.y=-2x+3B.y=3x-2C.y=-3x+2 D.y=2x-32.一个y关于x的函数同时满足两个条件:①图象过点(2,1);②当x>0时,y随x 的增大而减小,这个函数的解析式为(写出一个即可)自学互研生成能力一.阅读教材P96思考,完成下列内容:1.一元一次方程kx+b=0的解就是一次函数的图象与轴交点的坐标.2.已知一次函数y=ax+3与x轴的交点的横坐标为-4,则一元一次方程ax+3=0的解为.二.合作探究一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0 D.x=3归纳:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标的值.三.自主探究阅读教材P96思考,完成下列问题:1.一次函数与一元一次不等式的关系:一元一次不等式kx+b>0(或kx+b<0)的解集,就是一次函数的图象在x轴方(或方)相应的自变量x的取值范围.2.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b≤0的解集是.四.合作探究对照图象,请回答下列问题:(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?解:(1)由图象可知,直线y=2x-5与直线y=-x+1的交点的横坐标是,所以当x取时,2x-5=-x+1;(2)由图象可知,当时,直线y=2x-5落在直线y=-x+1的上方,即2x-5>-x+1;(3)由图象可知,当时,直线y=2x-5落在直线y=-x+1的下方,即2x-5<-x+1.五.合作探究A、B两城相距600 km,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中,y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时,两车相遇,求乙车车速.解:(1)(2)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.检测反馈达成目标一.当堂检测1.一次函数y=2x-4的图象与x轴的交点坐标为(2,0),则一元一次不等式2x-4≤0的解集应是( )A.x≤2 B.x<2 C.x≥2 D.x>22.函数y=kx+b,当x>5时,y<0;当x<5时,y>0,则y=kx+b的图象必经过点( ) A.(0,5) B.(5,0) C.(-5,0) D.(0,-5)3.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围为.二课后检测见《长江作业》课后反思查漏补缺1.我的收获:------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- 2.我的困惑:------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------。
一次函数与一元一次方程及不等式复习教案
一次函数与一元一次方程及不等式复习教案沂南三中张继学联系电话: 131********一、【教材分析】二、【教学流程】合运用是8.3、根据图象,你能直接说出一元一次方程x+3=0的解吗?4、直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1C.x<1 D.x≤15、已知直线y=2x+k与x轴的交点为(-2,0),则关于不等式2x+k<0的解集是()A.x>-2 B.x≥-2C.x<-2 D.x≤-26、已知函数y=x-3,当x时,y>0,当x时,y<0.7、已知一次函数y=kx+b的图象如图所示,则不等式kx+b>0解集是()A.x>-2 B.x<-2C.x>-1 D.x<-18、如图是一次函数y=kx+b(k≠0)的图象,则关于x的方程kx+b=0的解为;关于x的不等y=x+3的图象与x轴交点坐标为(-3,0 ),这说明方程x+3=0的解是x=-3.让学生体会解一元一次不等式与求一定条件下自变量的取值范围的关系.解一元一次不等式从函数值的角度看,就是寻求使一次函数y=ax+b的值大于或小于零的自变量的取值范围.通过图象让学生认识不等式的解集与图象3xxy3式kx+b>0的解集为;关于x的不等式kx+b <0的解集为 .9、根据下列一次函数的图像,直接写出下列不等式的解集(1)3x+6>0 (3) –x+3 ≥0(2)3x+6 ≤0 (4) –x+3<0上点的坐标的联系学生独立完成问题,然后师生共同归纳得到,解一元一次不等式从形的角度看,就是确定直线y=kx+b在x轴上(或下)部分所有点的横坐标所构成的集合。
归纳总结:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.1.直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()学生是能灵活运用一元一次方程、一元一-2 y=3x+6y=-x+3三、【板书设计】四、【教后反思】学生的认识是在不断实践、摸索中得以提高的,同样老师的教学能力也是通过不断的反思和反思之后的再实践得以提升的。
一次函数与一元一次方程,不等式
19.2.3 一次函数与方程、不等式龙湖中学郭燕一、教学目标1.知识与技能:①使学生理解并掌握一次函数与一元一次方程,一元一次不等式的相互联系。
②是学生能初步运用函数的图像来解释一元一次方程、一元一次不等式的解集,并通过函数图像来回答一元一次方程、一元一次不等式的解集。
2.过程与方法:通过对一次函数与一元一次方程,一元一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力。
3.情感态度与价值观:探究活动中,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。
二.教学重难点:1.重点:①理解一次方程,一元一次不等式与一次函数的转化关系及本质联系。
②掌握用图像求解方程不等式的方法。
2.难点:根据一次函数的图像求解方程和不等式三.教学过程:1.探究一次函数与方程的关系问题1(1)解方程2x-4=0(2)当自变量x取何值时,函数y=2x-4的值为0?(3)画出函数y=2x-4的图像,并确定它与x轴的交点坐标。
(4)第(1)(2)问题有何关系?(1)(3)呢?[从上述问题中,你能发现一次函数与一元一次方程的关系吗?]问题(2)(3)可以看作是同一个问题的两种形式,问题(1)(2)是从数的角度看,问题(3)是从形的角度看。
学生按要求探究,并总结结论从数的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的y为0时x 的值。
从形的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的图像与x轴交点的横坐标。
2.新知构建①填写表格,使得以下的一元一次方程问题与一次函数问题是同一问题。
你能从函数的角度解方程2x+1=3吗?学生独立思考后,画出一次函数y=2x+1的图像,从数的角度,y=2x+1的函数值为3时,自变量x 的值是这个方程的解;从图像上可以看出,直线y=2x+1上纵坐标为3的点的横坐标为1,是这个方程的解。
任何以x 为未知数的一元一次方程,都可以化成ax+b=0(a,b 为常数,a ≠0)的形式,因此,方程2x+1=3的解,也可以看成直线y=2x-2与x 轴交点的横坐标。
2023年一次函数与一元一次不等式说课稿
2023年一次函数与一元一次不等式说课稿2023年一次函数与一元一次不等式说课稿1一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。
在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。
本节内容在初中数学学习阶段中,占据重要的`地位,以及为其他学科和今后高中数学学习打下基础。
2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。
(2)、过程与方法通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。
(3)情感、态度与价值观通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:二:教学策略:教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。
学法:建构主义教学构想的核心思想是:通过问题的解决来学习。
根据本节课的特点,采用自主探究、合作交流的探究式学习方法。
一次函数与一元一次方程的关系--教学设计
一次函数与一元一次方程的关系--教学设计教学设计一:引入课堂1.创设情境:假设小明是一个水果商贩,他想要计算出每天卖出的水果的总收入。
但是他不知道如何计算,所以他来请教我们。
2.提出问题:大家帮助小明解决问题,想一想他该如何计算每天的总收入呢?3.激发学生思考:请学生围绕这个问题进行思考,并在脑海中构建出计算收入的方法。
教学设计二:知识讲解1. 引入一次函数的概念:通过一个例子来引入一次函数的概念。
例如,小明决定每个水果卖1元,那么总收入就是一个水果的价格乘以卖出的水果数量。
我们将总收入表示为y,水果的价格表示为x,水果数量表示为n,则可以建立一个直线方程 y = nx。
2.引入一元一次方程的概念:现在我们来解决小明的问题。
以苹果为例,假设苹果的价格是2元,那么小明每天卖出的苹果数量可以用n表示,那么总收入就是2n。
如果我们知道了小明的总收入是10元,我们应该如何求解n呢?3.线性方程的解法:通过表格法或消元法等讲解线性方程如何求解。
以表格法为例,我们可以将总收入和苹果数量的关系制成表格,然后找出苹果数量和总收入之间的线性关系。
讲解解方程的具体步骤和注意事项。
教学设计三:知识拓展1.引入斜率和截距的概念:通过代入一些不同的价格和数量值,帮助学生理解斜率和截距的含义。
2.线性方程与图像的关系:引导学生通过画图来表示线性方程的图像,并解释图像与线性方程之间的关系。
强调线性方程的图像是一条直线。
3.线性方程的应用:引入一些实际的应用问题,帮助学生将线性方程应用到解决实际问题中。
例如,如果小明每天的总收入是20元,他想要用这些钱买苹果,苹果的价格是2元,那么他能买几个苹果呢?教学设计四:梳理相关知识点通过小结和讲解相关习题对一次函数和一元一次方程的知识进行梳理,强化学生的学习。
教学设计五:巩固练习提供一些练习题,让学生巩固所学的知识。
例如:-小明每天卖出的苹果数量与总收入之间的关系是一次函数吗?为什么?-如果小明每天的水果卖价是x元,总共卖出了n个水果,那么总收入可以表示为一个怎样的一次函数?-如果小明在一天内卖了10个苹果,总收入是20元,那么苹果的单价是多少?教学设计六:课堂反馈通过随堂练习、讨论和提问等形式对学生进行课堂反馈,检验学生对一次函数和一元一次方程的理解情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《13.3一次函数与一次方程、一次不等式》(第一课时)安徽省合肥市庐阳中学陈光宇
教
具
安
排
学生课堂自主探究材料、多媒体课件。
课
时安排
这节内容安排两个课时,本节课是第一课时,主要通过探究活动领悟一次函数与一元一次方程、一次不等式之间的联系。
教学过程设计
问题与情境师生活动设计意图
复习旧知、学前热身
小明的爸爸应邀来到合肥投资,
在庐阳工业园投资300万元成本建成
一个小型家电生产工厂。
建成投产后,
不考虑材料费等其他因素,每年盈利
75万元。
回答下面两个问题,
1:该工厂投产几年刚好收回成本?
2:该工厂从哪一年后盈利开始超过
300万元以上?
师:从小学到现在我们学过
哪些解决问题的方法?
生:小学的算术法和初中学
过的方程、不等式。
师:怎样利用函数图象解决
上面的问题呢?
贴切的生活情境可以让大多数同
学想到解决问题的方法,除了能激发学
生的求知欲,也让学生初步感受一次方
程和一元一次不等式与一次函数是有
联系的,引入课题。
合作交流、探究新知活动一:探究一次函数与一元一次方
程之间的联系。
1.解方程 3x+6=0。
2.直线y=3x+6与x轴交点的坐标是
什么?
3.讨论:图象与方程的解之间的关系。
4.不解方程:你能说出方程3x+6=6的
解吗?
学生口答三个问题。
师:课前让大家准备了任意
的一次函数的图象,观察你
的图象,在图象中也有类似
的联系吗?
学生举例说明。
师:将刚才的思考概括为一
般形式呢?
归纳:一次函数y=kx+b(k、
b为常数,k≠0)与x轴交
点的横坐标就是方程kx+b=0
的解。
一元一次方程kx+b=0(k、b
为常数,k≠0)的解就是一
次函数y=kx+b(k0
)与x轴
交点的横坐标。
引题分解难度,给学生提供了思考
的角度和方向。
通过学生反复实践和教师引导,学
生从“形”到“数”,或者从“数”到
“形”,自己探究一次函数的图象与一
元一次方程解的关系,体验知识生成的
过程。
5.合作交流(一)你还能利用图象
求出哪些一元一次方程的解?
6.合作交流(二)通过以上探究,你能总结一次函数与一元一次方程之间的联系吗?师:请写出几个这样的一元
一次方程和同伴进行交流。
对于一次函数,当y值
确定求其x的值时,就可看
成是关于x的一元一次方程。
而一个具体的一元一次方
程,实际上是一次函数的y
值确定,求其自变量x的值。
增强思维密度,通过学生动手操作
强化和真正理解一次函数图象与方程
解的对应关系,从而使学生形成自己对
数学知识的理解和有效的学习模式。
有前面反复的探究作为基础,合作
交流产生了相应的价值。
不同学生的思
考加深了全体同学对两者联系的理解,
为不同的学生提供了展示的平台。
巩固练习、小试牛刀7..练习(一):
1.观察:-x+2=0的解为,
x-1=0的解为。
2.函数y=ax+b的图象如图,则
方程ax+b=0的解为。
师:解决这2题有哪些方法?
这一提问,主要是想让同学们说出
不同的思路,感受新认知解决问题的有
效性。
有效的学习过程不能单纯的依赖
模仿和记忆。
发展能力、拓展延伸活动二:探究一次函数与一元一次不
等式之间的联系
1自主探究:观察一次函数6
3+
=x
y
的图象,
2.如何从图象上找出不等式3x+6>0
的解集?
师:(-2,0)的意义我们
已经探究过。
除此点之外,
图象被分成了两部分。
当图
象在x轴的上方时,点的坐
标有什么共同特征?
师几何画板同步演示。
师:引导学生交流发现:
不等式3x+6>0,也就是函数
值y>0。
不等式3x+6>0的
解集,就是y>0时对应的x
的取值范围。
从图象上来看
通过几何画板的演示,引导学生思
考将要探索的内容,进行分类,渗透分
类的数学思想。
抓住知识的内在联系,引导学生用
类比的学习方法,通过观察函数图象来
重新认识不等式这个代数模型。
3.如何从图象上找出不等式3x+6<0的解集?请讲述确定解集的方法。
4.合作交流(三)
通过上面两个问题的思考,你能发
现一次函数y=kx+b(k、b为常数,k≠0)与一元一次不等式kx+b>0
或kx+b<0(k、b为常数,k≠0)的关系吗?就是在x轴上方的点对应的
横坐标的取值范围。
学生独立思考。
归纳:(学生先独立思考后,
讨论交流,教师补充。
)
类比3x+6>0的思考方法,让学生
自主探究,再次突出重点。
有效的问题作为载体,鼓励学生运
用自己的语言进行描述和交流,既规范
了学生的语言表述,又锻炼了学生归纳
概括的能力。
例题解析、应用新知5.不解不等式,利用图象:
例题:不解不等式,利用图象: 求
出不等式-3x+6≥3的解集。
6.通过以上探究,你能总结一次函
数与一元一次不等式之间的联系吗?
生边说边板书,
不等式3
6
3≥
+
-x的解集
(图象法)
(1)先画出y=-3x+6的图象。
(2)找到纵坐标是3的点。
(3)观察3
≥
y的图象部分
对应的x的范围。
(4)得出不等式的解集。
教师完整规范板书过程.
并强调解题格式。
师生共同总结解题步骤。
求不等式n
b
kx>
+(k、
b为常数,k≠0)解集,先
观察y=kx+b(k、b为常数,
k≠0)的图象y=n时点的横
坐标,很容易得到n
y>时,
x的取值范围是m
x>
)
(m
x<
或。
通过学生口述解题步骤加深对不
等式和方程图象解法方法的应用和理
解。
深入地理解一元一次不等式和对应
一次函数图象的关系。
渗透学生从“特
殊”到“一般”的数学思想,突破难点。
梯度设计、巩固提高练习(二)
1.函数y=-2.5x+5的图象如图1。
-2.5x+5>0的解集为_________;
-2.5x+5<0的解集为_______.。
图1 图2
2.函数y=ax+b的图象如图2。
则对
应不等式ax+b>0的解集为_______;
学生自我解答,自我展示。
师予以辅导和纠正。
问题由浅到深,由易到难。
学生通
过自我解答、不同方法的对比来渗透识
图能力的培养和数形结合的思想。
附 板书设计:
一次函数与一元一次方程和一元一次不等式的关系
一元一次方程 一次函数 一元一次不等式 例题:利用图像 75x-300=0 y=75x-300 75x-300>300 求: 不等式363≥+-x 的解集 3x+6=0 x=-2 y=3x+6 (-2,0) 3x+6>0 x>-2 (1)先画出y=-3x+6的图像。
y=kx+b 与x 轴交点的横坐标就是方程kx+b=0的解。
(2) 找到纵坐标是3的点。
解不等式kx+b >0或<0(k 、b 常数,k ≠0) (3) 观察3≥y (y=3) 的图 就是求图象x 轴上方(或下方)的点 像部分对应的x 的范围
对应的自变量取值范围。
(4) 得出不等式的解集。
3x+6=6 x=-0 y=3x+6 (0,6)
kx+b=n x=m y=kx+b (m.n) n b kx >+。