数据结构-查找算法
数据数据结构的主要算法

数据数据结构的主要算法
数据结构的主要算法包括以下几种:
1. 查找算法:主要用于在数据结构中查找特定元素的算法,包括线性查找、二分查找、哈希查找等。
2. 排序算法:用于对数据结构中的元素进行排序的算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
3. 插入算法:用于向数据结构中插入新元素的算法,包括插入排序、二叉搜索树的插入操作等。
4. 删除算法:用于从数据结构中删除指定元素的算法,包括删除排序数组中的元素、删除链表中的节点等。
5. 更新算法:用于更新数据结构中的元素的算法,包括修改数组中的元素、更新二叉树中的节点等。
6. 遍历算法:用于遍历数据结构中的元素的算法,包括深度优先搜索(DFS)、广度优先搜索(BFS)、中序遍历、前序遍历、后序遍历等。
7. 递归算法:通过在函数内部调用函数本身来解决问题的算法,包括递归的斐波那契数列、递归的括号生成等。
8. 动态规划算法:将问题分解为子问题,并保存子问题的解以便重复使用的算法,包括背包问题、最长公共子序列问题、最
短路径问题等。
9. 图算法:用于处理图结构的算法,包括深度优先搜索、广度优先搜索、最小生成树算法、最短路径算法等。
10. 字符串匹配算法:用于在字符串中查找特定模式的算法,
包括暴力匹配算法、KMP算法、Boyer-Moore算法等。
以上是数据结构的主要算法,不同算法适用于不同的问题场景,选择合适的算法可以提高程序的效率和性能。
c语言数据结构查找算法大全

printf("This number does not exist in this array.\n");
else
printf("a[%d]=%d\n",p,x);
}
9.2.2 折半查找(二分查找)
使用折半查找必须具备两个前提条件:
(1)要求查找表中的记录按关键字有序(设,从小到大有序) (2)只能适用于顺序存储结构
}
※折半查找算法性能分析:
在折半查找的过程中,每经过一次比较,查找范围都要缩小一半,所 以折半查找的最大查找长度为
MSL=[log2 n]+1
当n足够大时,可近似的表示为log2(n)。可见在查找速度上,折半查找 比顺序查找速度要快的多,这是它的主要优点。
结论:折半查找要求查找表按关键字有序,而排序是一 种很费时的运算;另外,折半查找要求表是顺序存储的,为 保持表的有序性,在进行插入和删除操作时,都必须移动大 量记录。因此,折半查找的高查找效率是以牺牲排序为代价 的,它特别适合于一经建立就很少移动、而又经常需要查找 的线性表。
查找技术分为: 1 静态查找表技术 顺序查找、折半查找、索引顺序查找 2 动态查找表技术 二叉查找树 3哈希表技术 哈希表技术
※查找算法的衡量指标
在查找一个记录时所做的主要操作是关键字的比较, 所以通常把查找过程中对关键字的平均比较次数作为衡量 一个查找算法效率优劣的标准,并称平均比较次数为平均 查找长度(Average Search Length)。平均查找长度的 定义为:
high2=N-1;
/*N为查找表的长度,high2为块在表中的末地址*/
else
high2=ID[low1+1].addr-1;
数据结构与算法实验报告5-查找与排序

北京物资学院信息学院实验报告
课程名_数据结构与算法
实验名称查找与排序
实验日期年月日实验报告日期年月日姓名______ ___ 班级_____ ________ 学号___
一、实验目的
1.掌握线性表查找的方法;
2.了解树表查找思想;
3.掌握散列表查找的方法.
4.掌握插入排序、交换排序和选择排序的思想和方法;
二、实验内容
查找部分
1.实现顺序查找的两个算法(P307), 可以完成对顺序表的查找操作, 并根据查到和未查到两种情况输出结果;
2.实现对有序表的二分查找;
3.实现散列查找算法(链接法),应能够解决冲突;
排序部分
4.分别实现直接插入排序、直接选择排序、冒泡排序和快速排序算法
三、实验地点与环境
3.1 实验地点
3.2实验环境
(操作系统、C语言环境)
四、实验步骤
(描述实验步骤及中间的结果或现象。
在实验中做了什么事情, 怎么做的, 发生的现象和中间结果, 给出关键函数和主函数中的关键段落)
五、实验结果
六、总结
(说明实验过程中遇到的问题及解决办法;个人的收获;未解决的问题等)。
数据结构_查找原理及典型的查找算法

3.对非线性(树)结构如何进行折半查找? 可借助二叉排序树来查找(属动态查找表形式)。
9.1.2 有序表的查找
折半查找过程可以描述为一棵二叉树
折半查找的判定树 如:(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)
总之:
二叉排序树既有类似于折半查找的特性,又采用了链 表存储,它是动态查找表的一种适宜表示。
一、二叉排序树
(3)构造过程: 例:输入序列{45,12,37,3,53,100,24}
45
12
53
3
37
100
24
一、二叉排序树
(2)非递归查找过程 BiTree SearchBST(BiTree T,KeyType key){
CH9 查找
查找的基本概念 9.1 静态查找表
9.1.1 顺序查找 9.1.2 有序表的查找 9.1.3 索引顺序表的查找
9.2 动态查找表
9.2.1 二叉排序树和平衡二叉树 9.2.2 B-和B+树
9.3 哈希表
查找的基本概念
1.查找表 2.查找
关键字 主关键字 次关键字
}
9.2.1 二叉排序树和平衡二叉树
一、二叉排序树 二、平衡二叉树
一、二叉排序树
1.定义、特点、构造过程
(1)定义 二叉排序树或者是一棵空树,或是具有下列性质的二叉树:
若左子树非空,则左子树上所有结点的值均小于它的 根结点的值。
若右子树非空,则右子树上所有结点的值均大于它的 根结点的值。
有序/无序表 有序表
顺序/链式存 储
顺序存储
分块查找 介于二者之间 表中元素逐段有序 顺序/链式存储
数据结构中的查找算法总结

数据结构中的查找算法总结静态查找是数据集合稳定不需要添加删除元素的查找包括:1. 顺序查找2. 折半查找3. Fibonacci4. 分块查找静态查找可以⽤线性表结构组织数据,这样可以使⽤顺序查找算法,再对关键字进⾏排序就可以使⽤折半查找或斐波那契查找等算法提⾼查找效率,平均查找长度:折半查找最⼩,分块次之,顺序查找最⼤。
顺序查找对有序⽆序表均适⽤,折半查找适⽤于有序表,分块查找要求表中元素是块与块之间的记录按关键字有序动态查找是数据集合需要添加删除元素的查找包括: 1. ⼆叉排序树 2. 平衡⼆叉树 3. 散列表 顺序查找适合于存储结构为顺序存储或链接存储的线性表。
顺序查找属于⽆序查找算法。
从数据结构线形表的⼀端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相⽐较,若相等则表⽰查找成功 查找成功时的平均查找长度为: ASL = 1/n(1+2+3+…+n) = (n+1)/2 ; 顺序查找的时间复杂度为O(n)。
元素必须是有序的,如果是⽆序的则要先进⾏排序操作。
⼆分查找即折半查找,属于有序查找算法。
⽤给定值value与中间结点mid的关键字⽐较,若相等则查找成功;若不相等,再根据value 与该中间结点关键字的⽐较结果确定下⼀步查找的⼦表 将数组的查找过程绘制成⼀棵⼆叉树排序树,如果查找的关键字不是中间记录的话,折半查找等于是把静态有序查找表分成了两棵⼦树,即查找结果只需要找其中的⼀半数据记录即可,等于⼯作量少了⼀半,然后继续折半查找,效率⾼。
根据⼆叉树的性质,具有n个结点的完全⼆叉树的深度为[log2n]+1。
尽管折半查找判定⼆叉树并不是完全⼆叉树,但同样相同的推导可以得出,最坏情况是查找到关键字或查找失败的次数为[log2n]+1,最好的情况是1次。
时间复杂度为O(log2n); 折半计算mid的公式 mid = (low+high)/2;if(a[mid]==value)return mid;if(a[mid]>value)high = mid-1;if(a[mid]<value)low = mid+1; 折半查找判定数中的结点都是查找成功的情况,将每个结点的空指针指向⼀个实际上不存在的结点——外结点,所有外界点都是查找不成功的情况,如图所⽰。
数据结构-7顺序查找与二分查找

i=m+1=8,j=8, m=(i+j)/2=8。 r[m]>k : 在左半部分继续查找。
i=8, j=m-1=7 ,
i>j: 查找失败
存储结构
key info 0 1 k1 2 k2 3 k3
…………
n kn
typedef struct { keytype key; ………….
} elemtype;
分块有序表的结构可以分为两部分: 1、线性表本身是顺序存储结构 2、再建立一个索引表,线性表中每个子表建立一个索引节点
。索引节点包括两部分:一是数据域,一是指针域。数据域存 放对应子表中的最大元素值,指针域用于指示子表第一个元素 的在整个表中序号。
分块查找
template<class T> struct indnode {
key=32
d (1) 27
i=1
d (2) 36
i=2
d (3) 32i=3 Nhomakorabead (4) 18
此时d(i)=key,数组中的第3个位置
如果输入查找的元素值key=22
d (1) 27 i=1
d (2) 36 i=2
d (3) 32 i=3
d (4) 18
i=4 i=5 此时i等于5,超过数组中元素个数,找不到
T key; int k; };
上图查找过程:首先查找索引表,确定查找的子表,然后再相应的子表中 应顺序表查找法查找。
• int blksearch(record r[],index idx[],keytype key)
•{
• int i=0,j;
• while(i<idxN)
•{
• if(key<=idx[i].key){
数据结构的常用算法

数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。
通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。
2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。
3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。
4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。
5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。
二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。
常见的查找算法有线性查找、二分查找、哈希查找等。
1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。
2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。
通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。
3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。
三、图算法图算法是解决图结构中相关问题的算法。
数据结构的查找算法

数据结构的查找算法在计算机科学中,数据结构是用于组织和存储数据的一种方式。
查找算法是数据结构中的重要部分,它用于在数据集合中搜索特定元素或信息。
本文将介绍几种常见的数据结构查找算法,包括线性查找、二分查找、哈希查找以及树结构的查找算法。
1. 线性查找线性查找是一种简单直观的查找方法,适用于无序的数据集合。
其基本思想是从数据集合的第一个元素开始逐个比较,直到找到目标元素或者遍历完整个数据集合。
由于线性查找需要遍历所有元素,所以时间复杂度为O(n),其中n为数据集合的大小。
2. 二分查找二分查找是一种高效的查找算法,但它要求数据集合中的元素必须有序。
具体实现方式是将数据集合分为两半,然后与目标元素进行比较,不断缩小查找范围,直到找到目标元素或者确定目标元素不存在。
由于每次都将查找范围减小一半,所以时间复杂度为O(log n),其中n为数据集合的大小。
3. 哈希查找哈希查找利用哈希函数将目标元素映射到哈希表中的特定位置,从而快速定位目标元素。
哈希表是一种以键-值对形式存储数据的数据结构,可以快速插入和删除元素,因此在查找时具有良好的性能。
哈希查找的时间复杂度为O(1),但在处理哈希冲突时可能会影响性能。
4. 树结构的查找算法树是一种常见的数据结构,其查找算法主要包括二叉搜索树、平衡二叉搜索树以及B树和B+树。
二叉搜索树是一种有序的二叉树,左子树的所有节点值都小于根节点,右子树的所有节点值都大于根节点。
通过比较目标元素与节点的值,可以快速定位目标元素。
平衡二叉搜索树是为了解决二叉搜索树在某些情况下可能出现的退化情况,通过旋转操作保持树的平衡性。
B树和B+树是一种多路搜索树,它们可以减少磁盘I/O操作,适用于大规模数据的查找。
综上所述,数据结构的查找算法是计算机科学中的重要内容。
不同的查找算法适用于不同的场景,选择合适的算法可以提高查找效率。
在实际应用中,需要根据数据集合的特点及查找需求来选择合适的算法。