中山大学《数学分析与高等代数》(2019-2012)[官方-完整版]历年考研真题
(整理)中山大学考研参考书目.

中山大学2013年硕士研究生招生考试范围及参考书目211翻译硕士英语①英美概况部分参见《英语国家社会与文化入门》上、下册,朱永涛编,高等教育出版社,2005。
②其它部分不列参考书。
241英语①《新编英语教程》(1-3册),李观仪等,上海外语教育出版社,1999。
242俄语①《俄语入门》第二册,周鼎、徐振新编,外语教学与研究出版社,2000。
②《大学俄语基础教程》第二、三册,张智罗、童强等,高等教育出版社,1994。
243日语①《中日交流标准日本语》初级上、下册,集体合著,人民教育出版社、光村图书出版株式会社,2005。
244法语①《公共法语》上、下册,吴贤良主编,上海外语教育出版社,1997。
245德语①《大学德语》修订本(1-2册),赵仲、戴鸣钟等编,高等教育出版社,2001-2002。
246西班牙语①董燕生、刘建:《现代西班牙语》第一册,外语教学与研究出版社,1999。
②董燕生、刘建:《现代西班牙语》第二册,外语教学与研究出版社,1999。
③岑楚兰、蔡绍龙:《新编西班牙语阅读课本》第一册,外语教学与研究出版社,1999。
247韩语①郭一诚:《韩国语能力考试真题精解及模拟800题(中级)》,世界图书出版公司248阿拉伯语①新编阿拉伯语( 1-4册),国少华主编,外语教学与研究出版社,ISBN7560033199②《阿拉伯语阅读》(上、下),《阿拉伯语阅读》组,出版社:外语教学与研究出版社,ISBN756000620308护理综合 1. 李小寒主编. 《基础护理学》. 第五版,北京:人民卫生出版社,2012.2. 李小妹主编. 《护理学导论》. 第二版,北京:人民卫生出版社,2006.7. 3.李乐之等。
《外科护理学》。
第五版,北京:人民卫生出版社,2012. 4.尤黎明等。
《内科护理学》。
第五版,北京:人民卫生出版社,2012.331社会工作原理 1.《社会工作概论》,王思斌,高等教育出版社,1999(2004)。
中山大学历年考试试题总结

4.(20分)设 的线性变换在标准基下的矩阵A= .
(1).ቤተ መጻሕፍቲ ባይዱA的特征值和特征向量.(2).求 的一组标准正交基,使在此基下的矩阵为对角矩阵.
5.(20分)设 为n维欧氏空间V中一个单位向量,定义V的线性变换如下:
证明:
(1).为第二类的正交变换(称为镜面反射).
3.(16分)设 在[0,1]连续, 求 。
4.(16分)求极限 。
5.(16分)(1)证明级数 在 一致收敛;
(2)令 , ,证明 在 一致连续。
2009.1.11数据库(871)
2008.1.20数据库(879)
(2).V的正交变换是镜面反射的充要条件为1是的特征值,且对应的特征子空间的维数为n-1.
2009.1.15数学分析(650)
2008.1.20数学分析(636)
2007.1.21数学分析(752)
2006.1.15数学分析
2003年数学分析试题
1.(16分)求 在 上的极值;求方程 有两个正实根的条件。2.(16分)计算 ,S为V: 的表面外侧。
中山大学历年考研真题
2009.11.1线性代数(651)
2009.1.11 高等代数(870)
2008.1.20线性代数(651)
2008.1.20高等代数(851)
2007.1.21高等代数(441)
2006.1.25高等代数
2004年高等代数试题(70分)
1.(10分)计算下列n阶行列式:
2.(10分)设 是数域P上线性空间V中一线性无关向量组,讨论向量组 的线性相关性。
985院校数学系2019年考研数学分析高等代数试题及部分解答

, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1
中山大学考高等代数研试题(2003-2010)

3 0 8 6. 设 A 3 1 6 ,则 A 的若当标准形为______________________________. 2 0 5
7. 实二次型 q( x1 , x2 , x3 ) 2 x1 x2 6 x2 x3 2 x1 x3 的符号差等于____________. 8. 设 f ( x) x 4 2 x 3 x 2 4 x 2 , g ( x ) x 4 x3 x 2 2 x 2 ,则它们的首一最大 公因式 ( f , g ) ______________________. 9. 设 x (1, 2, 2, 3), y (3,1,5,1) R 4 ,则 x 与 y 的夹角 ( x, y ) _______________. 10. 设 W {( x, y, z ) : x y 2 z 0} R 3 ,则 W 的正交补 W _______________. 二、证明题(每小题 10 分. 写出详细步骤) 1. 设 A 为数域 F 上 m n 矩阵,定义 LA : F F , x Ax . 证明: LA 是单射当且仅
( 2) (6 分)设 A 为元素都是整数的 n 级方阵. 证明:若整数 k 是 A 的一个特征值,则 k 是 A 的一个因子. 四、 (15 分)就 a 取何值时讨论以下方程组解的情况,有解时求解:
ax y z a 3 x ay z 2 . x y az 2
1
A1 亦正定.
a b 如果 a d 2 , ,其中 a, b, c, d 是实数,且 ad bc 1 . 证明: c d cos sin sin . cos
k
则存在实数 和实可逆矩阵 T ,使得 T 1 AT
中大考研课本参考-完整

221英语:①《新编英语教程》(1-3册),李观仪等,上海外语教育出版社,1999。
222俄语:①《俄语入门》第二册,周鼎、徐振新编,外语教学与研究出版社,2000。
②《大学俄语基础教程》第二、三册,张智罗、童强等,高等教育出版社,1994。
223日语:①《中日交流标准日本语》初级上、下册,集体合著,人民教育出版社、光村图书出版株式会社,2005。
224法语:①《公共法语》上、下册,吴贤良主编,上海外语教育出版社,1997225德语: ①《大学德语》修订本(1-2册),赵仲、戴鸣钟等编,高等教育出版社,2002。
226西班牙语:《现代西班牙语》(第一册,第二册),董燕生,刘建编,外语教学与研究出版社,1999227 韩语:不指定参考书,请参考韩国语中级或以上水平的辅导材料。
600民俗学概论:①《民俗学概论》,钟敬文主编,上海文艺出版社,1998年版。
601文学评论写作:不列参考书。
602语言学概论A:①《语言学纲要》,叶蜚声、徐通锵编,北大出版社,1997年4月版。
603文献释读:①不列参考书,主要考察考生对古代文献的标点与翻译,阅读与理解,分析与评论的能力。
604文学基础:①《中国文学史》,袁行霈主编,高等教育出版社;②《外国文学史》,朱维之等著,南开大学出版社;③《古代汉语》,王力主编,中华书局。
605中文综合考试:①郑克鲁主编:《外国文学史》(上、下),高等教育出版社,1999年版。
②黄修己编:《二十世纪中国文学史》,中山大学出版社,2004年版。
③袁行霈主编:《中国文学史》(四卷本),高等教育出版社,1999年版。
606非物质文化遗产学:①向云驹著:《人类口头和非物质遗产》宁厦人民出版社,2004年版。
②王文章主编:《非物质文化遗产概论》,文化艺术出版社,2006年版。
607西方哲学史:《西方哲学史》,斯通普夫、菲泽著,中华书局,2005年版608中国哲学史公共试题:《新编中国哲学史》(上下册),冯达文、郭齐勇主编,人民出版社,2004年版609一元微积分:《高等数学》(上册),同济大学,高等教育出版社,1988年版610人类学概论:①庄孔韶编:《人类学通论》,山西教育出版社,2002年1月。
985院校数学系2019年考研数学分析高等代数试题及部分解答

中山大学考研数学分析真题及答案.pdf

中山大学2018年数学分析真题题目一、解答下面各题(每小题9分,共54分) 1. 求极限:lim x→0(1+tan x )2018x。
2. 若已知函数f(x)的二阶导数存在,f ′(x)≠0且存在x =f −1(y),求(f −1)′′(y)。
3. 求极限:lim n→∞(1n +1n+1+ (1)2n)。
4. 设f (x,y )=xy 2z 3,函数z (x,y )满足 x 2+y 2+z 2=3xyz ,求ðfðx |(1,1,1)。
5. 计算∬(√x +√y)dxdy √x+√y≤1。
6. 计算∮x 2yzdx +(x 2+y 2)dy +(x +y +z)dz C,其中L 为曲面x 2+y 2+z 2=5与曲面z =1+x 2+y 2的交线,从z 轴正向看过去时顺时针方向。
二、(10分)判断级数∑n√n+(−1)n∞的收敛性。
三、(10分)求f (x,y,z )=xyz 在约束条件x 2+y 2+z 2=1与x +y +z =0下的极值。
四、(10分)证明:∑1n 2+1∞n=1<12+π4。
五、(10分)设f (x )在(−∞,+∞)上连续,且lim x→−∞f(x)与lim x→+∞f(x)存在,证明f (x )在(−∞,+∞)上一致连续。
六、(20分)f (x )在(x 0−1,x 0+1)上连续,在(x 0−1,x 0)∪(x 0,x 0+1)上可导,且lim x→x 0f ′(x)=a 。
证明:f ′(x 0)存在,且f ′(x 0)=a 。
七、(10分)求级数∑(1+12+···+1n )x n 的收敛域。
八、(10分)求f (x )=e x +e −x +2cos x 的极值。
九、(10分)判断f (x )=xsinx 14在[0,+∞)上的一致连续性。
十、(10分)讨论∑x n nlnn ∞n=2在[0,1)上的一致收敛性。
(NEW)中山大学高等代数历年考研真题汇编

2008年中山大学851高等代数考研真题 2009年中山大学870高等代数考研真题 2010年中山大学874高等代数考研真题 2011年中山大学875高等代数考研真题 2012年中山大学869高等代数考研真题 2013年中山大学869高等代数考研真题 2014年中山大学874高等代数考研真题 2015年中山大学877高等代数考研真题 2016年中山大学868高等代数考研真题 2017年中山大学862高等代数考研真题 2018年中山大学861高等代数考研真题 2019年中山大学867高等代数考研真题
10 设W={(x,y,z):x+y-2z=0}⊆R3,则W的正交补W⊥= ______.
二、证明题(每小题10分) 1 设A为数域F上m×n矩阵,定义LA:Fn→Fm,x→Ax.证明:LA是单 射当且仅当A的列向量组线性无关;LA是满射当且仅当A的行向量组线 性无关.
2 设f(x),g(x)是数域F上的多项式,m(x)=[f,g]是它们的首 一最小公倍式,σ是F上线性空间V的一个线性变换.证明:ker f(σ) +ker g(σ)=ker m(σ).
2018年中山大学861高等代数考研 真题
2019年中山大学867高等代数考研 真题
2008年中山大学851高等代数考研 真题
2009年中山大学870高等代数考研 真题
2010年中山大学874高等代数考研 真题
一、填空题(每小题10分) 1 设U={A∈M2(F):a11+a12=0},V={A∈M2(F):a11+a21= 0},则U+V的维数等于______.(M2(F)表示数域F上所有2阶方阵 构成的F上线性空间.)
2011年中山大学875高等代数考研 真题
2012年中山大学869高等代数考研 真题