2020年黄冈市中考数学试卷
湖北省黄冈市2020年中考数学试题(解析版)

【答案】见解析
【解析】
【分析】
通过证明 即可得证.
【详解】证明:∵点 是 的中点,
.
在 中, ,
.
在 和 中,
,
.
【点睛】本题考查平行四边形的性质,全等三角形的判定与性质等内容,熟练运用平行四边形的性质及全等三角形的判定是解题的关键.
3.如果一个多边形的每一个外角都是36°,那么这个多边形的边数是( )
A.7B.8C.9D.10
【答案】D
【解析】
【分析】
根据多边形的外角的性质,边数等于360°除以每一个外角的度数.
【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.
故选D.
【点睛】本题考查了多边形外角与边数的关系,利用外角求正多边形的边数的方法,熟练掌握多边形外角和公式是解决问题的关键.
7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()
A. B. C. D.
【答案】B
【解析】【ຫໍສະໝຸດ 析】如图,AH为菱形ABCD的高,AH=2,利用菱形的性质得到AB=4,利用正弦的定义得到∠B=30°,则∠C=150°,从而得到∠C:∠B的比值.
【详解】解:如图,AH为菱形ABCD的高,AH=2,
【解析】
【分析】
正确理解函数图象与实际问题的关系,题目中的脱销时库存量为0.
【详解】根据题意:一开始销售量与生产量持平,此时图象为平行于x轴的线段,
当下列猛增是库存随着时间的增加而减小,
时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.
故选:D.
【点睛】本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
2020年湖北省黄冈市中考数学试卷(附详解)

尺.
16.(3 分)系统找不到该试题 三、解答题(本题共 9 题,满分 72 分)
17.(5 分)(2020•黄冈)解不等式 x
x,并在数轴上表示其解集.
18.(6 分)(2020•黄冈)已知:如图,在▱ABCD 中,点 O 是 CD 的中点,连接 AO 并延长, 交 BC 的延长线于点 E,求证:AD=CE.
丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺
是长度单位,1 丈=10 尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是
一个边长为 1 丈的正方形,在水池正中央有一根芦苇,它高出水面 1 尺.如果把这根芦
苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是
22.(8 分)(2020•黄冈)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络 绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在 A 处时,船上游客发现岸上 P1 处的临摹亭和 P2 处的遗爱亭都在东北方向,当游船向正东方向行驶 600m 到达 B 处时, 游客发现遗爱亭在北偏西 15°方向,当游船继续向正东方向行驶 400m 到达 C 处时,游 客发现临摹亭在北偏西 60°方向.
甲
乙
丙
丁
平均分
85
90
90
85
方差
50
42
50
42
A.甲
B.乙
C.丙
D.丁
5.(3 分)(2020•黄冈)下列几何体是由 4 个相同的小正方体搭成的,其中,主视图、左视
图、俯视图都相同的是( )
A.
B.
第 1页(共 22页)
C.
D.
6.(3 分)(2020•黄冈)在平面直角坐标系中,若点 A(a,﹣b)在第三象限,则点 B(﹣
2020年湖北省黄冈市中考数学试卷及答案

2020年湖北省黄冈市中考数学试卷及答案第Ⅰ卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.16的相反数是()A .16B .6-C .6D .16-2.下列运算正确的是()A .223m m m+=B .326236m m m⋅=C .33(2)8m m=D .623m m m ÷=3.已知一个正多边形的一个外角为36︒,则这个正多边形的边数是()A .7B .8C .9D .104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选________去.甲乙丙丁平均分85909085方差50425042A .甲B .乙C .丙D .丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A .B .C .D .6.在平面直角坐标系中,若点(),A a b -在第三象限,则点(),B ab b -所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A .4:1B .5:1C .6:1D .7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m 吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销.下面表示2020年初至脱销期间,该厂库存量y (吨)与时间t (天)之间函数关系的大致图象是()A.B.C.D.第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算=___________.10.已知1x ,2x 是一元二次方程2210x x --=的两根,则121x x =____________.11.若|2|0x -=,则12xy -=_______.12.已知:如图,在ABC ∆中,点D 在边BC 上,AB AD DC ==,35C ∠=︒,则BAD ∠=_________度.13.计算:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是___________.14.已知:如图,AB EF ,75ABC ∠=︒,135CDF ∠=︒,则BCD ∠=___________度.15.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈、尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是_________尺.16.如图所示,将一个半径10OA cm =,圆心角90AOB ∠=︒的扇形纸板放置在水平面的一条射线OM 上.在没有滑动的情况下,将扇形AOB 沿射线OM 翻滚至OB 再次回到OM 上时,则半径OA 的中点P 运动的路线长为___________cm .(计算结果不取近似值)三、解答题(本题共9题,满分72分)17.解不等式211322x x + ,并在数轴上表示其解集.18.已知:如图,在ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD CE =.19.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”、“良好”、“一般”、“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了___________人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.已知:如图,AB 是O 的直径,点E 为O 上一点,点D 是 AE 上一点,连接AE 并延长至点C ,使CBE BDE ∠=∠,BD 与AE 交于点F .(1)求证:BC 是O 的切线;(2)若BD 平分ABE ∠,求证:2AD DF DB =⋅.22.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览.当船在A 处时,船上游客发现岸上1P 处的临皋亭和2P 处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15︒方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60︒方向.(1)求A 处到临皋亭1P 处的距离;(2)求临皋亭1P 处与遗爱亭2P 处之间的距离.(计算结果保留根号)23.已知:如图,一次函数的图象与反比例函数的图象交于,A B 两点,与y 轴正半轴交于点C ,与x 轴负半轴交于点D ,OB =,1tan 2DOB ∠=.(1)求反比例函数的解析式;(2)当12ACO OCD S S ∆∆=时,求点C 的坐标.24.网络销售已经成为一种热门的销售方式.为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量()y kg 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg ,当每日销售量不低于4000kg 时,每千克成本将降低1元.设板栗公司销售该板栗的日获利为W (元).(1)请求出日获利W 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当40000W ≥元时,网络平台将向板栗公司收取a 元/kg (4a <)的相关费用,若此时日获利的最大值为42100元,求a 的值.25.已知抛物线2y ax bx c =++与x 轴交于点()1,0A -,点()3,0B ,与y 轴交于点()0,3C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB S S ∆∆=,求直线CE 的解析式;(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,D C P Q 为顶点的四边形是平行四边形时,求点P 的坐标;(4)已知点(450,8H ,()2,0G ,在抛物线对称轴上找一点F ,使HF AF +的值最小。
2020年湖北省黄冈市中考数学试卷

2020年湖北省黄冈市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)的相反数是()A.B.﹣6C.6D.﹣2.(3分)下列运算正确的是()A.m+2m=3m2B.2m3•3m2=6m6C.(2m)3=8m3D.m6÷m2=m33.(3分)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7B.8C.9D.104.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁5.(3分)下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A.B.C.D.6.(3分)在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1B.5:1C.6:1D.7:18.(3分)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算=.10.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.11.(3分)若|x﹣2|+=0,则﹣xy=.12.(3分)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.13.(3分)计算:÷(1﹣)的结果是.14.(3分)已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.16.(3分)系统找不到该试题三、解答题(本题共9题,满分72分)17.(5分)解不等式x+≥x,并在数轴上表示其解集.18.(6分)已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.19.(6分)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.(7分)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处与遗爱亭P2处之间的距离.(计算结果保留根号)23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.(1)求反比例函数的解析式;(2)当S△ACO=S△OCD时,求点C的坐标.24.(11分)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.25.(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.2020年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.解:的相反数是﹣,故选:D.2.解:m+2m=3m,因此选项A不符合题意;2m3•3m2=6m5,因此选项B不符合题意;(2m)3=23•m3=8m3,因此选项C符合题意;m6÷m2=m6﹣2=m4,因此选项D不符合题意;故选:C.3.解:360°÷36°=10,所以这个正多边形是正十边形.故选:D.4.解:∵=>=,∴四位同学中乙、丙的平均成绩较好,又<,∴乙的成绩比丙的成绩更加稳定,综上,乙的成绩好且稳定,故选:B.5.解:A.主视图、左视图、俯视图均为底层是两个小正方形,上层的左边是一个小正方形,故本选项符合题意;B主视图与左视图均为底层是两个小正方形,上层的左边是一个小正方形;而俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;C.主视图与俯视图均为一行三个小正方形,而左视图是一列两个小正方形,故本选项不合题意.D.主视图为底层两个小正方形,上层的右边是一个小正方形;左视图为底层是两个小正方形,上层的左边是一个小正方形;俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;故选:A.6.解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.7.解:如图,AH为菱形ABCD的高,AH=2,∵菱形的周长为16,∴AB=4,在Rt△ABH中,sin B ===,∴∠B=30°,∵AB∥CD,∴∠C=150°,∴∠C:∠B=5:1.故选:B.8.解:根据题意:时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D.二、填空题(本题共8小题,每小题3分,共24分)9.解:=﹣2.故答案为:﹣2.10.解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两根,∴x1x2=﹣1,则=﹣1,故答案为:﹣1.11.解:∵|x﹣2|+=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴,故答案为2.12.解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40..13.解:原式=÷(﹣)=÷=•=,故答案为:.14.解:∵∠CDF=135°,∴∠EDC=180°﹣135°=45°,∵AB∥EF,∠ABC=75°,∴∠1=∠ABC=75°,∴∠BCD=∠1﹣∠EDC=75°﹣45°=30°,故答案为:30.15.解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,答:水池里水的深度是12尺.故答案为:12.16.三、解答题(本题共9题,满分72分)17.解:去分母得4x+3≥3x,移项、合并得x≥﹣3,所以不等式的解集为x≥﹣3,在数轴上表示为:18.证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,,∴△AOD≌△EOC(ASA),∴AD=CE.19.解:设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,依题意,得:,解得:.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.20.解:(1)这次活动共抽查的学生人数为80÷40%=200(人);故答案为:200;(2)“不合格”的学生人数为200﹣40﹣80﹣60=20(人),将条形统计图补充完整如图:学习效果“一般”的学生人数所在扇形的圆心角度数为360°×=108°;(3)把学习效果“优秀”的记为A,“良好”记为B,“一般”的记为C,画树状图如图:共有12个等可能的结果,抽取的2人学习效果全是“良好”的结果有2个,∴抽取的2人学习效果全是“良好”的概率==.21.证明:(1)∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=90°,即∠ABC=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,∵∠DAF=∠DBE,∴∠DAF=∠ABD,∵∠ADB=∠ADF,∴△ADF∽△BDA,∴,∴AD2=DF•DB.22.解:(1)作P1M⊥AC于M,设P1M=x,在Rt△P1AM中,∵∠P1AB=45°,∴AM=P1M=x,在Rt△P1CM中,∵∠P1CA=30°,∴MC ==x,∵AC=1000,∴x +=100,解得x=500(﹣1),∴P1M=500(﹣1)m∴P1A ==500(﹣)m,故A处到临摹亭P1处的距离为500(﹣)m;(2)作BN⊥AP2于N,∵∠P2AB=45°,∠P2BA=75°,∴∠P2=60°,在Rt△ABN中,∵∠P1AB=45°,AB=600m∴BN=AN =AB=300,∴PN=500(﹣)﹣300=500﹣800,在Rt△P2BN中,∵∠P2=60°,∴P2N =BN =×=100,∴P1P2=100﹣(500﹣800)=800﹣400.故临摹亭P1处与遗爱亭P2处之间的距离是(800﹣400)m.23.解:过点B、A作BM⊥x轴,AN⊥x轴,垂足为点M,N,(1)在Rt△BOM中,OB =,tan∠DOB =.∵BM=1,OM=2,∴点B(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2,∴反比例函数的关系式为y =;(2)∵S△ACO =S△OCD,∴OD=2AN,又∵△ANC∽△DOC,∴===,设AN=a,CN=b,则OD=2a,OC=2b,∵S△OAN =|k|=1=ON•AN =×3b×a,∴ab =,①,由△BMD∽△CNA得,∴=,即=,也就是a =②,由①②可求得b=1,b =﹣(舍去),∴OC=2b=2,∴点C(0,2).24.解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w =;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x ﹣)2+48625,∵a=﹣100<0,对称轴为x =,∴当6≤x≤10时,y随x的增大而增大,即当x =10时,w最大值=18000元,当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x ==28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元∴(28+a﹣6﹣a)[﹣100×(28+a)+500]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.25.解:(1)因为抛物线经过A(﹣1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,3)代入,可得a=﹣1,∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)如图1中,连接AC,BC.∵S△ACE:S△CEB=3:5,∴AE:EB=3:5,∵AB=4,∴AE=4×=,∴OE=0.5,设直线CE的解析式为y=kx+b,则有,解得,∴直线EC的解析式为y=﹣6x+3.(3)由题意C(0,3),D(1,4).当四边形P1Q1CD,四边形P2Q2CD是平行四边形时,点P的纵坐标为1,当y=1时,﹣x2+2x+3=1,解得x=1±,∴P1(1+,1),P2(1﹣,1),当四边形P3Q3DC,四边形P4Q4DC是平行四边形时,点P的纵坐标为﹣1,当y=﹣1时,﹣x2+2x+3=﹣1,解得x=1±,∴P1(1+,﹣1),P2(1﹣,﹣1),综上所述,满足条件的点P的坐标为(1+,1)或(1﹣,1)或(1﹣,﹣1)或(1+,﹣1).(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.∵H(0,),B(3,0),∴直线BH的解析式为y =﹣x +,∵x=1时,y =,∴F(1,),设K(x,y),作直线y =,过点K作KM⊥直线y =于M.∵KF =,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴(x﹣1)2=4﹣y,∴KF ===|y ﹣),∵KM=|y ﹣|,∴KF=KM,∴KG+KF=KG+KM,根据垂线段最短可知,当G,K,M共线,且垂直直线y =时,GK+KM的值最小,最小值为,此时K(2,3).。
2020年湖北省黄冈市中考数学试卷

2020年湖北省黄冈市中考数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.的相反数是()A. B. -6 C. 6 D. -2.下列运算正确的是()A. m+2m=3m2B. 2m3•3m2=6m6C. (2m)3=8m3D. m6÷m2=m33.若一个正多边形的一个外角是36°,则这个正多边形的边数是()A. 7B. 8C. 9D. 104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A. 甲B. 乙C. 丙D. 丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A. B. C. D.6.在平面直角坐标系中,若点A(a,-b)在第三象限,则点B(-ab,b)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A. 4:1B. 5:1C. 6:1D. 7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)9.计算=______.10.已知x1,x2是一元二次方程x2-2x-1=0的两根,则=______.11.若|x-2|+=0,则-xy=______.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=______度.13.计算:÷(1-)的结果是______.14.已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=______度.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是______尺.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上,在没有滑动的情况下,将扇形AOB沿射线OM翻滚至OB再次回到OM上时,则半径OA的中点P运动的路线长为______cm.(计算结果不取近似值)三、解答题(本大题共9小题,共72.0分)17.解不等式x+≥x,并在数轴上表示其解集.18.已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.19.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了______人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.22.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处于遗爱亭P2处之间的距离.(计算结果保留根号)23.已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.(1)求反比例函数的解析式;(2)当S△ACO=S△OCD时,求点C的坐标.24.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=-100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg 时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.25.已知抛物线y=ax2+bx+c与x轴交于点A(-1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:的相反数是-,故选:D.只有符号不同的两个数是互为相反数,在数轴上表示,分别位于原点的两侧,且到原点距离相等的两点所表示的数是互为相反数.本题考查相反数的意义和求法,理解相反数的意义是正确解答的前提.2.【答案】C【解析】解:m+2m=3m,因此选项A不符合题意;2m3•3m2=6m5,因此选项B不符合题意;(2m)3=23•m3=8m3,因此选项C符合题意;m6÷m2=m6-2=m4,因此选项D不符合题意;故选:C.利用合并同类项、同底数幂的乘除法以及幂的乘方、积的乘方进行计算即可.本题考查合并同类项负法则、同底数幂的乘除法以及幂的乘方、积的乘方的计算方法,掌握计算法则是得出正确答案的前提.3.【答案】D【解析】解:360°÷36°=10,所以这个正多边形是正十边形.故选D.利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.本题主要考查了多边形的外角和定理.是需要识记的内容.4.【答案】B【解析】解:∵=>=,∴四位同学中乙、丙的平均成绩较好,又<,∴乙的成绩比丙的成绩更加稳定,综上,乙的成绩好且稳定,故选:B.先找到四人中平均数大的,即成绩好的;再从平均成绩好的人中选择方差小,即成绩稳定的,从而得出答案.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.【答案】A【解析】解:A.主视图、左视图、俯视图均为底层是两个小正方形,上层的左边是一个小正方形,故本选项符合题意;B主视图与左视图均为底层是两个小正方形,上层的左边是一个小正方形;而俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;C.主视图与俯视图均为一行三个小正方形,而左视图是一列两个小正方形,故本选项不合题意.D.主视图为底层两个小正方形,上层的右边是一个小正方形;左视图为底层是两个小正方形,上层的左边是一个小正方形;俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;故选:A.根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.本题考查了简单组合体的三视图,利用三视图的意义是解题关键.6.【答案】A【解析】解:∵点A(a,-b)在第三象限,∴a<0,-b<0,∴b>0,∴-ab>0,∴点B(-ab,b)所在的象限是第一象限.故选:A.根据点A(a,-b)在第三象限,可得a<0,-b<0,得b>0,-ab>0,进而可以判断点B(-ab,b)所在的象限.本题考查了点的坐标,解决本题的关键是掌握点的坐标特征.7.【答案】B【解析】解:如图,AH为菱形ABCD的高,AH=2,∵菱形的周长为16,∴AB=4,在Rt△ABH中,sin B===,∴∠B=30°,∵AB∥CD,∴∠C=150°,∴∠C:∠B=5:1.故选:B.如图,AH为菱形ABCD的高,AH=2,利用菱形的性质得到AB=4,利用正弦的定义得到∠B=30°,则∠C=150°,从而得到∠C:∠B的比值.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了直角三角形斜边上的中线性质.8.【答案】D【解析】解:根据题意:时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D.根据开始产量与销量持平,后来脱销即可确定存量y(吨)与时间t(天)之间函数关系.本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.9.【答案】-2【解析】解:=-2.故答案为:-2.依据立方根的定义求解即可.本题主要考查的是立方根的性质,熟练掌握立方根的性质是解题的关键.10.【答案】-1【解析】解:∵x1,x2是一元二次方程x2-2x-1=0的两根,∴x1x2=-1,则=-1,故答案为:-1.根据x1,x2是方程x2+px+q=0的两根时x1x2=q,得出x1x2=-1,代入计算可得.本题主要考查根与系数的关系,解题的关键是掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.11.【答案】2【解析】解:∵|x-2|+=0,∴x-2=0,x+y=0,∴x=2,y=-2,∴,故答案为2.根据非负数的性质进行解答即可.本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.12.【答案】40【解析】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°-∠B-∠ADB=180°-70°-70°=40°.故答案为:40..根据等腰三角形的性质和三角形的内角和定理即可得到结论.本题考查了等腰三角形的性质及三角形内角和为180°等知识.此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.13.【答案】【解析】解:原式=÷(-)=÷=•=,故答案为:.先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.14.【答案】30【解析】解:∵∠CDF=135°,∴∠EDC=180°-135°=45°,∵AB∥EF,∠ABC=75°,∴∠1=∠ABC=75°,∴∠BCD=∠1-∠EDC=75°-45°=30°,故答案为:30.根据邻补角的定义得到∠EDC=180°-135°=45°,根据平行线的性质得到∠1=∠ABC=75°,根据三角形外角的性质即可得到结论.本题考查了平行线的性质,三角形外角的性质,邻补角的定义,熟练掌握平行线的性质是解题的关键.15.【答案】12【解析】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,答:水池里水的深度是12尺.故答案为:12.根据勾股定理列出方程,解方程即可.本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.16.【答案】(π+5π+5)【解析】解:如图,点P的运动轨迹是→线段EF→→.∴点P的运动路径的长=++•2π•5=(π+5π+)=(π+5π+5)cm.故答案为(π+5π+5).如图,点P的运动轨迹是→线段EF→→.分别利用弧长公式,勾股定理计算即可.本题考查轨迹,弧长公式,勾股定理等知识,解题的关键是正确寻找点P的运动轨迹.17.【答案】解:去分母得8x+6≥6x,移项、合并得2x≥-6,系数化为1得x≥-3,所以不等式的解集为x≥-3,在数轴上表示为:【解析】去分母、移项、合并、系数化为1即可得到不等式的解集为x≥-3,然后在数轴上表示解集即可.本题考查了解一元一次不等式,掌握解法的基本步骤:去分母,去括号,移项,合并同类项,系数化为1是解题的关键.18.【答案】证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,,∴△AOD≌△EOC(ASA),∴AD=CE.【解析】只要证明△AOD≌△EOC(ASA)即可解决问题;此题主要考查了全等三角形的判定与性质,平行四边形的性质等知识,解题的关键是正确寻找全等三角形解决问题.19.【答案】解:设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,依题意,得:,解得:.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.【解析】设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,根据“如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【答案】200【解析】解:(1)这次活动共抽查的学生人数为80÷40%=200(人);故答案为:200;(2)“不合格”的学生人数为200-40-80-60=20(人),将条形统计图补充完整如图:学习效果“一般”的学生人数所在扇形的圆心角度数为360°×=108°;(3)把学习效果“优秀”的记为A,“良好”记为B,“一般”的记为C,画树状图如图:共有12个等可能的结果,抽取的2人学习效果全是“良好”的结果有2个,∴抽取的2人学习效果全是“良好”的概率==.(1)由“良好”的人数及其所占百分比可得总人数;(2)求出“不合格”的学生人数为20人,从而补全条形统计图;由360°乘以学习效果“一般”的学生人数所占的百分比即可;(3)画出树状图,利用概率公式求解即可.本题考查了列表法或画树状图法、概率公式以及条形统计图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【答案】证明:(1)∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=90°,即∠ABC=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,∵∠DAF=∠DBE,∴∠DAF=∠ABD,∵∠ADB=∠ADF,∴△ADF∽△BDA,∴,∴AD2=DF•DB.【解析】(1)根据圆周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,则CB⊥AB,从而证得BC是⊙O的切线;(2)通过证得△ADF∽△BDA,得出相似三角形的对应边成比例即可证得结论.本题考查了切线的判定,三角形相似的判定和性质;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.【答案】解:(1)作P1M⊥AC于M,设P1M=x,在Rt△P1AM中,∵∠P1AB=45°,∴AM=P1M=x,在Rt△P1CM中,∵∠P1CA=30°,∴MC==x,∵AC=1000,∴x+=100,解得x=500(-1),∴P1M=500(-1)m∴P1A==500(-)m,故A处到临摹亭P1处的距离为500(-)m;(2)作BN⊥AP2于N,∵∠P2AB=45°,∠P2BA=75°,∴∠P2=60°,在Rt△ABN中,∵∠P1AB=45°,AB=600m∴BN=AN=AB=300,∴PN=500(-)-300=500-800,在Rt△P2BN中,∵∠P2=60°,∴P2N=BN=×=100,∴P1P2=100-(500-800)=800-400.故临摹亭P1处于遗爱亭P2处之间的距离是(800-400)m.【解析】(1)如图,作P1M⊥AC于M,设P1M=x,在两个直角三角形中,利用三角函数即可x表示出AM与CM,根据AC=AM+CM即可列方程,从而求得P1M的长,进一步求得AP1的长;(2)作BN⊥AP2于N,在两个直角三角形中,利用三角函数即可求出AN与P2N,根据(1)的结果求得P1N,从而求得P1P2.本题主要考查了直角三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.23.【答案】解:过点B、A作BM⊥x轴,AN⊥x轴,垂足为点M,N,(1)在Rt△BOM中,OB=,tan∠DOB=.∵BM=1,OM=2,∴点B(-2,-1),∴k=(-2)×(-1)=2,∴反比例函数的关系式为y=;(2)∵S△ACO=S△OCD,∴OD=2AN,又∵△ANC∽△DOC,∴===,设AN=a,CN=b,则OD=2a,OC=2b,∵S△OAN=|k|=1=ON•AN=×3b×a,∴ab=,①,由△BMD∽△CAN得,∴=,即=,也就是a=②,由①②可求得b=1,b=-(舍去),∴OC=2b=2,∴点C(0,2).【解析】(1)根据OB=,tan∠DOB=,可求出点B的坐标,进而确定反比例函数的关系式;(2)利用S△ACO=S△OCD,可得OD=2AN,再根据相似三角形的性质,设AN=a、CN=b,表示出OD、OC,最后根据三角形OBM的面积为|k|=1,列方程求出b的值即可.本题考查反比例函数、一次函数图象上点的坐标特征,理解反比例函数k的几何意义是列方程的关键.24.【答案】解:(1)当y≥4000,即-100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x-6+1)(-100x+5000)-2000=-100x2+5500x-27000,当10<x≤30时,w=(x-6)(-100x+5000)-2000=-100x2+5600x-32000,综上所述:w=;(2)当6≤x≤10时,w=-100x2+5500x-27000=-100(x-)2+48625,∵a=-100<0,对称轴为x=,∴当6≤x≤10时,y随x的增大而增大,即当x=10时,w最大值=18000元,当10<x≤30时,w=-100x2+5600x-32000=-100(x-28)2+46400,∵a=-100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵4000>18000,∴10<x≤30,∴w=-100x2+5600x-32000,当w=4000元时,4000=-100x2+5600x-32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥4000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x-6-a)(-100x+5000)-2000=-100x2+(5600+100a)x-32000-5000a,∴对称轴为直线x==28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元∴(28+a-6-a)[-100×(28+a)+500]-2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.【解析】(1)分两种情况讨论,由日获利=销售单价×数量,可求解;(2)分两种情况讨论,由二次函数的性质,分别求出6≤x≤10和10<x≤30时的最大利润,即可求解;(3)由w≥40000元,可得w与x的关系式为w=-100x2+5600x-32000,可求当20≤x≤36时,w≥4000,可得日获利w1=(x-6-a)(-100x+5000)-2000=-100x2+(5600+100a)x-32000-5000a,由二次函数的性质可求解.本题考查了二次函数的应用,二次函数的性质,利用分类讨论思想解决问题是本题的关键.25.【答案】解:(1)因为抛物线经过A(-1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x-3),把C(0,3)代入,可得a=-1,∴抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.(2)如图1中,连接AC,BC.∵S△ACE:S△CEB=3:5,∴AE:EB=3:5,∵AB=4,∴AE=4×=,∴OE=0.5,设直线CE的解析式为y=kx+b,则有,解得,∴直线EC的解析式为y=-6x+3.(3)由题意C(0,3),D(1,4).当四边形P1Q1CD,四边形P2Q2CD是平行四边形时,点P的纵坐标为1,当y=1时,-x2+2x+3=1,解得x=1±,∴P1(1+,1),P2(1-,1),当四边形P3Q3DC,四边形P4Q4DC是平行四边形时,点P的纵坐标为-1,当y=1时,-x2+2x+3=-1,解得x=1±,∴P1(1+,-1),P2(1-,-1),综上所述,满足条件的点P的坐标为(1+,1)或(1-,1)或(1-,-1)或(1+,-1).(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.∵H(0,),B(3,0),∴直线BH的解析式为y=-x+,∵x=1时,y=,∴F(1,),设K(x,y),作直线y=,过点K作KM⊥直线y=于M.∵KF=,y=-x2+2x+3=-(x-1)2+4,∴(x-1)2=4-y,∴KF===|y-),∵KM=|y-|,∴KF=KM,∴KG+KF=KG+KM,根据垂线段最短可知,当G,K,M共线,且垂直直线y=时,GK+KM的值最小,最小值为,此时K(2,3).【解析】(1)因为抛物线经过A(-1,0),B(3,0),可以假设抛物线的解析式为y=a(x+1)(x-3),利用待定系数法解决问题即可.(2)求出点E的坐标即可解决问题.(3)分点P在x轴的上方或下方,点P的纵坐标为1或-1,利用待定系数法求解即可.(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.求出直线HB的解析式,可得点F的坐标,设K(x,y),作直线y=,过点K作KM⊥直线y=于M.证明KF=KM,利用垂线段最短解决问题即可.本题属于二次函数综合题,考查了待定系数法,一次函数的性质,平行四边形的判定和性质,垂线段最短等知识,解题的关键是学会用分类讨论的思想思考问题,第四个问题的关键是学会用转化的思想思考问题,把最短问题转化为垂线段最短,属于中考压轴题.。
2020年湖北省黄冈市中考数学试卷(含答案)

2020年湖北省黄冈市中考数学试卷参考答案与试题解析题序一二三四五六七八总分得分一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(2020•黄冈)﹣8的立方根是()A .﹣2 B.±2 C.2 D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2020•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(2020•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(2020•黄冈)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(2020•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2020•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(2020•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(2020•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x ,则△DEF 的面积S 关于x的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(2020•黄冈)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(2020•黄冈)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(2020•黄冈)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(2020•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(2020•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(2020•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(2020•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(2020•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2020•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(2020•黄冈)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(2020•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(2020•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)(2020•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(2020•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k 的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(2020•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C 在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(2020•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(2020•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P 作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=×(2t)×=t2,②1<t≤1.5时,S=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰直角三角形的性质,二次函数图象上点的坐标特征,三角形的面积,难点在于(4)随着运动时间的变化,根据重叠部分的形状的不同分情况讨论,作出图形更形象直观.友情提示:一、认真对待每一次考试。
2020湖北省黄冈市中考数学试卷及答案解析

2020年湖北省黄冈市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)16的相反数是( )A .16B .﹣6C .6D .−162.(3分)下列运算正确的是( ) A .m +2m =3m 2 B .2m 3•3m 2=6m 6 C .(2m )3=8m 3D .m 6÷m 2=m 33.(3分)已知一个正多边形的一个外角为36°,则这个正多边形的边数是( ) A .7B .8C .9D .104.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选( )去.甲 乙 丙 丁 平均分 85 90 90 85 方差 5042 5042 A .甲B .乙C .丙D .丁5.(3分)下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是( )A .B .C .D .6.(3分)在平面直角坐标系中,若点A (a ,﹣b )在第三象限,则点B (﹣ab ,b )所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限7.(3分)若菱形的周长为16,高为2,则菱形两邻角的度数之比为( ) A .4:1B .5:1C .6:1D .7:18.(3分)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算√−83=.10.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则1x1x2=.11.(3分)若|x﹣2|+√x+y=0,则−12xy=.12.(3分)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.13.(3分)计算:yx2−y2÷(1−x x+y)的结果是.14.(3分)已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是 尺.16.(3分)系统找不到该试题三、解答题(本题共9题,满分72分)17.(5分)解不等式23x +12≥12x ,并在数轴上表示其解集.18.(6分)已知:如图,在▱ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD =CE .19.(6分)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.̂上一点,连接21.(7分)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是AEAE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处于遗爱亭P2处之间的距离.(计算结果保留根号)23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=√5,tan∠DOB=1 2.(1)求反比例函数的解析式;(2)当S△ACO=12S△OCD时,求点C的坐标.24.(11分)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.25.(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H (0,458),G (2,0),在抛物线对称轴上找一点F ,使HF +AF 的值最小.此时,在抛物线上是否存在一点K ,使KF +KG 的值最小?若存在,求出点K 的坐标;若不存在,请说明理由.2020年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)16的相反数是( )A .16B .﹣6C .6D .−16【解答】解:16的相反数是−16,故选:D .2.(3分)下列运算正确的是( ) A .m +2m =3m 2 B .2m 3•3m 2=6m 6 C .(2m )3=8m 3D .m 6÷m 2=m 3【解答】解:m +2m =3m ,因此选项A 不符合题意; 2m 3•3m 2=6m 5,因此选项B 不符合题意; (2m )3=23•m 3=8m 3,因此选项C 符合题意; m 6÷m 2=m 6﹣2=m 4,因此选项D 不符合题意;故选:C .3.(3分)已知一个正多边形的一个外角为36°,则这个正多边形的边数是( ) A .7B .8C .9D .10【解答】解:360°÷36°=10,所以这个正多边形是正十边形. 故选:D .4.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选( )去.甲 乙 丙 丁 平均分 85 90 90 85 方差 5042 5042 A .甲B .乙C .丙D .丁【解答】解:∵x 乙=x 丙>x 甲=x 丁,∴四位同学中乙、丙的平均成绩较好,又S 乙2<S 丙2,∴乙的成绩比丙的成绩更加稳定, 综上,乙的成绩好且稳定, 故选:B .5.(3分)下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是( )A .B .C .D .【解答】解:A .主视图、左视图、俯视图均为底层是两个小正方形,上层的左边是一个小正方形,故本选项符合题意;B 主视图与左视图均为底层是两个小正方形,上层的左边是一个小正方形;而俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;C .主视图与俯视图均为一行三个小正方形,而左视图是一列两个小正方形,故本选项不合题意.D .主视图为底层两个小正方形,上层的右边是一个小正方形;左视图为底层是两个小正方形,上层的左边是一个小正方形;俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意; 故选:A .6.(3分)在平面直角坐标系中,若点A (a ,﹣b )在第三象限,则点B (﹣ab ,b )所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:∵点A (a ,﹣b )在第三象限, ∴a <0,﹣b <0, ∴b >0, ∴﹣ab >0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.7.(3分)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1B.5:1C.6:1D.7:1【解答】解:如图,AH为菱形ABCD的高,AH=2,∵菱形的周长为16,∴AB=4,在Rt△ABH中,sin B=AHAB=24=12,∴∠B=30°,∵AB∥CD,∴∠C=150°,∴∠C:∠B=5:1.故选:B.8.(3分)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.【解答】解:根据题意:时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算√−83=﹣2.【解答】解:√−83=−2.故答案为:﹣2.10.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则1x1x2=﹣1.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两根,∴x1x2=﹣1,则1x1x2=−1,故答案为:﹣1.11.(3分)若|x﹣2|+√x+y=0,则−12xy=2.【解答】解:∵|x﹣2|+√x+y=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴−12xy=−12×2×(−2)=2,故答案为2.12.(3分)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40..13.(3分)计算:yx2−y2÷(1−x x+y)的结果是1x−y.【解答】解:原式=y(x+y)(x−y)÷(x+yx+y−xx+y)=y(x+y)(x−y)÷y x+y=y(x+y)(x−y)•x+y y=1x−y,故答案为:1x−y.14.(3分)已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=30度.【解答】解:∵∠CDF=135°,∴∠EDC=180°﹣135°=45°,∵AB∥EF,∠ABC=75°,∴∠1=∠ABC=75°,∴∠BCD=∠1﹣∠EDC=75°﹣45°=30°,故答案为:30.15.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是12尺.【解答】解:设水池里水的深度是x 尺,由题意得,x 2+52=(x +1)2,解得:x =12,答:水池里水的深度是12尺.故答案为:12.16.(3分)系统找不到该试题三、解答题(本题共9题,满分72分)17.(5分)解不等式23x +12≥12x ,并在数轴上表示其解集. 【解答】解:去分母得8x +6≥6x ,移项、合并得2x ≥﹣6,系数化为1得x ≥﹣3,所以不等式的解集为x ≥﹣3,在数轴上表示为:18.(6分)已知:如图,在▱ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD =CE .【解答】证明:∵O 是CD 的中点,∴OD =CO ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,在△ADO 和△ECO 中,{∠D =∠OCEOD =OC ∠AOD =∠EOC,∴△AOD ≌△EOC (ASA ),∴AD =CE .19.(6分)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?【解答】解:设每盒羊角春牌绿茶需要x 元,每盒九孔牌藕粉需要y 元,依题意,得:{6x +4y =960x +3y =300, 解得:{x =120y =60. 答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了 200 人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.【解答】解:(1)这次活动共抽查的学生人数为80÷40%=200(人);故答案为:200;(2)“不合格”的学生人数为200﹣40﹣80﹣60=20(人),将条形统计图补充完整如图:学习效果“一般”的学生人数所在扇形的圆心角度数为360°×60200=108°;(3)把学习效果“优秀”的记为A,“良好”记为B,“一般”的记为C,画树状图如图:共有12个等可能的结果,抽取的2人学习效果全是“良好”的结果有2个,∴抽取的2人学习效果全是“良好”的概率=212=16.21.(7分)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是AÊ上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.【解答】证明:(1)∵AB 是⊙O 的直径,∴∠AEB =90°,∴∠EAB +∠EBA =90°,∵∠CBE =∠BDE ,∠BDE =∠EAB ,∴∠EAB =∠CBE ,∴∠EBA +∠CBE =90°,即∠ABC =90°,∴CB ⊥AB ,∵AB 是⊙O 的直径,∴BC 是⊙O 的切线;(2)证明:∵BD 平分∠ABE ,∴∠ABD =∠DBE ,∵∠DAF =∠DBE ,∴∠DAF =∠ABD ,∵∠ADB =∠ADF ,∴△ADF ∽△BDA ,∴AD BD =DF AD ,∴AD 2=DF •DB .22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A 处时,船上游客发现岸上P 1处的临摹亭和P 2处的遗爱亭都在东北方向,当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m 到达C 处时,游客发现临摹亭在北偏西60°方向.(1)求A 处到临摹亭P 1处的距离;(2)求临摹亭P 1处于遗爱亭P 2处之间的距离.(计算结果保留根号)【解答】解:(1)作P1M⊥AC于M,设P1M=x,在Rt△P1AM中,∵∠P1AB=45°,∴AM=P1M=x,在Rt△P1CM中,∵∠P1CA=30°,∴MC=√3P1M=√3x,∵AC=1000,∴x+√3x=100,解得x=500(√3−1),∴P1M=500(√3−1)m∴P1A=122=500(√6−√2)m,故A处到临摹亭P1处的距离为500(√6−√2)m;(2)作BN⊥AP2于N,∵∠P2AB=45°,∠P2BA=75°,∴∠P2=60°,在Rt△ABN中,∵∠P1AB=45°,AB=600m∴BN=AN=√22AB=300√2,∴PN=500(√6−√2)﹣300√2=500√6−800√2,在Rt△P2BN中,∵∠P2=60°,∴P2N=√33BN=√33×300√2=100√6,∴P1P2=100√6−(500√6−800√2)=800√2−400√6.故临摹亭P1处于遗爱亭P2处之间的距离是(800√2−400√6)m.23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=√5,tan∠DOB=1 2.(1)求反比例函数的解析式;(2)当S△ACO=12S△OCD时,求点C的坐标.【解答】解:过点B、A作BM⊥x轴,AN⊥x轴,垂足为点M,N,(1)在Rt△BOM中,OB=√5,tan∠DOB=1 2.∵BM=1,OM=2,∴点B(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2,∴反比例函数的关系式为y=2 x;(2)∵S△ACO=12S△OCD,∴OD=2AN,又∵△ANC∽△DOC,∴ACDO =NCOC=CACD=12,设AN=a,CN=b,则OD=2a,OC=2b,∵S△OAN=12|k|=1=12ON•AN=12×3b×a,∴ab=23,①,由△BMD∽△CAN得,∴MD AN =BM CN ,即2−2a a =1b,也就是a =2b 2b+1②, 由①②可求得b =1,b =−13(舍去),∴OC =2b =2,∴点C (0,2).24.(11分)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量y (kg )与销售单价x (元/kg )满足关系式:y =﹣100x +5000.经销售发现,销售单价不低于成本价且不高于30元/kg .当每日销售量不低于4000kg 时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w (元).(1)请求出日获利w 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w ≥40000元时,网络平台将向板栗公司收取a 元/kg (a <4)的相关费用,若此时日获利的最大值为42100元,求a 的值.【解答】解:(1)当y ≥4000,即﹣100x +5000≥4000,∴x ≤10,∴当6≤x ≤10时,w =(x ﹣6+1)(﹣100x +5000)﹣2000=﹣100x 2+5500x ﹣27000, 当10<x ≤30时,w =(x ﹣6)(﹣100x +5000)﹣2000=﹣100x 2+5600x ﹣32000, 综上所述:w ={−100x2+5500x −27000(6≤x ≤10)−100x 2+5600x −32000(10<x ≤30); (2)当6≤x ≤10时,w =﹣100x 2+5500x ﹣27000=﹣100(x −552)2+48625,∵a =﹣100<0,对称轴为x =552,∴当6≤x ≤10时,y 随x 的增大而增大,即当x =10时,w 最大值=18000元,当10<x ≤30时,w =﹣100x 2+5600x ﹣32000=﹣100(x ﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=5600+100a2×(−100)=28+12a,∵a<4,∴28+12a<30,∴当x=28+12a时,日获利的最大值为42100元∴(28+12a﹣6﹣a)[﹣100×(28+12a)+500]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.25.(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H (0,458),G (2,0),在抛物线对称轴上找一点F ,使HF +AF 的值最小.此时,在抛物线上是否存在一点K ,使KF +KG 的值最小?若存在,求出点K 的坐标;若不存在,请说明理由.【解答】解:(1)因为抛物线经过A (﹣1,0),B (3,0),∴可以假设抛物线的解析式为y =a (x +1)(x ﹣3),把C (0,3)代入,可得a =﹣1,∴抛物线的解析式为y =﹣(x +1)(x ﹣3)=﹣x 2+2x +3.(2)如图1中,连接AC ,BC .∵S △ACE :S △CEB =3:5,∴AE :EB =3:5,∵AB =4,∴AE =4×38=32,∴OE =0.5,设直线CE 的解析式为y =kx +b ,则有{b =3,解得{k =−6b =3,∴直线EC 的解析式为y =﹣6x +3.(3)由题意C (0,3),D (1,4).当四边形P 1Q 1CD ,四边形P 2Q 2CD 是平行四边形时,点P 的纵坐标为1, 当y =1时,﹣x 2+2x +3=1,解得x =1±√3,∴P 1(1+√3,1),P 2(1−√3,1),当四边形P 3Q 3DC ,四边形P 4Q 4DC 是平行四边形时,点P 的纵坐标为﹣1, 当y =1时,﹣x 2+2x +3=﹣1,解得x =1±√5,∴P 1(1+√5,﹣1),P 2(1−√5,﹣1),综上所述,满足条件的点P 的坐标为(1+√3,1)或(1−√3,1)或(1−√5,﹣1)或(1+√5,﹣1).(4)如图3中,连接BH 交对称轴于F ,连接AF ,此时AF +FH 的值最小.∵H (0,458),B (3,0),∴直线BH 的解析式为y =−158x +458, ∵x =1时,y =154,∴F (1,154),设K (x ,y ),作直线y =174,过点K 作KM ⊥直线y =174于M .∵KF =√(x −1)2+(y −154)2,y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴(x ﹣1)2=4﹣y ,∴KF =√4−y +(y −154)2=√y 2−172y +(174)2=|y −174), ∵KM =|y −174|,∴KF =KM ,∴KG +KF =KG +KM ,根据垂线段最短可知,当G ,K ,M 共线,且垂直直线y =174时,GK +KM 的值最小,最小值为174,此时K (2,3).。
2020年湖北省黄冈市中考数学试卷-含详细解析

2020年湖北省黄冈市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.16的相反数是()A. 16B. −6 C. 6 D. −162.下列运算正确的是()A. m+2m=3m2B. 2m3⋅3m2=6m6C. (2m)3=8m3D. m6÷m2=m33.若一个正多边形的一个外角是36°,则这个正多边形的边数是()A. 7B. 8C. 9D. 104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,()甲乙丙丁平均分85909085方差50425042甲乙丙 D. 丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A. B. C. D.6.在平面直角坐标系中,若点A(a,−b)在第三象限,则点B(−ab,b)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A. 4:1B. 5:1C. 6:1D. 7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)9.计算√−83=______.10.已知x1,x2是一元二次方程x2−2x−1=0的两根,则1x1x2=______.11.若|x−2|+√x+y=0,则−12xy=______.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=______度.13.计算:yx2−y2÷(1−xx+y)的结果是______.14.已知:如图,AB//EF,∠ABC=75°,∠CDF=135°,则∠BCD=______度.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是______尺.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上,在没有滑动的情况下,将扇形AOB沿射线OM翻滚至OB再次回到OM上时,则半径OA的中点P运动的路线长为______cm.(计算结果不取近似值)三、解答题(本大题共9小题,共72.0分)17.解不等式23x+12≥12x,并在数轴上表示其解集.18.已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.19.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了______人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是AE⏜上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF⋅DB.22.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处于遗爱亭P2处之间的距离.(计算结果保留根号)23.已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴.交于点C,与x轴负半轴交于点D,OB=√5,tan∠DOB=12(1)求反比例函数的解析式;S△OCD时,求点C的坐标.(2)当S△ACO=1224.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=−100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg 时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.25.已知抛物线y=ax2+bx+c与x轴交于点A(−1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此(4)已知点H(0,458时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:16的相反数是−16,故选:D .只有符号不同的两个数是互为相反数,在数轴上表示,分别位于原点的两侧,且到原点距离相等的两点所表示的数是互为相反数.本题考查相反数的意义和求法,理解相反数的意义是正确解答的前提. 2.【答案】C【解析】解:m +2m =3m ,因此选项A 不符合题意; 2m 3⋅3m 2=6m 5,因此选项B 不符合题意; (2m)3=23⋅m 3=8m 3,因此选项C 符合题意; m 6÷m 2=m6−2=m 4,因此选项D 不符合题意; 故选:C .利用合并同类项、同底数幂的乘除法以及幂的乘方、积的乘方进行计算即可.本题考查合并同类项负法则、同底数幂的乘除法以及幂的乘方、积的乘方的计算方法,掌握计算法则是得出正确答案的前提. 3.【答案】D【解析】解:360°÷36°=10,所以这个正多边形是正十边形. 故选D .利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案. 本题主要考查了多边形的外角和定理.是需要识记的内容. 4.【答案】B【解析】解:∵x 乙−=x 丙−>x 甲−=x 丁−, ∴四位同学中乙、丙的平均成绩较好,又S 乙2<S 丙2,∴乙的成绩比丙的成绩更加稳定, 综上,乙的成绩好且稳定, 故选:B .先找到四人中平均数大的,即成绩好的;再从平均成绩好的人中选择方差小,即成绩稳定的,从而得出答案.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 5.【答案】A【解析】解:A.主视图、左视图、俯视图均为底层是两个小正方形,上层的左边是一个小正方形,故本选项符合题意;B 主视图与左视图均为底层是两个小正方形,上层的左边是一个小正方形;而俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;C .主视图与俯视图均为一行三个小正方形,而左视图是一列两个小正方形,故本选项不合题意.D.主视图为底层两个小正方形,上层的右边是一个小正方形;左视图为底层是两个小正方形,上层的左边是一个小正方形;俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;故选:A.根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.本题考查了简单组合体的三视图,利用三视图的意义是解题关键.6.【答案】A【解析】解:∵点A(a,−b)在第三象限,∴a<0,−b<0,∴b>0,∴−ab>0,∴点B(−ab,b)所在的象限是第一象限.故选:A.根据点A(a,−b)在第三象限,可得a<0,−b<0,得b>0,−ab>0,进而可以判断点B(−ab,b)所在的象限.本题考查了点的坐标,解决本题的关键是掌握点的坐标特征.7.【答案】B【解析】解:如图,AH为菱形ABCD的高,AH=2,∵菱形的周长为16,∴AB=4,在Rt△ABH中,sinB=AHAB =24=12,∴∠B=30°,∵AB//CD,∴∠C=150°,∴∠C:∠B=5:1.故选:B.如图,AH为菱形ABCD的高,AH=2,利用菱形的性质得到AB=4,利用正弦的定义得到∠B=30°,则∠C=150°,从而得到∠C:∠B的比值.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了直角三角形斜边上的中线性质.8.【答案】D【解析】解:根据题意:时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D.根据开始产量与销量持平,后来脱销即可确定存量y(吨)与时间t(天)之间函数关系.本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.9.【答案】−2【解析】解:√−83=−2.故答案为:−2.依据立方根的定义求解即可.本题主要考查的是立方根的性质,熟练掌握立方根的性质是解题的关键.10.【答案】−1【解析】解:∵x1,x2是一元二次方程x2−2x−1=0的两根,∴x1x2=−1,则1x1x2=−1,故答案为:−1.根据x1,x2是方程x2+px+q=0的两根时x1x2=q,得出x1x2=−1,代入计算可得.本题主要考查根与系数的关系,解题的关键是掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=−p,x1x2=q.11.【答案】2【解析】解:∵|x−2|+√x+y=0,∴x−2=0,x+y=0,∴x=2,y=−2,∴−12xy=−12×2×(−2)=2,故答案为2.根据非负数的性质进行解答即可.本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.12.【答案】40【解析】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°−∠B−∠ADB=180°−70°−70°=40°.故答案为:40..根据等腰三角形的性质和三角形的内角和定理即可得到结论.本题考查了等腰三角形的性质及三角形内角和为180°等知识.此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.13.【答案】1x−y【解析】解:原式=y(x+y)(x−y)÷(x+yx+y−xx+y)=y(x+y)(x−y)÷yx+y =y(x+y)(x−y)⋅x+yy=1x−y,故答案为:1x−y.先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.14.【答案】30【解析】解:∵∠CDF=135°,∴∠EDC=180°−135°=45°,∵AB//EF,∠ABC=75°,∴∠1=∠ABC=75°,∴∠BCD=∠1−∠EDC=75°−45°=30°,故答案为:30.根据邻补角的定义得到∠EDC=180°−135°=45°,根据平行线的性质得到∠1=∠ABC=75°,根据三角形外角的性质即可得到结论.本题考查了平行线的性质,三角形外角的性质,邻补角的定义,熟练掌握平行线的性质是解题的关键.15.【答案】12【解析】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,答:水池里水的深度是12尺.故答案为:12.根据勾股定理列出方程,解方程即可.本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.16.【答案】(5√52π+5π+5√π2−2π+2)【解析】解:如图,点P的运动轨迹是PE⏜→线段EF→FG⏜→GK⏜.∴点P的运动路径的长=90⋅π⋅5√5180+√(5π−5)2+52+12⋅2π⋅5=(5√52π+5π+√25π2−50π+50)=(5√52π+5π+5√π2−2π+2)cm.故答案为(5√52π+5π+5√π2−2π+2).如图,点P的运动轨迹是PE⏜→线段EF→FG⏜→GK⏜.分别利用弧长公式,勾股定理计算即可.本题考查轨迹,弧长公式,勾股定理等知识,解题的关键是正确寻找点P的运动轨迹.17.【答案】解:去分母得8x+6≥6x,移项、合并得2x≥−6,系数化为1得x≥−3,所以不等式的解集为x≥−3,在数轴上表示为:【解析】去分母、移项、合并、系数化为1即可得到不等式的解集为x ≥−3,然后在数轴上表示解集即可.本题考查了解一元一次不等式,掌握解法的基本步骤:去分母,去括号,移项,合并同类项,系数化为1是解题的关键. 18.【答案】证明:∵O 是CD 的中点, ∴OD =CO ,∵四边形ABCD 是平行四边形, ∴AD//BC , ∴∠D =∠OCE ,在△ADO 和△ECO 中, {∠D =∠OCE OD =OC ∠AOD =∠EOC, ∴△AOD≌△EOC(ASA), ∴AD =CE .【解析】只要证明△AOD≌△EOC(ASA)即可解决问题;此题主要考查了全等三角形的判定与性质,平行四边形的性质等知识,解题的关键是正确寻找全等三角形解决问题.19.【答案】解:设每盒羊角春牌绿茶需要x 元,每盒九孔牌藕粉需要y 元, 依题意,得:{6x +4y =960x +3y =300,解得:{x =120y =60.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.【解析】设每盒羊角春牌绿茶需要x 元,每盒九孔牌藕粉需要y 元,根据“如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【答案】200【解析】解:(1)这次活动共抽查的学生人数为80÷40%=200(人); 故答案为:200;(2)“不合格”的学生人数为200−40−80−60=20(人), 将条形统计图补充完整如图:学习效果“一般”的学生人数所在扇形的圆心角度数为360°×60200=108°;(3)把学习效果“优秀”的记为A,“良好”记为B,“一般”的记为C,画树状图如图:共有12个等可能的结果,抽取的2人学习效果全是“良好”的结果有2个,∴抽取的2人学习效果全是“良好”的概率=212=16.(1)由“良好”的人数及其所占百分比可得总人数;(2)求出“不合格”的学生人数为20人,从而补全条形统计图;由360°乘以学习效果“一般”的学生人数所占的百分比即可;(3)画出树状图,利用概率公式求解即可.本题考查了列表法或画树状图法、概率公式以及条形统计图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【答案】证明:(1)∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=90°,即∠ABC=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,∵∠DAF=∠DBE,∴∠DAF=∠ABD,∵∠ADB=∠ADF,∴△ADF∽△BDA,∴ADBD =DFAD,∴AD2=DF⋅DB.【解析】(1)根据圆周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,则CB⊥AB,从而证得BC是⊙O的切线;(2)通过证得△ADF∽△BDA,得出相似三角形的对应边成比例即可证得结论.本题考查了切线的判定,三角形相似的判定和性质;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.【答案】解:(1)作P1M⊥AC于M,设P1M=x,在Rt△P1AM中,∵∠P1AB=45°,∴AM=P1M=x,在Rt△P1CM中,∵∠P1CA=30°,∴MC=√3P1M=√3x,∵AC=1000,∴x+√3x=100,解得x=500(√3−1),∴P1M=500(√3−1)m ∴P1A=P1M√22=500(√6−√2)m,故A处到临摹亭P1处的距离为500(√6−√2)m;(2)作BN⊥AP2于N,∵∠P2AB=45°,∠P2BA=75°,∴∠P2=60°,在Rt△ABN中,∵∠P1AB=45°,AB=600m∴BN=AN=√22AB=300√2,∴PN=500(√6−√2)−300√2=500√6−800√2,在Rt△P2BN中,∵∠P2=60°,∴P2N=√33BN=√33×300√2=100√6,∴P1P2=100√6−(500√6−800√2)=800√2−400√6.故临摹亭P1处于遗爱亭P2处之间的距离是(800√2−400√6)m.【解析】(1)如图,作P1M⊥AC于M,设P1M=x,在两个直角三角形中,利用三角函数即可x表示出AM与CM,根据AC=AM+CM即可列方程,从而求得P1M的长,进一步求得AP1的长;(2)作BN⊥AP2于N,在两个直角三角形中,利用三角函数即可求出AN与P2N,根据(1)的结果求得P1N,从而求得P1P2.本题主要考查了直角三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.23.【答案】解:过点B、A作BM⊥x轴,AN⊥x轴,垂足为点M,N,(1)在Rt△BOM中,OB=√5,tan∠DOB=12.∵BM=1,OM=2,∴点B(−2,−1),∴k=(−2)×(−1)=2,∴反比例函数的关系式为y=2x;(2)∵S△ACO=12S△OCD,∴OD=2AN,又∵△ANC∽△DOC,∴ACDO =NCOC=CACD=12,设AN=a,CN=b,则OD=2a,OC=2b,∵S△OAN=12|k|=1=12ON⋅AN=12×3b×a,∴ab=23,①,由△BMD∽△CAN 得, ∴MD AN=BMCN,即2−2a a=1b ,也就是a =2b2b+1②, 由①②可求得b =1,b =−13(舍去), ∴OC =2b =2,∴点C(0,2).【解析】(1)根据OB =√5,tan∠DOB =12,可求出点B 的坐标,进而确定反比例函数的关系式;(2)利用S △ACO =12S △OCD ,可得OD =2AN ,再根据相似三角形的性质,设AN =a 、CN =b ,表示出OD 、OC ,最后根据三角形OBM 的面积为12|k|=1,列方程求出b 的值即可. 本题考查反比例函数、一次函数图象上点的坐标特征,理解反比例函数k 的几何意义是列方程的关键.24.【答案】解:(1)当y ≥4000,即−100x +5000≥4000, ∴x ≤10,∴当6≤x ≤10时,w =(x −6+1)(−100x +5000)−2000=−100x 2+5500x −27000,当10<x ≤30时,w =(x −6)(−100x +5000)−2000=−100x 2+5600x −32000, 综上所述:w ={−100x 2+5500x −27000(6≤x ≤10)−100x 2+5600x −32000(10<x ≤30);(2)当6≤x ≤10时,w =−100x 2+5500x −27000=−100(x −552)2+48625,∵a =−100<0,对称轴为x =552,∴当6≤x ≤10时,y 随x 的增大而增大,即当x =10时,w 最大值=18000元, 当10<x ≤30时,w =−100x 2+5600x −32000=−100(x −28)2+46400, ∵a =−100<0,对称轴为x =28, ∴当x =28时,w 有最大值为46400元, ∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元; (3)∵4000>18000, ∴10<x ≤30,∴w =−100x 2+5600x −32000,当w =4000元时,4000=−100x 2+5600x −32000, ∴x 1=20,x 2=36,∴当20≤x ≤36时,w ≥4000, 又∵10<x ≤30, ∴20≤x ≤30, 此时:日获利w 1=(x −6−a)(−100x +5000)−2000=−100x 2+(5600+100a)x −32000−5000a , ∴对称轴为直线x =5600+100a 2×(−100)=28+12a ,∵a <4,∴28+12a <30,∴当x =28+12a 时,日获利的最大值为42100元∴(28+12a −6−a)[−100×(28+12a)+500]−2000=42100,∴a 1=2,a 2=86, ∵a <4, ∴a =2.【解析】(1)分两种情况讨论,由日获利=销售单价×数量,可求解;(2)分两种情况讨论,由二次函数的性质,分别求出6≤x ≤10和10<x ≤30时的最大利润,即可求解; (3)由w ≥40000元,可得w 与x 的关系式为w =−100x 2+5600x −32000,可求当20≤x ≤36时,w ≥4000,可得日获利w 1=(x −6−a)(−100x +5000)−2000=−100x 2+(5600+100a)x −32000−5000a ,由二次函数的性质可求解.本题考查了二次函数的应用,二次函数的性质,利用分类讨论思想解决问题是本题的关键.25.【答案】解:(1)因为抛物线经过A(−1,0),B(3,0), ∴可以假设抛物线的解析式为y =a(x +1)(x −3), 把C(0,3)代入,可得a =−1,∴抛物线的解析式为y =−(x +1)(x −3)=−x 2+2x +3.(2)如图1中,连接AC ,BC .∵S △ACE :S △CEB =3:5, ∴AE :EB =3:5, ∵AB =4, ∴AE =4×38=32, ∴OE =0.5,设直线CE 的解析式为y =kx +b ,则有{b =30.5k +b =0,解得{k =−6b =3,∴直线EC 的解析式为y =−6x +3.(3)由题意C(0,3),D(1,4).当四边形P 1Q 1CD ,四边形P 2Q 2CD 是平行四边形时,点P 的纵坐标为1, 当y =1时,−x 2+2x +3=1, 解得x =1±√3,∴P 1(1+√3,1),P 2(1−√3,1),当四边形P 3Q 3DC ,四边形P 4Q 4DC 是平行四边形时,点P 的纵坐标为−1, 当y =1时,−x 2+2x +3=−1, 解得x =1±√5,∴P 1(1+√5,−1),P 2(1−√5,−1),综上所述,满足条件的点P 的坐标为(1+√3,1)或(1−√3,1)或(1−√5,−1)或(1+√5,−1).(4)如图3中,连接BH 交对称轴于F ,连接AF ,此时AF +FH 的值最小.∵H(0,458),B(3,0),∴直线BH 的解析式为y =−158x +458,∵x =1时,y =154,∴F(1,154),设K(x,y),作直线y =174,过点K 作KM ⊥直线y =174于M .∵KF =√(x −1)2+(y −154)2,y =−x 2+2x +3=−(x −1)2+4,∴(x −1)2=4−y , ∴KF =√4−y +(y −154)2=√y 2−172y +(174)2=|y −174),∵KM =|y −174|,∴KF =KM ,∴KG +KF =KG +KM ,根据垂线段最短可知,当G ,K ,M 共线,且垂直直线y =174时,GK +KM 的值最小,最小值为174,此时K(2,3).【解析】(1)因为抛物线经过A(−1,0),B(3,0),可以假设抛物线的解析式为y =a(x +1)(x −3),利用待定系数法解决问题即可. (2)求出点E 的坐标即可解决问题.(3)分点P 在x 轴的上方或下方,点P 的纵坐标为1或−1,利用待定系数法求解即可. (4)如图3中,连接BH 交对称轴于F ,连接AF ,此时AF +FH 的值最小.求出直线HB 的解析式,可得点F 的坐标,设K(x,y),作直线y =174,过点K 作KM ⊥直线y =174于M.证明KF =KM ,利用垂线段最短解决问题即可.本题属于二次函数综合题,考查了待定系数法,一次函数的性质,平行四边形的判定和性质,垂线段最短等知识,解题的关键是学会用分类讨论的思想思考问题,第四个问题的关键是学会用转化的思想思考问题,把最短问题转化为垂线段最短,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈市中考数学试卷
( 总分:120 时间:120分钟 )
一、选择题(每小题3分,共21分)
1.下列各数中,最小的数是 ( ) (A). 0 (B).
13 (C).-1
3
(D).-3 2.下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )
3. 据统计,省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×
10n ,则n 等于 ( ) (A) 10 (B) 11 (C).12 (D).13 4.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )
A .
101 B. 91 C. 61 D. 5
1 5.下列图形中,不是中心对称图形的是( ).
6.将抛物线y=-2x 2+1向右平移l 个单位,再向上平移2个单位 后所得到的抛物线为( ).
(A)y=-2(x+1)2-1 (B)y=-2(x+1)2+3 (C)y=-2(x-1)2-1 (D)y=-2(x-1)2+3
7.如图,AB 是⊙0的直径,AC 是⊙0的切线,连接0C 交⊙0于 点D ,连接BD ,∠C=400,则∠ABD 的度数是( ). (A)30° (B)25° (C)20° (D)15°
二、填空题(共21分)
8.函数2
1y x x
=+中,自变量x 的取值范围是 。
9.因式分解:x 2
y -y= .
10.不等式组⎩
⎨⎧-≥+01x 0
3x 2->的解集是 .
11、《庄子。
天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图所示。
12
3
12
2
12
1
由图易得:
231111
(2222)
n ++++= 12.(2014年山东烟台)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则阴影
部分的面积等于 .
13.已知一次函数y ax b =+与反比例函数 k
y x
=
的图象相较于A (4,2)、B(-2,m)两点,则一次函数的表达式为 。
14.如图在坐标系中放置一菱形OABC ,已知∠ABC=60,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每(第14题图)次翻转60°,连续翻转2014次,点B 的落点一次为B 1,B 2,B 3,……,则B 2014的坐标为 。
三、解答题
15. (本题满分5分) 先化简,再求值:2
4512111a a a a a a -⎛
⎫⎛⎫
+-
÷- ⎪ ⎪---⎝⎭⎝⎭
,其中a=-1.
(第14题图)
16.(6分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元。
商家销售这种衬衫时每件定价都是100元,最后剩下10件按八折销售,很快售完。
在这两笔生意中,商家共盈利多少元?
17.(本题满分6分)
如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E、CB的延长线于点F.
求证:AB=BF.
18、(7分)如图,直线L:y=-x+3与两坐标轴分别相交于点A、B。
(1)当反比例函数
m
y
x
=(m>0,x>0)的图象在第一象限内与
直线L至少有一个交点时,求m的取值范围。
(2若反比例函数
m
y
x
=(m>0,x>0)在第一象限内与直线L相
交于点C、D,当CD=22m的值。
(3)在(2)的条件下,请你直接写出关于x的不等式-x+3<m
x
的解集。
第17题图
A
19、(7分)四张背面完全相同的纸牌(如图,用①、②、③、④表示)。
正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张。
D
C
B
A
4
3
2
1
AD=BC
AB DC ∠A=∠C
AB=DC
(1)、写出两次摸牌出现的所有可能的结果(用①、②、③、④表示);
(2)、以两次摸出的牌面上的结果为条件,求能判断四边形ABCD 为平行四边形的概率。
20.(本小题满分7分)
如图,已知等腰三角形ABC 的底角为30°, 以BC 为直径的⊙O 与底边AB 交于点D ,过D 作
DE AC ⊥,垂足为E .
(1)证明:DE 为⊙O 的切线;
(2)连接OE ,若BC =4,求△OEC 的面积.
B
C
O
D
E
(第20题图)
21.(9分).教育局为了解八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)。
请根据图中提供的信息,回答下列问题:
(1)a = %,并写出该扇形所对圆心角的度数为 ,请补全条形图。
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
22、(7分)凤凰小学位于北纬21°,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为35.5°;夏至日正午时刻,太阳光的夹角最大,约为82.5°。
己知该校一教学楼窗户朝南,窗高207cm ,如图(1)请你为该窗户设计一个直角形遮阳棚BCD ,如图(2)所示,要求最大限度地节省材料,夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡。
(1)在图(3)中画出设计草图; (2)求BC 、CD 的长度(结果精确到个位)
(参考数据: sin35.5°≈0.58, cos35.5°≈0.81, tan35.5°≈0.71, sin82.5°≈0.99,cos82.5°≈0.13,tan82.5°≈7.60)
35.5︒
207cm
82.5︒
207cm
D
C B
A
B
A
(1) (2) (3)
725
20
6540
8a
9天及9天5
30
60 90 120
150
180 210 5天
6天
7天
8天 9天
及9天以上 时间
人数
23.(本题满分10分)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A 、B 两种型号的沼气池共24个。
政府出资36万元,其余资金从各户筹集。
两种沼气池的型号、修建费用、可供使用户数、占地面积如下表: 沼气池 修建费用(万元/个) 可供使用户数(户/个) 占地面积(平方米/个)
A 型 3 20 10
B 型
2
15
8
政府土地部门只批给该村沼气池用地212平方米,设修建A 型沼气池x 个,修建两种沼气
池共需费用y 万元。
(1)求y 与x 之间函数关系式。
(2)试问有哪几种满足上述要求的修建方案。
(3)要想完成这项工程,每户居民平均至少应筹集多少钱?
24.(本小题满分14分)
如图,在平面直角坐标系中,抛物线与x 轴 交于点A (-1,0)和点B (1,0),直线21y x =- 与y 轴交于点C ,与抛物线交于点C ,D .
(1)求抛物线的解析式; (2)求点A 到直线CD 的距离;
(3)平移抛物线,使抛物线的顶点P 在直线 CD 上,抛物线与直线CD 的另一个交点为Q ,点 G 在y 轴正半轴上,当以G ,P ,Q 三点为顶点的 三角形为等腰直角三角形时,求出所有符合条件的 G 点的坐标.
x
y
A
B
C
D
O。