2020-2021北京市八年级数学上期中一模试卷(含答案)

合集下载

北京市第八十中学2020-2021学年八年级上学期期中考试数学试卷带讲解

北京市第八十中学2020-2021学年八年级上学期期中考试数学试卷带讲解
11.如图,∠AOB=50°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=________°.
【答案】25
【分析】根据角平分线的判定计算即可;
【详解】∵QC⊥OA,QD⊥OB,QC=QD,
∴ 平分 ,
又∵∠AOB=50°,
∴ ;
故答案是:25.
【点睛】本题主要考查了角平分线的判定,准确计算是解题的关键.
A.50B.62C.65D.68
【答案】A
【分析】由全等三角形的判定定理可得出△EFA≌△AGB,同理可证△BGC≌△CHD,从而得出FA、AG、GC、CH的长度,用割补法求出实线所围成的图像面积.
【详解】解:如图,
∵EA⊥AB,
∴∠EAF+∠BAG=90°,
∵EF⊥AF,BG⊥AG,
∴∠FEA+∠EAF=90°,∠EFA=∠BGA=90°,
推理出结论所用到的理论依据是:角平分线上的点到角两边的距离相等;等量代换
故答案为:4,角平分线上的点到角两边的距离相等;等量代换
【点睛】本题考查的是角平分线的性质,掌握“角平分线上的点到角两边的距离相等”是解题的关键.
三、解答题(本题共52分,17-20每题3分,21-24每题4分,25-26每题5分,27题6分,28题8分)
12.因式分解: _______________________.
【答案】
【分析】根据提取公因式和平方差公式进行分解即可;
【详解】原式 ;
故答案是: .
【点睛】本题主要考查了利用提取公因式和平方差公式因式分解,准确求解是解题的关键.
13.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.
【详解】解:当腰为 时,底边长 , + <20,不能构成三角形;

2020-2021北京市初二数学上期中试题含答案

2020-2021北京市初二数学上期中试题含答案

2020-2021北京市初二数学上期中试题含答案一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.如图,在Rt△ABC中,∠ACB=90º,∠A=60º,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm3.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.20201010x x-=+B.20201010x x-=+C.20201106x x-=+D.20201106x x-=+4.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°5.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点6.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠7.计算()2x yxy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy -8.如图,ABC 是等腰直角三角形,BC 是斜边,将ABP 绕点A 逆时针旋转后,能与ACP '重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .339.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A 29B 34C .2D 4110.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20°11.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .712.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1 C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上二、填空题13.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 14.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是_________. 15.已知x 2+mx-6=(x-3)(x+n),则m n =______.16.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 17.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.因式分解:2()4()a a b a b ---=___.20.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC=______.三、解答题21.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.22.(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于时,线段AC的长取到最大值,则最大值为;(用含a、b的式子表示).(2)如图2,若点A为线段BC外一动点,且BC=4,AB=2,分别以AB,AC为边,作等边ABD△和等边ACE△,连接CD,BE.①图中与线段BE相等的线段是线段,并说明理由;②直接写出线段BE长的最大值为.(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值为,及此时点P的坐标为.(提示:等腰直角三角形的三边长a、b、c满足a:b:c=1:1223.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元? 24.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.25.如图,在四边形ABCD 中,AB=BC ,BF 平分∠ABC ,AF ∥DC ,连接AC ,CF. 求证:(1)AF=CF ; (2)CA 平分∠DCF.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再求出AB即可.【详解】解:∵在Rt△ABC中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB(直角三角形30°所对的直角边等于斜边的一半),又∵CD是斜边AB上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC(直角三角形30°所对的直角边等于斜边的一半),∴AC=6,又∴AC=12 AB,∴12AB=.故选D.【点睛】本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.3.C解析:C 【解析】设原来的行驶速度为xkm/h ,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x -=+,故选C. 点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.4.D解析:D 【解析】 【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用△ABC 各内角的度数表示出∠1,∠2,∠3,再根据三角形内角和定理,即可得出结论. 【详解】∵图中是三个等边三角形,∴∠1=180°−60°−∠ABC=120°−∠ABC ,∠2=180°−60°−∠ACB=120°−∠ACB ,∠3=180°−60°−∠BAC=120°−∠BAC , ∵∠ABC+∠ACB+∠BAC=180°, ∴∠1+∠2+∠3=360°−180°=180°, 故选D .【点睛】本题主要考查等边三角形的性质定理,三角形内角和定理,熟练掌握上述定理,是解题的关键.5.D解析:D 【解析】 【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断. 【详解】在Rt △ABC 和Rt △CDE 中,AB CDBC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=, 90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明 故A 、B 、C.正确, 故选. D 【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B 【解析】 【分析】直接利用分式有意义,则分母不为零,进而得出答案. 【详解】 解:要使分式13a +有意义, 则a +3≠0, 解得:a ≠-3. 故选:B . 【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键.7.C解析:C 【解析】 【分析】根据分式的减法和除法可以解答本题 【详解】()()()22===x yxy x xyxy x y x x y xyx x y x y x y--÷-⋅--⋅--- 故答案为C 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.A解析:A 【解析】 【分析】 【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3, 根据勾股定理得:223332'=+=PP ,故选A .9.D解析:D 【解析】解:设△ABP 中AB 边上的高是h .∵S △P AB =13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离. 在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE =22AB AE + =2254+=41,即P A +PB的最小值为41.故选D .10.D解析:D 【解析】 【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答. 【详解】∵等腰三角形的一个外角是100°, ∴与这个外角相邻的内角为180°−100°=80°, 当80°为底角时,顶角为180°-160°=20°, ∴该等腰三角形的顶角是80°或20°. 故答案选:D. 【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.11.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.12.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任意一点,∴△A A 1P 是等腰三角形,MN 垂直平分AA 1、CC 1,△ABC 与△A 1B 1C 1面积相等, ∴选项A 、B 、C 选项正确;∵直线AB ,A 1B 1关于直线MN 对称,因此交点一定在MN 上.∴选项D 错误.故选D .【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.0【解析】【分析】根据题意先解出方程的根为x=4-2m 由题意可知x=2即可得4-2m=2解出m 即可【详解】解:方程两边同时乘以x-2得解得:∵分式方程有增根∴x=2∴∴故答案为:0【点睛】本题考查分解析:0【解析】【分析】根据题意先解出方程的根为x=4-2m ,由题意可知x=2,即可得4-2m=2,解出m 即可.【详解】解:方程两边同时乘以x-2,得22(2)x m x -++=-,解得:2x m =+,∵分式方程有增根,∴x=2,∴22m +=,∴0m =.故答案为:0.【点睛】本题考查分式方程的解法,熟练掌握分式方程的解法,理解增根的意义是解题的关键.14.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x 的方程=1的解是正数则x >0并且x-1≠0即-a-1>0且-a-1≠1解得a <-1且a≠-2详解:去分母得2x+a=x-1【解析】分析:先去分母得2x+a=x-1,可解得x=-a-1,由于关于x 的方程21x a x +-=1的解是正数,则x >0并且x-1≠0,即-a-1>0且-a-1≠1,解得a <-1且a≠-2.详解:去分母得2x+a=x-1,解得x=-a-1, ∵关于x 的方程21x a x +-=1的解是正数, ∴x >0且x≠1,∴-a-1>0且-a-1≠1,解得a <-1且a≠-2,∴a 的取值范围是a <-1且a≠-2.故答案为a <-1且a≠-2. 点睛:本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.15.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m 与n 的值即可得出mn 的值【详解】∵x2+mx -6=(x-3)(x+n )=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m 与n 的值,即可得出m n 的值.【详解】∵x 2+mx-6=(x-3)(x+n )=x 2+nx-3x-3n=x 2+(n-3)x-3n ,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n =1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.16.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x −1)得:2−(5-a)解析:5a <且3a ≠【解析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a的式子,解为正数且最简公分母不为零,得到关于a的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a -∵x>0且x−1≠0,∴52510 2aa-⎧>⎪⎪⎨-⎪-≠⎪⎩解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.17.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:9【解析】∵m−n=2,mn=−1,∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9.故答案为9.点睛:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.18.cm【解析】【分析】【详解】∵AD是BC边上的中线∴BD=CD∵△ABC的周长为27cmAC=9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD周长为19cm∴AB解析:cm.【解析】【分析】【详解】∵AD是BC边上的中线,∴BD=CD,∵△ABC的周长为27cm,AC=9cm,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.【解析】分析:先提公因式再利用平方差公式因式分解即可详解:a2(a-b )-4(a-b )=(a-b )(a2-4)=(a-b )(a-2)(a+2)故答案为:(a-b )(a-2)(a+2)点睛:本题考查的解析:()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.20.6cm 【解析】【分析】根据∠C=90°∠A=30°易求∠ABC=60°而BD 是角平分线易得∠ABD=∠DBC=30°根据△BCD 是含有30°角的直角三角形易求BD 然后根据等角对等边可得AD =BD 从而解析:6cm【解析】【分析】根据∠C =90°,∠A =30°,易求∠ABC =60°,而BD 是角平分线,易得∠ABD =∠DBC =30°,根据△BCD 是含有30°角的直角三角形,易求BD ,然后根据等角对等边可得AD =BD ,从而可求AC .【详解】解:∵∠C =90°,∠A =30°,∴∠ABC =60°,又∵BD 平分∠ABC ,∴∠ABD =∠DBC =30°,在Rt △BCD 中,BD =2CD =4cm ,又∵∠A =∠ABD =30°,∴AD =BD =4cm ,∴AC =6cm .故答案为6cm .【点睛】本题考查了角平分线定义、等角对等边、直角三角形30°的角所对的边等于斜边的一半,解题的关键是求出BD,难度适中.三、解答题21.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.22.(1)CB延长线上;a+b(2)①DC②6;(3))或(2-,).【解析】【分析】1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD ≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论.【详解】(1)CB延长线上;a+b;(2)①DC,理由如下:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD 与△EAB 中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△EAB ,∴CD=BE.②6(3)()【点睛】本题考查的知识点是等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质. 23.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元. 由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元) 由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯ 解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.24.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据BF 平分∠ABC ⇒∠ABF=∠CBF ,再加上AB=BC ,BF=BF 就可以推出△ABF ≌△CBF ,依据全等三角形对应边相等的性质可以推出AF=CF ;(2)根据(1)中所得出的结论可以推出∠FCA=∠FAC ;依据平行线的性质可以得出内错角∠FAC 、∠DCA 相等,等量代换后,就可推出CA 平分∠DCF .【详解】证明:如图.(1)∵BF 平分ABC ∠,∴ABF CBF ∠=∠.在△ABF 与△CBF 中,,{,,AB CB ABF CBF BF BF =∠=∠=∴ △ABF ≌△CBF .∴AF CF =.(2)∵AF CF =,∴FCA FAC ∠=∠.∵AF ∥DC ,∴FAC DCA ∠=∠.∴FCA DCA ∠=∠,即CA 平分DCF ∠.【点睛】出AF=CF,继而推出∠FCA=∠FAC,结合两直线平行内错角相等的性质,很容易就可以得出(2)中的结论.。

2020-2021学年北京市海淀区北京一零一中学八上期中数学模拟试卷(word版,含答案解析)

2020-2021学年北京市海淀区北京一零一中学八上期中数学模拟试卷(word版,含答案解析)

2020-2021学年北京市海淀区北京一零一中学八上期中数学模拟试卷
一、选择题(共10小题;共40分)
1. 下列平面图形中,不是轴对称图形的是
A. B.
C. D.
2. 下列运算正确的是
A. B. C. D.
3. 如果等腰三角形的一个内角等于,则它的底角是
A. B. C. D. 或
4. 已知:,,则
A. B. C. D.
5. 如图,在中,,,下列结论不一定正确的是
A. B.
C. 平分
D.
6. 如图,,且,则度数为
A. B. C. D.
7. 如图,在的两边上分别取点,使得,将两个全等的直角三
角板的直角顶点分别放在点,处,一条直角边分别落在的两边上,另一条直角边交于点,连接,则判定的依据是
A. B. C. D.
8. 点关于轴的对称点是
A.
9. 如图,为边上一点,,且,,则
等于
A. B. C. D.
10. 如图,等腰中,,于.的平分线分
别交,于点,两点,为的中点,延长交于点,连接.下列结论:
① ;
② ;
③ 是等腰三角形;
④ .
其中正确的结论个数是。

北师大版2020-2021学年度第一学期八年级数学期中模拟测试题1(附答案)

北师大版2020-2021学年度第一学期八年级数学期中模拟测试题1(附答案)
A. B. C. D.
6.函数 中,自变量x的取值范围( )
A.x>﹣4B.x>1C.x≥﹣4D.x≥1
7.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为( )
A.8B.10C.12D.14
8.如图,矩形OABC中,OA、OC分别在平面直角坐标系x轴、y轴的正半轴上,点D在AB上,将△CDB沿着CD翻折,点B恰好落在OA的中点E处,若四边形OCDA的面积为 ,则直线ED的解析式为( )
A. B.30 C. D.30
二、填空题
11.已知点 是直线 上一动点,点 在点 的下方,且 轴, 轴上有一点 ,当 值最小时,点 的坐标为___________.
12.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且 ,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为_
= tanα(2x2−2ax+a2)
∴S阴的值先变小后变大,
故选:B
【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.
6.B
【解析】
根据二次根式有意义的条件和分式有意义的条件,即x+4≥0,x-1>0,即x>1.
故选:B.
7.B
【解析】
当x=9时,原式=2×9-11=7.
小荣同学是这样计算的:
解: =x-1+10-x=9.
聪明的 同学,谁的计算结果是正确的呢?错误的计算错在哪里?
28.如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),

2020—2021年北师大版八年级数学上册期中测试卷及答案【完美版】

2020—2021年北师大版八年级数学上册期中测试卷及答案【完美版】

2020—2021年北师大版八年级数学上册期中测试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a--7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为()A.1 B.1.3 C.1.2 D.1.58.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 3.若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。

2020-2021北京市师大实验八年级数学上期中一模试题(带答案)

2020-2021北京市师大实验八年级数学上期中一模试题(带答案)

2020-2021北京市师大实验八年级数学上期中一模试题(带答案)一、选择题1.如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,CD 是斜边AB 上的高,若AD=3cm ,则斜边AB 的长为( )A .3cmB .6cmC .9cmD .12cm2.下列各式中,分式的个数是( ) 2x ,22a b +,a b π+,1a a +,(1)(2)2x x x -++,b a +. A .2 B .3 C .4 D .53.如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.正确的是( )A .①B .②C .①②D .①②③4.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠ 5.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b) 6.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25277.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°9.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF =∠EAF;④CE∥DFA .1B .2C .3D .410.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .1411.如图,已知在△ABC,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE 12.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .27二、填空题13.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .14.如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.15.已知x 2+mx-6=(x-3)(x+n),则m n =______.16.若关于x 的分式方程1101ax x +-=-的解为正数,则a 的取值范围_______. 17.因式分解:a 3﹣2a 2b+ab 2=_____. 18.若实数,满足,则______. 19.因式分解:m 3n ﹣9mn =______.20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代入求值.22.解分式方程:23211x x x +=+- 23.今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.”(l )第一批车厘子每千克进价多少元?.(2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价325a 元进行促销,结果第二批车厘子的销售利润为1520元,求a 的值。

2020-2021北京市八年级数学上期中第一次模拟试卷(含答案)

2020-2021北京市八年级数学上期中第一次模拟试卷(含答案)

2020-2021北京市八年级数学上期中第一次模拟试卷(含答案)一、选择题1.从甲地到乙地有两条路:一条是全长750km 的普通公路,另一条是全长600km 高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h ,则下列等式正确的是( )A .600x +5=7502xB .600x -5=7502xC .6002x +5=750xD .6002x -5=750x 2.分式可变形为( )A .B .C .D .3.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 4.如图,△ABC 中,∠BAC =60°,∠C =80°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .20°B .30°C .40°D .70°5.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25276.计算b a a b b a +--的结果是 A .a-b B .b-a C .1 D .-17.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.5 8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°9.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .2510.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .1411.已知x m =6,x n =3,则x 2m ―n 的值为( ) A .9 B .34 C .12 D .43 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4 D .以上结果都不对 二、填空题13.从n 边形的一个顶点出发有四条对角线,则这个n 边形的内角和为______度.14.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。

2020-2021北京市八年级数学上期中一模试卷及答案

2020-2021北京市八年级数学上期中一模试卷及答案

2020-2021北京市八年级数学上期中一模试卷及答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.7 2.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=13.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°4.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.146.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7B.8C.6D.57.如图,已知a∥b,∠1=50°,∠3=10°,则∠2等于()A.30°B.40°C.50°D.60°8.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A .115°B .120°C .130°D .140° 9.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7 10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( ) A .3B .1C .0D .﹣3 11.2012201253()(2)135-⨯-=( ) A .1-B .1C .0D .1997 12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.15.已知210x x +-=,则2421x x x ++的值是______. 16.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 17.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .18.如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为_____°.19.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.20.已知3221可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)22.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,求降价后每枝玫瑰的售价是多少元?23.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.24.材料阅读:若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数),所以a2+2ab+2b2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由.25.如图,在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,连接AC,CF. 求证:(1)AF=CF;(2)CA平分∠DCF.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.7.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.10.A解析:A【解析】【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得3﹣m=0,再解得出答案.【详解】解:(x﹣m)(x+3)=x2+3x﹣mx﹣3m=x2+(3﹣m)x﹣3m,∵乘积中不含x的一次项,∴3﹣m=0,解得:m=3,故选:A.【点睛】此题考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.11.B解析:B【解析】【分析】根据积的乘方公式进行简便运算.【详解】解:20122012 532135⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭=20122012513()()135⨯ =2012513()135⨯ =1.故选B【点睛】 此题主要考查了积的乘方,解题时,先对分数变形,然后根据特点,找到规律,再根据积的乘方的逆用,直接计算即可.12.B解析:B【解析】【分析】先证得△ABE ≌△ACD ,可得AE =AD ,∠BAE =∠CAD =60°,即可证明△ADE 是等边三角形.【详解】∵△ABC 为等边三角形,∴AB =AC ,∵∠1=∠2,BE =CD ,∴△ABE ≌△ACD ,∴AE =AD ,∠BAE =∠CAD =60°,∴△ADE 是等边三角形,故选B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.9【解析】∵m −n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m −4mn=1+2(m −n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及 解析:9【解析】∵m −n =2,mn =−1,∴(1+2m )(1−2n )=1−2n +2m −4mn =1+2(m −n )−4mn =1+4+4=9.故答案为9.点睛: 本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.15.【解析】【分析】由可知x≠0根据分式的基本性质可得进而可得根据分式的基本性质可得把代入即可得答案【详解】∵∴x≠0∴两边同时平方得:∴故答案为:【点睛】本题考查分式的基本性质分式的分子分母同时乘以或 解析:12【解析】【分析】由210x x +-=可知x≠0,根据分式的基本性质可得11x x-=-,进而可得2211x x +=,根据分式的基本性质可得242221111x x x x x=++++,把2211x x +=代入即可得答案. 【详解】∵210x x +-=,∴x≠0, ∴11x x-=-, 两边同时平方得:2211x x +=,∴24222111121xx x xx==++++.故答案为:12【点睛】本题考查分式的基本性质,分式的分子、分母同时乘以或除以一个不为0的整式,分式的值不变;灵活运用分式的基本性质把已知和所求分式变形是解题关键.16.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k解得x=6-k≠3解析:k<6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.详解:233x kx x-=--,方程两边都乘以(x-3),得x=2(x-3)+k,解得x=6-k≠3,关于x的方程程233x kx x-=--有一个正数解,∴x=6-k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为k<6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.17.【解析】试题分析:如图连接OA∵OBOC分别平分∠ABC和∠ACB∴点O到ABACBC的距离都相等∵△ABC的周长是20OD⊥BC于D且OD=3∴S△ABC=×20×3=30考点:角平分线的性质解析:【解析】试题分析:如图,连接OA,∵OB、OC分别平分∠ABC和∠ACB,∴点O到AB、AC、BC的距离都相等,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=12×20×3=30.考点:角平分线的性质.18.180°【解析】∵将△ABC三个角分别沿DEHGEF翻折三个顶点均落在点O 处∴∠B=∠HOG∠A=∠DOE∠C=∠EOF∠1+∠2+∠HOG+∠EOF+∠DOE=360°∵∠HO G+∠EOF+∠DO解析:180°【解析】∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°−180°=180,故答案为180.19.85°【解析】【分析】根据三角形内角和得出∠C=60°再利用角平分线得出∠DBC=35°进而利用三角形内角和得出∠BDC的度数【详解】∵在△ABC中∠A=5 0°∠ABC=70°∴∠C=60°∵BD平解析:85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.20.15和17;【解析】【分析】将利用平方差公式分解因式根据可以被10到20之间的某两个整数整除即可得到两因式分别为15和17【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+解析:15和17;【解析】【分析】将3221-可以被10到20之间的某两个整数整除,21-利用平方差公式分解因式,根据32即可得到两因式分别为15和17.【详解】因式分解可得:32-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)21(28+1)(24+1)(24-1),∵24+1=17,24-1=15,∴232-1可以被10和20之间的15,17两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题21.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.22.降价后每枝玫瑰的售价是2元.【解析】分析:设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据题意得:30301.51x x=⨯+,解得:x=2,经检验,x=2是原分式方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.24.(1)25,53是完美数; (2)是,理由见解析.【解析】【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可.【详解】(1)25=4²+3²,∵53=49+4=7²+2²,∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x2y²+364y+4x+9x²y²=13x²y²+364y+4x=(6y²+x²) ²+x²y²,∴(x²+9y²)⋅(4y²+x²)是“完美数”.【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据BF 平分∠ABC ⇒∠ABF=∠CBF ,再加上AB=BC ,BF=BF 就可以推出△ABF ≌△CBF ,依据全等三角形对应边相等的性质可以推出AF=CF ;(2)根据(1)中所得出的结论可以推出∠FCA=∠FAC ;依据平行线的性质可以得出内错角∠FAC 、∠DCA 相等,等量代换后,就可推出CA 平分∠DCF .【详解】证明:如图.(1)∵BF 平分ABC ∠,∴ABF CBF ∠=∠.在△ABF 与△CBF 中,,{,,AB CB ABF CBF BF BF =∠=∠=∴ △ABF ≌△CBF .∴AF CF =.(2)∵AF CF =,∴FCA FAC ∠=∠.∵AF ∥DC ,∴FAC DCA ∠=∠.∴FCA DCA ∠=∠,即CA 平分DCF ∠.【点睛】出AF=CF ,继而推出∠FCA=∠FAC ,结合两直线平行内错角相等的性质,很容易就可以得出(2)中的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021北京市八年级数学上期中一模试卷(含答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.李老师开车去20km 远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km ,则正好到达,如果设原来的行驶速度为xkm/h ,那么可列分式方程为 A .20201010x x -=+ B .20201010x x -=+ C .20201106x x -=+ D .20201106x x -=+ 3.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣344.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ;②∠BCE+∠BCD=180°;③AD=AE=EC ;④BA+BC=2BF ;其中正确的是( )A .①②③B .①③④C .①②④D .①②③④5.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .8 7.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( ) A .7 B .8 C .6 D .5 8.等腰三角形的一个外角是100°,则它的顶角的度数为( ) A .80° B .80°或50°C .20°D .80°或20°9.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b)10.若23m =,25n =,则322m n -等于 ( )A .2725 B .910C .2D .252711.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2 C .8 D .11 12.下列各式中,从左到右的变形是因式分解的是( )A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=-二、填空题13.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 14.已知关于 x 的方程2x mx --= 2的解是非负数,则 m 的取值范围是_________. 15.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 16.如果关于x 的分式方程m 2x1x 22x-=--有增根,那么m 的值为______. 17.已知8a b +=,224a b =,则222a b ab +-=_____________.18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.因式分解:2()4()a a b a b ---=___. 20.因式分解:m 3n ﹣9mn =______.三、解答题21.如图,在等边△ABC 中,点D ,E 分别在边AC ,AB 上,且AD=BE ,BD ,CE 交于点P ,CF ⊥BD ,垂足为点F . (1)求证:BD=CE ; (2)若PF=3,求CP 的长.22.解方程:22111x x x -=--. 23.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用50天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前18天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程. (1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天? 24.已知:线段a ,α∠,求作:ABC △,使AB AC a ==,B α∠=∠.25.因式分解、计算: (1)a 3-4ab 2; (2)2a 3-8a 2+8a . (3)22142a a a --- (4)3155a a a-+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C 【解析】设原来的行驶速度为xkm/h ,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x -=+,故选C. 点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.3.B解析:B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m mx x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32.故答案选B.4.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.5.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.7.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.8.D解析:D【解析】 【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答. 【详解】∵等腰三角形的一个外角是100°, ∴与这个外角相邻的内角为180°−100°=80°, 当80°为底角时,顶角为180°-160°=20°, ∴该等腰三角形的顶角是80°或20°. 故答案选:D. 【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.9.C解析:C 【解析】 【分析】利用平方差公式的逆运算判断即可. 【详解】解:平方差公式逆运算为:()()22a b a b a b +-=-观察四个选项中,只有C 选项符合条件. 故选C. 【点睛】此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键.10.A解析:A 【解析】分析:先把23m ﹣2n 化为(2m )3÷(2n )2,再求解. 详解:∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m )3÷(2n )2.11.C解析:C 【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断. 【详解】设第三边长为x ,则有7-3<x<7+3, 即4<x<10,观察只有C 选项符合, 故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.12.D解析:D 【解析】 【分析】根据因式分解的意义对四个选项进行逐一分析即可. 【详解】解:A 、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误; B 、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误; C 、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误. D 、等式右边是几个因式积的形式,故是分解因式,故本选项正确; 故选D. 【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.二、填空题13.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x−1)得:2−(5-a)解析:5a <且3a ≠ 【解析】 【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可. 【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1) 解得:x=52a- ∵x>0且x−1≠0,∴5025102aa -⎧>⎪⎪⎨-⎪-≠⎪⎩解得:a<5且a≠3故答案为:a<5且a≠3 【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.14.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4-解析:4m ≤且2m ≠【解析】 【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解. 【详解】∵2x mx --= 2, ∴x=4-m ,∵关于 x 的方程2x mx --= 2的解是非负数, ∴4-m ≥0,即:4m ≤, 又∵x ≠2,∴4-m ≠2,即:2m ≠, 综上所述:4m ≤且2m ≠. 故答案是:4m ≤且2m ≠. 【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.15.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k 解得x=6-k≠3解析:k <6且k≠3 【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得 x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键. 16.-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值让最简公分母确定可能的增根;然后代入化为整式方程的方程求解即可得到正确的答案【详解】解:去分母方程两边同时乘以 解析:-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x 20-=,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】 解:m 2x 1x 22x-=--, 去分母,方程两边同时乘以x 2-,得:m 2x x 2+=-,由分母可知,分式方程的增根可能是2,当x 2=时,m 422+=-,m 4=-.故答案为4-.【点睛】考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.18.cm 【解析】【分析】【详解】∵AD 是BC 边上的中线∴BD=CD∵△ABC 的周长为27cmAC =9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD 周长为19cm∴AB解析:cm .【解析】【分析】【详解】∵AD 是BC 边上的中线,∴BD=CD ,∵△ABC 的周长为27cm ,AC =9cm ,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.【解析】分析:先提公因式再利用平方差公式因式分解即可详解:a2(a-b )-4(a-b )=(a-b )(a2-4)=(a-b )(a-2)(a+2)故答案为:(a-b )(a-2)(a+2)点睛:本题考查的解析:()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.20.mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后利用平方差公式分解即可详解:原式=mn (m2-9)=mn (m+3)(m-3)故答案为mn (m+3)(m-3)点睛:此题考查了提公因式法与公式法的综解析:mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后,利用平方差公式分解即可.详解:原式=mn (m 2-9)=mn (m+3)(m-3).故答案为mn (m+3)(m-3).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)见解析;(2)6【解析】【分析】(1)根据等边三角形的性质得到AB=BC ,∠BAC=∠ABC ,且AD=BE 则可得出△ABD ≌△BCE ,再利用全等三角形的性质即可得到答案;(2)根据(1)可知∠ABC=60º,△ABD ≌△BCE 得到∠FPC 的度数,再根据有一个角是30°的直角三角形的性质即可得到答案;【详解】解:(1)证明:∵△ABC 为等边三角形,∴ AB=BC ,∠BAC=∠ABC=60º,又∵AD=BE ,在△ABD 和△BCE 中,AB BC BAC ABC AD BE =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△BCE (SAS ),∴BD=CE(2)由(1)可知∠ABC=60º,△ABD ≌△BCE ,∴∠ABD=∠BCE ,∴∠ABD+∠CBD =∠ABC=60º,∴∠BCE+∠CBD =60º,∴∠BPC =180º-60º=120º(三角形内角和定理),∴∠FPC =180º-120º=60º,∵CF ⊥BD ,∴△CPF 为直角三角形,∴∠FCP =30º,∴CP=2PF ,∵PF=3,∴CP=6【点睛】本题主要考查了全等三角形的判定和性质、三角形内角和定理、有一个角是30°的直角三角形的性质,熟练掌握各知识点并灵活运用是解题的关键.22.原方程无解.【解析】试题分析:观察可得最简公分母是21x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边都乘以21x -,得:()2121x x x +-=-, 去括号得2221x x x +-=-,移项合并得1x =.检验:当1x =时,210x -=,所以原方程无解.23.(1)75天;(2)30天【解析】【分析】(1)设二号施工队单独施工需要x 天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】解:(1)设二号施工队单独施工需要x 天,根据题意得501850518150x---+= 解得:x =75经检验,x =75是原方程的解答:由二号施工队单独施工,完成整个工期需要75天.(2)设此项工程一号、二号施工队同时进场施工,完成整个工程需要y 天,根据题意得 111+=y 5075⎛⎫÷ ⎪⎝⎭, 解得y=30(天)经检验y=30是原方程的根,∴此项工程一号、二号施工队同时进场施工,完成整个工程需要30天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.24.答案见解析【解析】试题分析:首先作ABC α∠=,进而以B 为圆心a 的长为半径画弧,再以A 为圆心a 为半径画弧即可得出C 的位置.试题解析:如图所示:△ABC 即为所求.25.(1)()()22a a b a b +- (2)()222a a - (3)12a + (4)15【解析】【分析】(1)先提取公因式,再用平方差公式进行因式分解即可. (2)先提取公因式,再用完全平方公式进行因式分解即可. (3)先同分母,再提取公因式即可.(4)先同分母,再提取公因式即可.【详解】(1)a 3-4ab 2()224a a b =-()()22a a b a b =+-.(2)2a 3-8a 2+8a()2244a a a =-+()222a a =-.(3)22142aa a ---2224a a a --=-()()222a a a -=+-12a =+.(4)3155aa a -+15155a a +-=5aa =1.5【点睛】本题考查了因式分解和计算的问题,掌握完全平方公式、平方差公式是解题的关键.。

相关文档
最新文档