北京市北京市东城区2017—2018学年八年级上学期数学期末考试试卷及参考答案

合集下载

2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。

2018年北京市东城区初二(上)期末数学试卷含答案

2018年北京市东城区初二(上)期末数学试卷含答案

2018北京市东城区初二(上)期末数 学2018.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的 1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。

将0.056用科学记数法表示为A. -15.610⨯B. -25.610⨯C. -35.610⨯ D .-10.5610⨯2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,其中基本是轴对称图形的是3.下列式子为最简二次根式的是4.若分式23x x -+的值为0,则x 的值等于 A .0 B .2 C .3 D .-35.下列运算正确的是A. 532b b b ÷=B.527()b b = C. 248b b b = D .2-22aa b a ab =+()6.如图,在△ABC 中,∠B =∠C =60,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为A .2B .4 D .7.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立 A. 2222)(b ab a b a ++=+ B. 2222)(b ab a b a +-=-C. 22))((b a b a b a -=-+ D. 2()a a b a ab +=+9.如图,已知等腰三角形ABC AB AC =,,若以点B 为圆心,BC 长为半径画弧,交腰AC于点E ,则下列结论一定..正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140° B.100° C.50° D. 40°二、填空题:(本题共16分,每小题2分)11x 的取值范围是 .12.在平面直角坐标系xOy 中,点P (2,1)关于y 轴对称的点的坐标是 .13.如图,点B ,F ,C ,E 在一条直线上,已知BF =CE ,AC //DF ,请你添加一个适当的条件使得△ABC ≌△DEF .14.等腰三角形一边等于5,另一边等于8,则其周长是 .15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_______.16.如图,在△ABC 中,∠ACB =90°,AD 平分∠ABC ,BC =10cm ,BD :DC =3:2,则点D 到AB的距离为_________ cm .17.如果实数,a b 满足226,8,a b ab a b +==+=那么 ;18.阅读下面材料:在数学课上,老师提出如下问题:小俊的作法如下:老师说:“小俊的作法正确.”请回答:小俊的作图依据是_________________________.三、解答题(本题共9个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.(5分)计算:1016()1)2-+-的垂直平分线.20.(5分)因式分解:(1)24x - (2) 2244ax axy ay -+21.(5分)如图,点E ,F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .22.(5分)已知2+2x x =,求()()()()22311x x x x x +-+++-的值23.(5分)解分式方程:11+2-22-xx x+=.24.(5分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.25.(6分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?26.(6分)如图,在△ABC 中,AB =AC ,AD ⊥于点D ,AM 是△ABC 的外角∠CAE 的平分线. (1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△ADN 的形状并说明理由.27.(6分) 定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1) 若1,a b ==直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b =(用含x 的式子表示)28. (6分)如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E. (1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE , BE , CE 之间的数量关系,并证明你的结论.数学试题答案三、解答题(本题共54分)10119.261245())-+-分分 220.14=2)(2)2x x x --+()(分22222244=(44)1(2)3ax axy ay a x xy y a x y -+-+=-()分分21. 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .证明:∵点E ,F 在线段AB 上,AE =BF ., ∴AE +E F =BF +EF ,即:AF =BE .………1分 在△ADF 与△BCE 中,,,,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩………3分 ∴△ADF ≌△BCE (SAS ) ………4分∴ DF=CE (全等三角形对应边相等)………5分2222222.=4431342=55x x x x x x x x x ++--+-=+++=解:原式分当时,原式分23.解方程:11+2-22-xx x+=解:方程两边同乘(x -2), 得1+2(x -2)=-1-x 2分解得:2.33x =L L 分 220.323x x 4x 5=-?=L L L L 检验:当时,分所以,原分式方程的解为分24. 先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-. ()()()()333223333233142x x x x x x x x x x x -+-=÷++-+=⋅++-=+解:原式分分分当2x =-时,原式===.…5分 25.解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人……1分由题意得240240-304x x= ……………3分 解得x =6 …………… 4分 经检验x =6是分式方程的解 ……………5分4x 24=……………6分答:2017年每小时客运量24万人26.(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =12BAC ∠.…………… 1分 ∵AM 平分∠EAC ,∴∠EAM =∠MAC=12EAC ∠.…………… 2分 ∴∠MAD =∠MAC +∠DAC =1122EAC BAC ∠+∠=1180902⨯︒=︒。

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末学业质量监测试题

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末学业质量监测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表如下:表格中捐款5元和8元的人数不小心被墨水污染看不清楚.若设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得方程组( )A .125884x y x y +=⎧⎨+=⎩B .1258400x y x y +=⎧⎨+=⎩C .455884x y x y +=⎧⎨+=⎩D .4558400x y x y +=⎧⎨+=⎩【答案】A 【分析】设捐款5元的有x 名同学,捐款8元的有y 名同学,利用八(1)班学生人数为45得出一个方程,然后利用共捐款400元得出另外一个方程,再组成方程组即可.【详解】解:设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得:453323*********x y x y +=-⎧⎨⨯+++⨯=⎩,即125884x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,关键是利用总人数和总钱数作为等量关系列方程组.2.使分式x 2x-4有意义的x 的取值范围是( ) A .x=2B .x≠2且x≠0C .x=0D .x≠2【答案】D【解析】根据分母不等于零列式求解即可.【详解】由题意得2x-4≠0,∴x≠2.故选D.【点睛】本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.3.下列图形中,有且只有三条对称轴的是( )A.B.C.D.【答案】A【分析】根据轴对称图形的定义逐项分析即可,一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】A.有3条对称轴;B.有1条对称轴;C.不是轴对称图形;D.不是轴对称图形.故选:A.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.4.如图,ABC 中,∠C=90°,AC=3,AB = 5,点D 是边BC 上一点,若沿将ACD翻折,点C刚好落在边上点E处,则BD等于()A.2 B.52C.3 D.103【答案】B【分析】根据勾股定理,求出BC的长度,设BD=x,则DC= 4-x,由折叠可知:DE= 4-x,BE=1,在Rt BDE 中,222BD=BE DE+,根据勾股定理即可求出x的值,即BD的长度.【详解】∵∠C= 90°,AC=3,AB=5∴BC= 22AB-AC,设BD=x ,则DC= 4-x ,由折叠可知:DE=DC=4-x ,AE=AC=3,∠AED= ∠C=90°,∴ BE= AB -AE = 1.在 Rt BDE 中,222BD =BE DE +,即:222x =2(4-x)+,解得:x=52, 即BD=52, 故选:B .【点睛】本题主要考查了折叠的性质、勾股定理,解题的关键在于写出直角三角形BDE 三边的关系式,即可求出答案.5.已知线段 a =2cm ,b =4cm ,则下列长度的线段中,能与 a ,b 组成三角形的是( )A .2cmB .4cmC .6cmD .8cm 【答案】B【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【详解】解:2a cm =,4b cm =,2cm ∴<第三边6cm <∴能与a ,b 能组成三角形的是4cm ,故选B .【点睛】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.6.如图,在△ABC 中,∠C=90°,AB 的垂直平分线MN 分别交AC ,AB 于点D ,E ,若∠CBD :∠DBA=2:1,则∠A 为( )A .20°B .25°C .22.5°D .30°【答案】C 【解析】试题分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB ,再根据等边对等角可得∠A=∠DBA ,然后在Rt △ABC 中,根据三角形的内角和列出方程求解即可.解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选C.考点:线段垂直平分线的性质.7.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30B.20C.25D.15 【答案】D【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=12∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED=1802BAC︒∠-=280013︒-︒=75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选D.【点睛】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.8.下列各分式中,是最简分式的是().A.22x yx y++B.22x yx y-+C.2x xxy+D.2xyy【答案】A【分析】根据定义进行判断即可.【详解】解:A、22 x y x y ++分子、分母不含公因式,是最简分式;B、22x yx y-+=()()x y x yx y+-+=x-y,能约分,不是最简分式;C、2x xxy+=(1)x xxy+=1xy+,能约分,不是最简分式;D、2xyy=xy,能约分,不是最简分式.故选A.【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.9.如图,在△ABC与△EMN中,BC MN a==,AC EM b==,∠C=∠M=54°,若∠A=66°,则下列结论正确的是( )A.EN c=B.EN=a C.∠E=60°D.∠N=66°【答案】A【分析】利用BC MN a==,AC EM b==,∠C=∠M=54°证明ABC∆与ENM∆全等,利用全等三角形的性质可得到答案.【详解】解:在ABC∆与ENM∆中,54BC NM aC MAC EM b==⎧⎪∠=∠=︒⎨⎪==⎩ABC∆≅ENM∆所以:,66,60AB EN c A E B N==∠=∠=︒∠=∠=︒所以B,C,D,都错误,A正确.故选A.【点睛】本题考查三角形全等的判定,掌握三角形全等的判定方法是关键.10.下列命题中为假命题的是( )A .无限不循环小数是无理数B .代数式 1C .若22x y a a >,则x > yD .有三个角和两条边分别相等的两个三角形一定全等【答案】D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A . 无限不循环小数是无理数,故本选项是真命题;B . 代数式 中根据二次根式有意义的条件可得1020x x -≥⎧⎨-≥⎩解得:2x ≥x 的增大而增大∴当x=21,故本选项是真命题; C . 若22x y a a>,将不等式的两边同时乘a 2,则x y >,故本选项是真命题; D . 有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题; 故选D .【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.二、填空题11_________.【答案】±8=,然后根据平方根的定义求出8的平方根.【详解】解:8=,8∴的平方根为=±故答案为±【点睛】本题考查了平方根的定义:若一个数的平方等于a ,那么这个数叫a 的平方根,记作0)a .12有意义,则实数x 的取值范围是__________. 【答案】3x ≥【分析】根据二次根式有意义的条件,即可求出x的取值范围.【详解】解:∵代数式34x-有意义,∴30x-≥,∴3x≥.故答案为:3x≥.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练掌握被开方数大于或等于0.13.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______【答案】5—1【解析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴AC=22215+=,∵A点表示-1,∴E点表示的数为:5-1,故答案为5-1.【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.14.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).234【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,∴A′D=42=2(m),BD=1+0.6-0.4=1.2(m),∴在直角△A′DB中,2222234A'D BD2 1.2+=+=(m),234.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.15.已知:1232724839x x--⎛⎫⎛⎫•=⎪ ⎪⎝⎭⎝⎭,则x=_______________【答案】-2【分析】根据幂的乘方、负指数幂及同底数幂的运算公式即可求解.【详解】∵123 2724 839x x--⎛⎫⎛⎫•= ⎪ ⎪⎝⎭⎝⎭∴33232 322 233x x--⎛⎫⎛⎫⎛⎫•=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故33232 222 333x x--⎛⎫⎛⎫⎛⎫•=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴3-3x+2x-3=2,解得x=-2,故填:-2.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式及运用.16.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .【答案】5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5. 17.已知:如图,45AOB ∠=︒,点P 为AOB ∠内部一点,点P 关于OA OB ,的对称点12P P ,的连线交OA OB ,于M N ,两点,连接PM PN ,,若2OP =,则PMN ∆的周长=__________.【答案】2【分析】连接OP 1,OP 2,利用对称的性质得出OP= OP 1= OP 2=2,再证明△OP 1 P 2是等腰直角三角形,则△PMN 的周长转化成P 1 P 2的长即可.【详解】解:如图,连接OP 1,OP 2,∵OP=2,根据轴对称的性质可得:OP= OP 1= OP 2=2,PN= P 2N ,PM= P 1M , ∠BOP=∠BOP 2,∠AOP=∠AOP 1,∵∠AOB=45°,∴∠P 1O P 2=90°,即△OP 1 P 2是等腰直角三角形,∵PN= P 2N ,PM= P 1M ,∴△PMN 的周长= P 1M+ P 2N+MN= P 1 P 2,∵P 1 P 22OP 1=22故答案为:2.【点睛】本题考查轴对称的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用对称的性质将三角形周长转化成线段的长度.三、解答题18.某高速公路有300km的路段需要维修,拟安排甲、乙两个工程队合作完成,规定工期不得超过一个月(30天) ,已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km公路的维修时,甲队比乙队少用6天(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km(2)若甲队的工程费用为每天2万元,乙队每天的工程费用为1.2万元,15 天后乙队另有任务,余下工程由甲队完成,请你判断能否在规定的工期完成且总费用不超过80万元【答案】(1)甲、乙工程队每天能完成维修公路的长度分别是8km和4km;(2)能在规定工期完成且总费用不超过80万,见解析【分析】(1) 设乙工程队每天能完成维修公路的长度是x km,根据题意找到等量关系列出分式方程即可求解;(2)根据题意求出工程完成需要的天数,再求出总费用即可求解.【详解】解:(1) 设乙工程队每天能完成维修公路的长度是x km.依题意得484862x x-=解得:4x=经检验:4x=是原方程的解.则甲工程队每天能完成维修公路的长度是248⨯=(km).答:甲、乙工程队每天能完成维修公路的长度分别是8km和4km.(2) 15(48)180km⨯+=,300180120km-=,120815÷=天,所以能在规定工期内完成;15(2 1.2)48⨯+=万,15230⨯=万,483078+=<80,所以能在规定工期完成且总费用不超过80万.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程求解.19.如图,在四边形ABCD 中,AB DC =,点E 是AB 边上一点,,180CE AB A ADC =∠+∠=︒,DF BC ⊥,垂足为点F ,交CE 于点G ,连接,DE EF .(1)四边形ABCD 是平行四边形吗?说明理由;(2)求证:1902AED DCE ∠=︒-∠; (3)若点E 是AB 边的中点,求证:2DEF EFB ∠=∠.【答案】(1)四边形ABCD 是平行四边形,理由见解析;(2)见解析;(3)见解析【分析】(1)由180A ADC ∠+∠=︒可得AB ∥DC ,再由AB=DC 即可判定四边形ABCD 为平行四边形; (2)由AB ∥DC 可得∠AED=∠CDE ,然后根据CE=AB=DC 可得∠CDE=∠CED ,再利用三角形内角和定理即可推出∠AED 与∠DCE 的关系;(3)延长DA ,FE 交于点M ,由“AAS”可证△AEM ≌△BEF ,可得ME=EF ,由直角三角形的性质可得DE=EF=ME ,由等腰三角形的性质和外角性质可得结论.【详解】(1)四边形ABCD 是平行四边形,理由如下:∵180A ADC ∠+∠=︒∴AB ∥DC又∵AB=DC∴四边形ABCD 是平行四边形.(2)∵AB ∥DC∴∠AED=∠CDE又∵AB=DC ,CE=AB∴DC=CE∴∠CDE=∠CED∴在△CDE 中,2∠CDE+∠DCE=180°∴∠CDE=90°-12∠DCE ∴1902AED DCE ∠=︒-∠ (3)如图,延长DA ,FE 交于点M ,∵四边形ABCD 为平行四边形∴DM ∥BC ,DF ⊥BC∴∠M=∠EFB ,DF ⊥DM∵E 为AB 的中点∴AE=BE在△AEM 和△BEF 中,∵∠M=∠EFB ,∠AEM=∠BEF ,AE=BE∴△AEM ≌△BEF (AAS )∴ME=EF∴在Rt △DMF 中,DE 为斜边MF 上的中线∴DE=ME=EF∴∠M=∠MDE ,∴∠DEF=∠M+∠MDE=2∠M=2∠EFB .【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,等腰三角形和直角三角形的性质,熟练掌握平行四边形的判定定理,利用“中线倍长法”构造全等三角形是解题的关键.20.(1)如图,已知ABC ∆的顶点在正方形方格点上每个小正方形的边长为1.写出ABC ∆各顶点的坐标(2)画出ABC ∆关于y 轴的对称图形111A B C ∆【答案】(1)A (-2,2),B (-3,-1),C (-1,1);(2)见解析【分析】(1)利用坐标可得A 、B 、C 三点坐标;(2)首先确定A 、B 、C 三点关于y 轴的对称点,然后再连接即可.【详解】解:(1)由图可知:A (-2,2),B (-3,-1),C (-1,1);(2)如图,△A 1B 1C 1即为所画图形.【点睛】此题主要考查了作图—轴对称变换,关键是正确确定组成图形的关键点关于y 轴的对称点位置. 21.已知ABC ∆在平面直角坐标系中的位置如图所示.(1)画出ABC ∆关于y 轴对称的11AB C ∆;(2)每个小方格都是边长为1个单位的正方形,求多边形11ABCC B 的面积.【答案】(1)见解析(2)13【分析】(1)依次找到各顶点关于y 轴的对称点,再顺次连接即可;(2)根据割补法即可求解.【详解】(1)如图,11AB C ∆为所求;(2)多边形11ABCC B 的面积=6×4-2×12×3×3-2×12×2×1=24-9-2=13【点睛】此题主要考查坐标与图形,解题的关键是熟知关于y 轴的坐标特点.22.如图,一块四边形的土地,其中90BAD ∠=,4AB cm =,12BC cm =,13CD cm =,3AD cm =,求这块土地的面积.【答案】36cm 2【分析】根据勾股定理逆定理证BD ⊥BC ,再根据四边形ABCD 的面积=△ABD 的面积+△BCD 的面积.【详解】解:∵AD=3cm ,AB=4cm ,∠BAD=90°,∴BD=5cm.又∵BC=12cm ,CD=13cm ,∴BD 2+BC 2=CD 2.∴BD ⊥BC.∴四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=113451222⨯⨯+⨯⨯=6+30=36(cm 2). 故这块土地的面积是36m 2.【点睛】考核知识点:勾股定理逆定理应用.推出直角三角形,再求三角形面积是关键.23.2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?【答案】(1)该旅行社今年的有45人前来观看赛事;(2)故人均交通费最多为100元.【分析】(1)设该旅行社去年有x 人前来观看赛事,根据“人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元”列方程,求解即可;(2)设今年该旅行社本次费用中,人均交通费为x 元,根据“其它费用不低于交通费的2倍”,列不等式求解即可.【详解】(1)设该旅行社去年有x 人前来观看赛事,根据题意,得: 96009600390020(150%)x x+-=+ 解得:30x =.经检验:30x =是原方程的解.所以,原方程的解为30x =,故:()150%45x +=.答:该旅行社今年的有45人前来观看赛事;(2)设今年该旅行社本次费用中,人均交通费为x 元,由题意得:9600390045245x x +-≥⨯解得:100x ≤.故人均交通费最多为100元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.找准相等关系或不等关系是解答本题的关键. 24.2019年5月20日是第30个中国学生营养日.某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量为8%,包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60g ,蛋白质含量占15%;谷物食品和牛奶的部分营养成分下表所示).(1)设该份早餐中谷物食品为x 克,牛奶为y 克,请写出谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克.(用含有x ,y 的式子表示)(2)求出x ,y 的值.(3)该公司为学校提供的午餐有A ,B 两种套餐(每天只提供一种):为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周里,学生午餐主食摄入总量不超过830克,那么该校在一周里可以选择A ,B 套餐各几天?写出所有的方案.(说明:一周按5天计算)【答案】(1)9%,3%x y ;(2)130,110x y ==;(3)见解析【分析】(1)根据统计表列出算式即可求解;(2)根据等量关系:蛋白质总含量为8%;300克早餐食品;列出方程组求解即可;(3)设该学校一周里共有a 天选择A 套餐,则有(5-a )天选择B 套餐,根据学生午餐主食摄入总量不超过830克列出不等式求解即可.【详解】(1)谷物食品中所含的蛋白质为9%x 克,牛奶中所含的蛋白质为 3%y 克;故答案为:9%x ,3%y ;(2)依题意,列方程组为9%3%6015%3008%60300x y x y ++⨯=⨯⎧⎨++=⎩, 解得 130110x y =⎧⎨=⎩; (3)设该学校一周里共有a 天选择A 套餐,则有(5a -)天选择B 套餐,依题意,得:150a +180(5-a)≤830,解得 7a ≥.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系和不等关系.25.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=+.请根据阅读材料解决下列问题: (1)填空:分解因式244a a -+=_____;(2)若2|1|690a b b ++-+=,求+a b 的值;(3)若a 、b 、c 分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.【答案】(1)()22a -;(2)2;(3)等边三角形.【分析】(1)根据完全平方公式即可因式分解;(2)根据非负性即可求解;(3)把原式化成几个平方和的形式,根据非负性即可求解.【详解】(1)244a a -+=()22a -.故答案为:()22a -;(2)21690a b b ++-+=()2∴++-=a b130∴+=-=a b10,30∴=-=a b1,3∴+=-+=a b132(3)∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,∴(a2-2ab+b2)+(c2﹣2c+1)+(3b2﹣6b+3)=0即(a2-2ab+b2)+(c2﹣2c+1)+3(b2﹣2b+1)=0,∴(a-b)2+(c-1)2+3(b-1)2=0,∴a-b=0,c-1=0,b-1=0,∴a=b,c=1,b=1,∴a=b=c∵a、b、c分别是△ABC的三边,∴△ABC是等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负性的应用.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.内角和等于外角和的2倍的多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180°(n-2)=360°×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180°(n-2)=360°×2,解得:n=6,故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n-2).2.下列命题是假命题的是().A.同旁内角互补,两直线平行B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.角是轴对称图形【答案】C【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案.【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C.【点睛】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解.3.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

(完整word版)2017-2018八年级数学上期末试题含答案

(完整word版)2017-2018八年级数学上期末试题含答案

一.选择题(共12小题,满分36分,每小题3分)1.以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D AD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是() A.180°B.220°C.240°D.300°5.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=16.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()9.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.如图,已知∠1=∠2,要得到△ABD≌△ACD,从下列条件中补选一个,则错误选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)分解因式:x3﹣4x2﹣12x= _________ .14.(4分)若分式方程:有增根,则k= _________ .15.(4分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________ .(只需填一个即可)16.(4分)如图,在△A BC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_______ 度.17.(4分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________ .三.解答题(共7小题,满分64分)18.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一.选择题(共12小题,满分36分,每小题3分)1.(3分))在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE 考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.6.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)下列式子变形是因式分解的是( )A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做8.(3分)若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)化简的结果是()A.x+1B.x﹣1C.﹣x D.x 考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2。

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。

北京市最新2017-2018年八年级上期末模拟数学试卷含答案

北京市最新2017-2018年八年级上期末模拟数学试卷含答案

上学期期末模拟检测八年数学试题一、选择题(每题3分,共30分)11.等腰△ABC两边之长分别是3厘米和6厘米,则它的周长是()A.12厘米B.15厘米C.12厘米或15厘米D.不确定2.下列图形中不是轴对称图形的是()A.B.C.D.3.下列运算中,正确的是( )A.4a•3a=12a B.(ab2)2=ab4 C.(3a2)3=9a6 D.a•a2=a34.如图,若AE=AF,AB=AC,∠A=60°,∠B=24°,则∠AEC的度数是()A.24°B.60°C.96°D.无法确定5.若分式中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .扩大4倍6.下列各式是完全平方式的是( ).A .x 2+2x-1B .1+x 2C .x +xy +1D .x 2-2x+1 7.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P是BC 边上的动点,则AP 长不可能是( )A .5B .4C .7D .68.若(x+3)(x+n)=x 2+mx-15,则m 等于 ( ) A. -2 B. 2 C. -5 D. 59. 如图是四张全等的矩形纸片拼成的图形,利用图中阴影部分面积的不同表示方法,可以写出关于a 、b 的恒等式,下列各式正确的为( )A .()ab b a b a 2)(22+-=+B .()ab b a b a 4)(22-+=-C .()2222b ab a b a +-=-D .()()22b a b a b a -=-+ 10.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是以BC 为中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:① AE =CF ;② △EFP 是等腰直角三角形;③ S 四边形AEPF =21S △ABC ;ba④ 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),BE +CF =EF ,上述结论中始终正确的有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,24分)11.已知一个n 边形的内角和是其外角和的5倍,则n=__________.12.使代数式有意义的x 的取值范围是 .13.已知3m =a ,81n =b ,那么3m ﹣4n =14.如图,AC=BC ,AC⊥OA,BC⊥OB,则判断△AOC≌△BOC 的依据是15.如图,正方形ABCD 中,截去∠A,∠C 后,∠1,∠2,∠3,∠4的和为 .16.如图,AB=AC ,∠A=52°,点O 是△ABC 内一点,且∠OBC=∠ACO,则∠BOC= .14题15题 16题 17题17.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=14cm,BC=12cm,S△ABC=52cm2,则DE=__________cm.18.计算:(2+1)(22+1)(24+1)(28+1)= (结果可用幂的形式表示).三、解答题(共66分)19.(8分)分解因式:(1)a2(x﹣y)+(y﹣x).(2)(a+2b)2-8ab20. 计算(每题5分,共10分)(1)(6a2b-9a3)÷(-3a)2;(2)(x-2y)(2y-x)-4x(x-y).21.(8分)(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)22.(8分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.23.(6分)先化简,再求值:,其中x=1,y=3.24.(8分)如图,△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,BE⊥CE,垂足E在BD的延长线上。

2017-2018学年第一学期期末八年级数学试题(含答案)

2017-2018学年第一学期期末八年级数学试题(含答案)

2017—2018学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.在下列长度的三条线段中,能组成三角形的是A.1,2,3 B.3,8,4 C.10,6,5 D.2,4,22.下列图形:①角,②线段,③等腰三角形,④直角三角形,其中是轴对称图形的有A.①②③④ B.①②③C.②④D.①③3.△ABC中,若∠B =∠A+10°,∠C=∠B+10°,则下列结论错误的是A.∠C=∠A+20°B.∠A=50°C.∠B的外角是130°D.△ABC是一个锐角三角形4.下列数据能唯一确定三角形的形状和大小的是A.∠A=50°,∠B =60°,∠C=70°B.AB=6,∠B =70°,∠C=60°C.AB=4,BC =5,∠C=60°D.AB=4,BC =5,CA=105.下列运算正确的是A .2222x x x =B .326()x x =C .3412(2)8x x -=D .734()()x x x -÷-=-6.下列各因式分解正确的是A .22(2)(2)(2)x x x -+-=-+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .242(2)(2)x x x x -=+-7.若分式12x x -+的值为0,则x 应满足的条件是 A .x =-2 B .x =0 C.x =1或x =-2 D .x =18.下列计算错误的是A .0.220.77a b a b a b a b++=--B .3223x y x x y y=C .1a bb a-=--D .123c c c+= 9.如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应修建在△ABC 的 A .两条中线的交点处B .两条角平分线的交点处C .两条高的交点处D .两条边的垂直平分线的交点处10.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm(第9题图)第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.点(-7,9)关于y 轴对称的点的坐标是 .12.计算:0220183--+-()= . 13.如果216x kx ++可运用完全平方公式进行因式分解,那么k 的值是 . 14.张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书.如果李强单独清点这批图书需要 小时. 15.一个多边形的内角和比它的外角和的3倍多180°,则它是 边形. 16.如图,∠1=∠2,∠3=∠4,∠BDC =130°,则∠A = .17.在Rt△ABC 中,∠ACB =90°,BC =2.1cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =4cm ,则AE = cm . 18.如图,∠A =61°,∠C ′=47°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =____ .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程.19.先化简,再求值:222693293x x x x x x-+-÷--+,其中2018x =-.20.计算:(1)23215)()ab ab a b --÷-(; (2)222)()()6x y x y x y y +-+--(. 21.分解因式:(1)4811m -; (2)43242025ab ab ab -+.22. 两个小组同时开始攀登一座600m 高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早20min 到达顶峰,两个小组的攀登速度各是多少m/min ?如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则请直接写出两组的攀登速度各是多少m/min ?23. 如图,在平面直角坐标系中,点A 的坐标为(-2,0),△AOB 是等边三角形,点C 为OA 延长线上的一个动点,以BC 为边在第二象限中作等边△BCE ,连接EA 并延长EA 交y 轴于点F .(1)求∠EAB 的度数;(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 .24. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 和BE 相交于点F ,DF =EF ,延长CF 交AB 于点G .(1)图中共有 个等腰三角形,共有 对全等三角形; (2)求证:CG 垂直平分AB .G FEDCBA(第23题图)(第24题图)2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+ =2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ……………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. …………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ……………………………………6分 =24xy y -. ……………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分(2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分 22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=……………………………… 3分 解得 x =20 ……………………………… 4分经检验,x =20是原方程的解. ……………………………… 5分此时,1.2x =24 ……………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,…………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) …………………………………… 5分 ∴∠EAB =∠AOB =60°. …………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 .…………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;……2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) …………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . ………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) …………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,…………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . …………………………………… 10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A . SAS B . ASA C . AAS D . SSS 8. 如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立( )
A.
B.
C.
D.
9. 如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确
的是( )
A . AE=EC B . AE=BE C . ∠EBC=∠BAC D . ∠EBC=∠ABE 10. 如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取 最小值时,则∠MPN的度数为( )
A . 140° B . 100° C . 50° D . 40°
11. 在平面直角坐标系 中,点 (2,1)关于y轴对称的点的坐标是________.
二、填空题
12. 如果式子
在实数范围内有意义,那么x的取值范围是________.
13. 如图,点B、F、C、E在一条直线上,已知BF=CE,AC∥DF,请你添加一个适当的条件________,使得△ABC ≌△DEF.
22. 已知
,求
的值
23. 解分式方程:

24. 先化简,再求值:
,其中

25. 北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市1 1个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年 客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?
13. 14. 15. 16. 17. 18. 19. 20. 21.
22. 23.
24.
25. 26.
27.
28.
14. 等腰三角形一边等于5,另一边等于8,则其周长是________. 15. 如图,D在BC边上,△ABC≌△ADE , ∠EAC=40°,则∠B 的度数为________.
16. 如图,在△ABC中,∠ACB=90°,AD平分∠BAC , BC=10cm,BD:DC=3:2,则点D到AB的距离________cm
北京市北京市东城区2017—2018学年八年级上学期数学期末考试试卷
一、单选题
1. 世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司,将0.056用科学记数法表示为( )
A.
B.
C.
D.
2. 江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神
26. 如图,在△ABC中,AB =AC , AD⊥BC于点D , AM是△ABC的外角∠CAE的平分线.
(1) 求证:AM∥BC;
(2) 若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.
27. 定义:任意两个数 ,按规则
扩充得到一个新数 ,称所得的新数
(1) 若
直接写出 的“如意数” ;
奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是( )
A.
B.
C.
D.
3. 下列式子为最简二次根式的是( )
A.
B.
C. D.
4. 若分式 的值为0,则 的值等于( )
A . 0 B . 2 C . 3 D . -3
5. 下列运算正确的是( )
A.
B.
C.
D.
AB的同侧; ③作直线CD,所以直线CD就是所求作的垂直平分线 老师说:“小红的作法正确.” 请回答:小红的作图分解: (1) (2) 21. 如图,点E , F在线段AB上,且AD=BC , ∠A=∠B , AE=BF.求证:DF=CE.

17. 如果实数 满足 18. 阅读下面材料:
在数学课上,老师提出如下问题:
尺规作图:作一条线段的垂直平分线
________;
已知:线段AB
求作:线段AB的垂直平分线
小红的作法如下:
如图,
①分别以点A和点B为圆心,大于 AB的长为半径作弧,两弧相交于点C;
②再分别以点A和点B为圆心,大于 AB的长为半径(不同于①中的半径)作弧,两弧相交于点D,使点D与点C在直线
6. 如图,在△ABC中,∠B=∠C=60,点D为AB边的中点,DE⊥BC于E , 若BE=1,则AC的长为( )
A.2B. C.4D.
7. 如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和A D,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪 器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
为“如意数”.
(2) 如果 (3) 已知
,求 的“如意数” ,并证明“如意数” ;
,且 的“如意数”
,则 (用含 的式子表示)
28. 如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP 于点E.
(1) 依题意补全图形; (2) 若∠PAC=20°,求∠AEB的度数; (3) 连结CE,写出AE, BE, CE之间的数量关系,并证明你的结论. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
相关文档
最新文档