电动力学7-1(运动带电粒子的势和辐射电磁场)
电动力学郭硕鸿PPT课件

A
y
A~ y
0
A
z
A~ z
~
0 v A~ x
~
1
v2 c2
1
v2 c2
8
即
A
v c2
~
1
v2 c2
~
1
v2 c2
从而得到
9
A
v
~
ev
c2
1
v2
c
2
c2
1
v2 c2
4
ev 0c 2(r
v c
r)
4
0 ~r
~
1
v2 c2
4
e 0(r
v c
r)
子的加速度。因此,可以在粒子的静止参考系 ~与
任意参考系∑之间,对四维热矢量作Lorentz变换。 1、李纳—维谢尔热(Lienard-Wiechert)
粒子设的带位电置粒矢子量e以为任xe意(t速) ,度在v(粒t)子相静对止于的∑系参运考动系, ~
看来:
5
在 ~t ~t ~r 时刻 c
第七章 带电粒子和电磁场的相互作用
Interaction of charged particle with electromagnetic field
1
本章讨论带电粒子与电关场的相互作用。喧 是进一步认识许多物理过程的本质以及物质微观 结构的重要基础。我们将首先在一般情况下讨论 带电粒子产生电磁场 问题,求出作任意运动的带 电粒子产生的电关势表达式。这样,原则上对于 任何带电的体系都可以通过叠加而求得它的热和 场。
是t的函数,因此把势对场点定时坐标x和t求导数即
可求得电磁场强。由于电磁场由势表示为
EA tA t
带电粒子在电磁场中的运动与辐射

带电粒子在电磁场中的运动与辐射带电粒子在电磁场中的运动是一个经典物理学中的基本问题,也是电动力学研究的重要内容之一。
在电磁场的作用下,带电粒子受到洛伦兹力的作用,其轨迹和运动性质会发生变化,并且会辐射电磁波。
本文将探讨带电粒子在电磁场中的运动以及与之相关的辐射现象。
一、运动方程在电磁场中,带电粒子受到洛伦兹力的作用,其运动满足运动方程:m(d²r/dt²) = q(E + v × B)其中,m是带电粒子的质量,q是电荷量,r是位置矢量,t是时间,E是电场强度,B是磁感应强度,v是粒子的速度。
这个方程描述了带电粒子在电磁场中受力的情况,即电场和磁场对粒子的作用力。
通过求解这个运动方程,可以得到带电粒子的轨迹以及相应的运动性质。
二、洛伦兹力的效应带电粒子在电磁场中受到洛伦兹力的作用,这个力会改变粒子的运动状态。
具体来说,洛伦兹力可分为电场力和磁场力两个分量。
电场力与电场强度呈正比,其方向与电场强度的方向相同或相反,决定于带电粒子的电荷正负。
而磁场力与速度和磁感应强度的叉乘结果成正比,其方向垂直于速度和磁感应强度所决定的平面。
洛伦兹力的作用使得带电粒子的运动轨迹发生偏离,通常出现螺旋状的运动路径,称为洛伦兹运动。
带电粒子在电场和磁场的共同作用下,可以在特定的运动参数下呈现出稳定的轴向向前加速或向后减速运动。
三、带电粒子的辐射现象带电粒子在电磁场中的运动不仅仅影响其轨迹,还会产生辐射现象。
根据经典电动力学理论,加速运动的带电粒子会辐射出电磁波。
带电粒子辐射的功率与粒子的加速度成正比,具体表示为洛伦兹辐射公式:P = q²a²/6πε₀c³其中,P是辐射功率,q是电荷量,a是加速度,ε₀是真空介电常数,c是光速。
带电粒子的辐射包含两种成分:同步辐射和非同步辐射。
同步辐射主要发生在粒子的运动轨迹与电场方向相平行或完全垂直的情况下,其频率与粒子的圆周运动频率相等。
电动力学教学大纲(科学教育专业)

《电动力学》教学大纲课程名称:电动力学课程编号:073132003总学时:54学时适应对象:科学教育(本科)专业一、教学目的与任务教学目的:电动力学是物理学本科专业开设的一门理论课程,是物理学理论的一个重要组成部分。
通过对本课程的学习,(1)使学生掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解;(2)获得本课程领域内分析和处理一些基本问题的能力,为解决实际问题打下基础;(3)通过对电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性。
教学任务:本课程主要阐述宏观电磁场理论。
第一章主要分析各个实验规律,从其中总结出电磁场的普遍规律,建立麦克斯韦方程组和洛仑兹力公式。
第二、三章讨论恒定电磁场问题,着重讲解恒定场的基本性质和求解电场和磁场问题的基本方法。
第四章讨论电磁波的传播,包括无界空间中电磁波的性质、界面上的反射、折射和有界空间中电磁波问题。
第五章讨论电磁波的辐射,介绍一般情况下势的概念和辐射电磁场的计算方法。
第六章狭义相对论,首先引入相对论时空观,由协变性要求把电动力学基本方程表示为四维形式,并得出电磁场量在不同参考系间的变换。
二、教学基本要求通过本课程的教学,使学生了解电磁场的基本性质、运动规律以及与物质的相互作用。
掌握求解恒定电磁场的基本方法;掌握电磁波在无界和有界空间的传播规律;掌握一般情况下势的概念和求解电偶极辐射,理解相对论的时空理论;掌握电磁场量的四维形式和电动力学规律的四维形式,加深对电动力学规律的认识。
三、教学内容及要求绪论矢量场分析初步第一章电磁现象的普遍规律第一节引言及数学准备第二节电荷和电场第三节电流和磁场第四节麦克斯韦方程第五节介质的电磁性质第六节电磁场的边值关系第七节电磁场能量和能流教学重点:电磁场的普遍规律,麦克斯韦方程组,电磁场的边值关系。
教学难点:位移电流概念,能量守恒定律的普遍式。
本章教学要求:通过本章学习,要使学生了解各实验定律及其意义,掌握电磁场散度、旋度的计算方法及意义,理解麦克斯韦方程的重要意义和地位,以及积分和微分形式的麦克斯韦方程适用的范围。
电动力学(全套课件)ppt课件

电磁波的传播遵循惠更斯原理,即波 面上的每一点都可以看作是新的波源。
电磁波在真空中的传播速度等于光速, 而在介质中的传播速度会发生变化。
电磁波的能量与动量
01
电磁波携带能量和动量,其能量密度和动量密度与 电场和磁场的振幅平方成正比。
02
电磁波的能量传播方向与波的传播方向相同,而动 量传播方向则与波的传播方向相反。
03
电磁波的能量和动量可以通过坡印廷矢量进行描述 和计算。
06
电动力学的应用与发展前 景
电动力学在物理学中的应用
描述电磁现象
电动力学是描述电荷和电流如何 产生电磁场,以及电磁场如何对 电荷和电流产生作用的理论基础。
解释光学现象
光是一种电磁波,电动力学为光 的传播、反射、折射、衍射等现 象提供了理论解释。
麦克斯韦方程组与电磁波
01
麦克斯韦方程组是描述电磁场的基本方程组,包括高斯定律、 高斯磁定律、法拉第电磁感应定律和安培环路定律。
02
电磁波是由变化的电场和磁场相互激发而产生的,其传播速度
等于光速。
麦克斯韦方程组揭示了电磁波的存在和传播规律,为电磁学的
03
发展奠定了基础。
电磁波的性质与传播
电磁波具有横波性质,其电场和磁场 振动方向相互垂直,且都垂直于传播 方向。
电场能量
W=∫wdV,表示整个电场 中的总能量。
功率
P=UI,表示单位时间内电 场中消耗的能量或提供的 能量。
04
恒磁场
磁感应强度与磁场强度
磁感应强度的定义与物理意义 磁感应强度与磁场强度的关系
磁场强度的定义与计算 磁场的叠加原理
安培环路定理与磁通量
01
安培环路定理 的表述与证明
电动力学习题解答带电粒子与电磁场相互作用

6
《电动力学》习题解答 7------带电粒子与电磁场相互作用
4、一静质量为
m0
、电荷量为
q
的相对论粒子,在磁感应强度为
v B
的磁场中作回
旋运动,由于发出辐射,它逐渐失去能量,设开始时,它的能量为 E0 ,试求它
的能量 E 、轨道半径 R 以及回旋角频率ω 与时间 t 的关系。
解:粒子的能量为
E = mc 2 =
P
=
1 4πε 0
4π e2 3R
v c
3
E mc
2
4
律并不适用于氢原子,其遵循的规律应该是量子力学的规律。
4
《电动力学》习题解答 7------带电粒子与电磁场相互作用
3、一个 µ − 子(其质量约为电子质量的 210 倍,mµ ≈ 210me )被一质子俘获,从 而在环绕质子的圆轨道上运动。它的初始半径 R 等于电子环绕质子运动的玻尔半 径。试用经典理论中非相对论的带电粒子在加速运动时的辐射功率表达式,估计
m0c 2
1
−
v c
2 2
其运动方程为
(1)
ma = m v 2 = qvB R
(2)
它发出的辐射的功率为
P
=
q2 6πε 0c3
(av)2 − vv × av 2
c
1
−
v c
2 2
3
因为粒子作回旋运动,即 vv ⊥ av ,故
vv × av c
2
=
v2 c2
4πε 0
2 mµ2 c 3 4e 4
R 3 − rB3
(4) (5) (6)
(7)
电动力学 第七章

对(7.3.2)式积分
t
t2
1
[S n] dt
ret
T
T2
1
t [S n] dt . t
(7.3.3)
由此可见,[ S n]ret 是t时刻在场点垂直n方向 单位面积上接受的功率, [ S n] t 则是运动电
t
荷在t′时刻沿n方向单位面积发射的功率.
13
同理得
β 1 β 1 Β A ) n ( ) [n Ε ]ret . t ( 4 0c RK cK t RK c e
(7.2.8)
(7.2.7)与(7.2.8)式就是任意运动点电荷激发的 电磁场.只要给定点电荷的运动方程re(t′),则可由 这两个场的公式及推迟条件(7.1.7),得到她的 电磁场E(r,t)和B(r,t).
10
由 t t R(t) c t r re (t) c
1 1 t , 1 n β K t n . t cK
(7.2.3)
将(7.2.3)代人(7.2.2)式,得到算符运算公式
1 , t K t n . t cK t
e n [n β] β Ε (r , t ) 3 4 0 c K R ret 1 Β(r, t ) [n Ε ]ret . c
17
沿R方向的能流分量
[ S n]ret 1
0
[(Ε Β ) n]ret
所以,运动电荷在t′时刻辐射到立体角dΩ内的 功率应为
t 2 dP ( t ) ( S n) R dΩ (S n)KR 2 dΩ. (7.3.4) t
电动力学的基础理论介绍

电动力学的基础理论介绍电动力学是物理学中研究电荷和电磁场相互作用规律的学科。
它包括静电学、电流学、磁学和电磁感应学等内容。
本文将简要介绍电动力学的基础理论,包括库仑定律、电场、电势和电磁感应等。
一、库仑定律库仑定律是描述电荷之间相互作用的基本规律。
根据库仑定律,两个电荷之间的相互作用力与它们的电荷量大小成正比,与它们之间的距离的平方成反比。
这个力的大小由下式给出:F = k * (Q1 * Q2) / r^2其中F是电荷之间的相互作用力,Q1和Q2分别是电荷的大小,r是它们之间的距离,k是一个常数,被称为库仑常数。
库仑常数的数值约为9×10^9 N·m^2/C^2。
二、电场电场是电荷在空间中所产生的一种物理量,用来描述电荷之间相互作用的方式。
在电场中,一单位正电荷所受到的力被定义为电场强度。
电场强度可以根据下式计算:E =F / Q其中E是电场强度,F是电荷受到的力,Q是电荷的大小。
电场强度的方向与力的方向相同。
对于由点电荷产生的电场,其电场强度是一个向外的矢量。
三、电势电势是描述电场中某一点的能量状态的物理量。
它可以被定义为单位正电荷从无穷远处移到该点所做的功。
电势是一个标量,通常用V表示,其单位是伏特(V)。
电势是由电荷所产生的电场而引起的。
电荷与电场之间的关系可以由电势差来描述。
电势差是指两个点之间的电势之差,可以用下式计算:ΔV = V2 - V1 = - ∫E · dl其中ΔV是电势差,V1和V2分别是两个点的电势,E是电场强度,dl是沿电场强度方向的无穷小位移。
四、电磁感应电磁感应是当变化的磁场穿过导体或电流通过变化的磁场时,在导体中产生电流的现象。
根据法拉第电磁感应定律,感应电动势与磁场变化率之积和导体的回路长度有关。
该定律可以用下式表示:ε = - dφ / dt其中ε是感应电动势,dφ/dt是磁通量的变化率。
根据楞次定律,感应电动势的方向总是使得感应电流产生的磁场的磁通量与外部的磁场变化率相抵消。
电动力学课件

04 电磁波的传播
电磁波的产生与性质
电磁波的产生
电磁波是由变化的电场和磁场交替产生并相互激发而传播的。当电荷在空间中运 动或磁场发生变化时,就会在空间中产生电磁波。
电磁波的性质
电磁波在空间中传播,具有波粒二象性。它们具有振幅、频率、相位等波动性质 ,同时也具有能量、动量等粒子性质。
电磁波的反射与折射
电磁波的反射
当电磁波遇到不同介质的分界面时,一部分能量会反射回原介质,剩余能量则继续传播。反射的程度取决于两种 介质的性质以及电磁波的入射角度。
电磁波的折射
当电磁波从一种介质进入另一种介质时,其传播方向会发生改变,这种现象称为折射。折射的程度取决于两种介 质的性质以及电磁波的入射角度。
矢量势的定义与计算
矢量势的基本定义
矢量势是用来描述磁场的一种物理量,它与磁矢势共同描述 磁场。
矢量势的计算方法
通过定义磁矢势和电荷分布,利用安培定律和麦克斯韦方程 组计算矢量势。
磁场的边界条件
边界条件的概念
磁场的边界条件是指在磁场与其它媒质(如真空、导体或介质)交界处磁场的 行为。
边界条件的分类
电场是电荷周围空间中存在的 特殊物质,由电荷产生并受到 电荷的影响。
电场具有传递性和无色性,即 电场可以传递电荷之间的相互 作用力,且电场本身不具有颜 色。
电场具有叠加性和穿透性,多 个电荷产生的电场可以叠加, 且电场可以穿透某些物质。
电势的定义与计算
电势是描述电场中某一点电荷所 具有的势能大小的物理量,通常
衍射实验结果表明,当电磁波通过一个小缝时,会在远处产生一个明亮的衍射图案,这个 图案是由不同方向的波组成的,它们相互叠加产生干涉现象,形成明暗相间的条纹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c
c
10
t' r
1
t r v r 1 v er
c
c
t'
c(r
r v
r)
c(1
evr
er
)
cr
cr
利用这两个公式可由势的公式求出电磁场
11
2.偶极辐射
v<<c
t' 1 t
t' r er cr c
把势A和 的公式对时空坐标微分后
再令v0, 得
A
B A A t'
t 'C
t' t r t [x xe (t')]2
c
c
给出t’为x和t的隐函数。必须先求t’/t和t’。
8
t' 1 1 r(t') t'
t
c t' t
1 1 r xe (t' ) t' cr t' t v rt'
1 cr t
t' t r t [x xe (t')]2
c
c
其中v=xe( t’)/t’是粒 子在时刻t’的速度。
t'
12
qv r r qv
B 4 0c2r 3 cr 4 0c2r
E
A t
qv
4 0c2r
qr
4 0r 3
t'
t'
qr
4 0r 3
qv
4 0c2r
r cr
qv r
4 0cr
qr
4 0r 3
q
4 0c2r 3
r (r v)
库仑场
辐射场
13
库仑场与r2成反比,它存在于粒子附近,当r大
时可以略去。略去库仑场后,得低速运动粒子
t’=t - r/c的速度。 由上式看出,势依赖于粒子 运动的速度,但不依赖于加速度。
选择一个在粒子辐射时 刻相对静止的参考系
Σ~
在其上观察,
q
4 0r~
,
A~ 0
r~ c~t ~t '
q为粒子的电荷
~ 在静止参考系上观察 r 的粒子与场点的距离
第七章 带电粒子和 电磁场的相互作用
1
主要内容: 一、运动带电粒子的势和辐射电磁场 四、切连科夫辐射 五、带电粒子的场对粒子本身的反作用 六、电磁波的散射和吸收,介质色散
2
§1 运动带电粒子的势和辐射电磁场
1.任意运动带电粒子的势
带电粒子在外力作用下沿某一 特定运动。在场点x处,在时刻t 的势是粒子在较早的时刻t'激发 的,该时刻粒子处于xe(t')点上, 其运动速度为v(t'),粒子与场点 的距离为
的夹角,辐射
能流为
S
q2v2
16 2 0c3r
2
sin2
er
.
因子sin2表示辐射的方向性。在与 垂直的 v 方向上辐射最强。
15
总辐射功率为
P
S
nr
2d
q2v2
6 0c3
上述公式可以近似地应用于X射线辐射问题上,X射 线连续谱部分是由入射电子碰到靶上受到减速而产 生的。当电子突然变速时,产生一脉冲电磁波,形 成X射线的连续谱部分。
当有加速度
. v
时激发的辐射电磁场
E
q
4 0c2r
er
(er v)
B
q
4 0c3r
v er
1 c
er
E
令p=exe为带电粒子的电偶极矩,则
.. . p ev
与电偶极辐射公式一致。低速运动带
电粒子当加速时激发电偶极辐射。
14
辐射能流、方向性和辐射功率的计算和电偶
极辐射相同。以代表r和
. v
r xr xre(t ') c(t t' )
3
为了计算带电粒子激发的势,我们把 粒子看作在小体积内电荷连续分布的 极限。由推迟势的一般公式为
(xv,t)
Av(xv,t)
(
xv',
t
r c
)
dV
'
04Jv(xv0'r, t
r c
)
dV
'
4 r
4
对带电粒子来说,J= v ,v为粒子在辐射时刻
5
变回原参考系上
在上观察,粒子在时刻 t’的运动速度为v,因此v
也就是参考系~ 相对于的运动速度。对上述势应
用洛伦兹变换式
v~
A
c2
1 v2 c2
1
qv
1 v2 c2
4 0c2r~
~
1 v2
c2
1q
1 v2 c2
4 0r~
6
式中 r~可以把它改用系上的距离表示
r~
c(~t
~t ')
c(t
t')
v c
(
x
x' )
r
vc
r
1 v2 c2
1 v2 c2
李纳一维谢尔(Lienard—Wiechert)势
qv
A
4 0c2 (r
v c
r)
,
q
4 0 (r
v c
r)
注意上式右边各量都是在时刻t’=t - r/c上所 取的值,例如v =v(t'),r=x-xe(t')等.
7
把势对场点空时坐标x和t求导数可得电磁 场强。注意右边是t’的函数,而求电磁场 时要对x和t求导数。
16
由上式解得
t' r
1
t r v r 1 v er
c
c
er为r方向单 位矢量
9
再求t’式对x的梯度。由于 r=| xx(t') |为x和t'的函数, 而t'又隐含x,因此
1
1
1 r(t')
t' r r
t'
c
c t'C c t'
r v r
t'
cr cr
解出
t' c(r rv r) c(1 evr er )