设计数字时钟电路设计课件

合集下载

时钟电路设计概述-数字电路设计

时钟电路设计概述-数字电路设计

时钟电路设计概述-数字电路设计本⽂⼀般性地讲解了数字电路设计中的时钟电路设计,包括有源晶振,⽆源晶振,时钟缓冲器,并探讨了有关EMC,端接电阻和信号完整性的设计要点,设计经验来⾃于⽣花通信(Signalsky)的数字电路设计⼯程师。

时钟信号产⽣电路先看图1中的两个时钟电路,不⽤我说,相信读者⼀眼就可以看得出来,左边的那个是有源晶振电路,右边的是⽆源晶振电路。

图1 两个时钟电路振荡器就是可以产⽣⼀定频率的交变电流信号的电路晶体振荡器,简称晶振,是利⽤了晶体的压电效应制造的,当在晶⽚的两⾯上加交变电压时,晶⽚会反复的机械变形⽽产⽣振动,⽽这种机械振动⼜会反过来产⽣交变电压。

当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其它频率下的振幅⼤得附加外部时钟电路,⼀般是⼀个放⼤反馈电路,只有⼀⽚晶振是不能实现震荡的多,产⽣共振,这种现象称为压电谐。

晶振相对于钟振⽽⾔其缺陷是信号质量较差,通常需要精确匹配外围电路(⽤于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。

如果把完整的带晶体的振荡电路集成在⼀块,可能再加点其它控制功能集成到⼀起,封装好,引⼏个脚出来,这就是有源晶振,时钟振荡器,或简称钟振。

英⽂叫Oscillator,⽽晶体则是Crystal。

可以说Oscillator是Crystal经过深加⼯的产品,⽽Crystal是原材料。

好多钟振⼀般还要做⼀些温度补偿电路在⾥⾯。

让振荡频率能更加准确。

相对于⽆源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,⽽且价格⾼。

典型⽆源晶振电路图2是典型的⽆源晶振电路。

图2 典型的⽆源晶振电路与晶振并联的电阻的作⽤与晶振并联的电阻R4是反馈电阻,是为了保证反相器输⼊端的⼯作点电压在VDD/2,这样在振荡信号反馈在输⼊端时,能保证反相器⼯作在适当的⼯作区。

虽然去掉该电阻时,振荡电路仍⼯作了。

但是如果从⽰波器看振荡波形就会不⼀致了,⽽且可能会造成振荡电路因⼯作点不合适⽽停振。

基于单片机的电子时钟设计论文ppt课件

基于单片机的电子时钟设计论文ppt课件

2.按键模块
在该模块中,采用四个按键作为对电 子时钟的控制输入,经过按键来实现时 钟的时间设置、定时功能。电路中将四 个按键的一端接地,而单片机的P2口默 以为高电平,一旦按键被按下,那么该 按键对应的管脚被拉低,经过软件扫描 按键即可知道用户所要实现的功能,调 用相应的按键子程序来完成该操作。 本设计中,四个按键K1、K2、K3、K4分 别与AT89C51单片机的引脚P1.0、P1.1、 P1.2、P1.3衔接。当按下K1时,开场进展 “时〞的校正,再次按下K1时,那么切换 到“分〞的校正,第三次按下那么切换到 “秒〞的校正,第四次按下那么前往到正 常时间显示。当按下K2时,切换到闹钟 方式,延续按下K2键时依次进展定时。 K3和K4键那么是实现加一和减一功能。
五.仿真结果
PPT终了 谢谢观看
6.时间显示模块
数码管显示方式有两种:
1. 共阴极接法。把发光二极管的阴极连在一同构成阴极公共引脚, 如以下图a所示。运用时阴极公共引脚接地,这样阴极引脚上 加高电平的发光二极管就导通点亮,而加低电平的那么不点亮。
共阳极接法。把发光二极管的阳极连在一同构成阳极公共引脚,如 以下图b所示。运用时阳极公共引脚接+5V。这样阴极引脚上加 低电平的发光二极管即可导通点亮,而加高电平的那么不点亮。
二.电子时钟总体设计
振荡电路 复位电路 蜂鸣器
AT89C51
时间显示 按键电路
本设计电路的硬件部分共由五部分组 成,分别为按键模块、复位电路模块、振 荡电路模块、发声模块、时间显示模块。 振荡电路模块担任给单片机提供时钟周期。 复位电路模块担任上电后自动复位,或按 键后强迫复位。上电后,由单片机内部定 时器计时,同时经过动态显示函数自动将 时分秒显示到数码管上。与此同时,按键 扫描函数不断扫描按键引脚形状,一旦扫 描按键被按下,即进入相应的功能函数。 假设检测到定时时间到,那么驱动蜂鸣器 发声提示。

多功能数字钟电路设计

多功能数字钟电路设计

多功能数字钟电路设计1设计内容简介数字钟是一个简单的时序组合逻辑电路,数字钟的电路系统主要包括时间显示,脉冲产生,报时,闹钟四部分。

脉冲产生部分包括振荡器、分频器;时间显示部分包括计数器、译码器、显示器;报时和闹钟部分主要由门电路构成,用来驱动蜂鸣器。

2设计任务与要求Ⅰ以十进制数字形式显示时、分、秒的时间。

Ⅱ小时计数器的计时要求为“24翻1”,分钟和秒的时间要求为60进位。

Ⅲ能实现手动快速校时、校分;Ⅳ具有整点报时功能,报时声响为四低一高,最后一响为整点。

Ⅴ具有定制控制(定小时)的闹钟功能。

Ⅵ画出完整的电路原理图3主要集成电路器件计数器74LS162六只;74LS90三只;CD4511六只;CD4060六只;三极管74LS191一只;555定时器1只;七段式数码显示器六只,74LS00 若干;74LS03(OC) 若干;74LS20 若干;电阻若干,等4设计方案数字电子钟的原理方框图如图(1)所示。

该电路由秒信号发生器、“时,分,秒”计数器、译码器及显示器、校时电路、整点报时电路、闹钟定时等电路组成。

秒信号产生器决定了整个计时系统的精度,故用石英晶体振荡器加分频器来实现。

将秒信号送入“秒计时器”,“秒计时器”采用六十进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用六十进制计数器,每60分钟,发出一个“时脉冲”,该信号经被送到“时计数器”作为“时计数器”的时钟脉冲,而“时计数器”采用二十四进制计数器,实现“24翻1”的计数方式,可实现对一天二十四小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态通过七段式显示译码器译码,通过刘伟LED 七段显示器显示出来。

整点报时电路是根据计时系统的输出状态产生一脉冲信号,然后触发一音频发生器实现整点报时,定时电路与此类似。

校时电路是用“时”、“分”、“秒”显示数5电路设计5.1秒信号发生器秒信号发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体整荡器产生的脉冲经过整形、分频获得1 Hz的秒脉冲。

A功能数字钟的电路设计

A功能数字钟的电路设计

功能数字钟的电路设计数字钟是采用数字电路实现“时”、“分”、“秒”数字显示的计时装置。

钟表的数字化在提高报时精度的同时,也大大扩展了它的功能,诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭路灯等。

因此,研究数字钟及扩大其应用,有着非常现实的意义。

1、设计目的1)掌握数字钟的设计、组装与调试方法。

2)熟悉集成电路的使用方法。

2、设计任务与要求1)时钟显示功能,能够以十进制显示“时”、“分”、“秒”。

2)具有校准时、分的功能。

3)整点自动报时,在整点时,便自动发出鸣叫声,时长1s。

选做:1)闹钟功能,可按设定的时间闹时。

2)日历显示功能。

将时间的显示增加“年”、“月”、“日”。

3、数字钟的基本原理及电路设计一个具有计Array时、校时、报时、显示等基本功能的数字钟主要由振荡器、分频器、计数器、译码器、显示器、校时电路、报时电路等七部分组成。

石英晶体振荡器产生的信号经过分频器得到秒脉冲,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”译码器译码,并通过显示器显示时间。

数字钟的整机逻辑框图如下:图 1数字钟整机逻辑图振荡器方案一:由集成电路定时器555与RC组成的多谐振荡器作为时间标准信号源。

图 2 555与RC 组成的多谐振荡器图 分析:图中的C2为保护电容,其取值并没有什么要求。

在本设计中,我假设输出的脉冲的占空比为2/3,并且把555与RC 组成的多谐振荡,参考书本上的方案得出占空比3222121=++=R R R R q 故得到R1=R2。

又有电路的振荡周期T=T1+T2=(R1+2R2)Cln2得T=(R1+2R2)Cln2=103-S 。

我在实验中取电容为10nf 。

带入式中,可以得出R1=R2=48K Ω。

在这里取两个47K Ω电阻和滑动电阻2K Ω。

仿真结果如图所示,误差还是比较低的。

方案二:石英晶体振荡器。

石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整,它是电子钟的核心,用它产生标准频率信号,再由分频器分成秒时间脉冲。

数字时钟各单元电路的设计方案及原理说明

数字时钟各单元电路的设计方案及原理说明

数字时钟各单元电路的设计方案及原理说明数字时钟是现代生活中常见的时间显示工具,它通过使用数字来表示小时和分钟。

而数字时钟的核心组成部分则是由各个数字显示单元电路组成的。

在本文中,我将为您介绍数字时钟各单元电路的设计方案及原理说明,希望能帮助您更深入地了解数字时钟的工作原理。

我们需要了解数字时钟的基本原理。

数字时钟使用了七段显示器来显示数字,每个数字由七个LED(Light Emitting Diode)组成,分别表示了该数字的不同线条。

为了控制七段显示器显示特定的数字,我们需要设计相应的驱动电路。

1. 数字时钟的驱动电路设计方案a. 时钟信号生成器:数字时钟需要一个稳定的时钟信号来驱动各个单元电路,通常使用晶振电路来生成精确的时钟信号。

b. 时分秒计数器:用于计数时间,并将计数结果转化为可以驱动七段显示器的信号。

时分秒计数器可以使用计数逻辑电路来实现,其中包括触发器和计数器芯片等。

c. 译码器:译码器用于将计数器输出的二进制数据转换为可以驱动七段显示器的控制信号。

根据不同的数字,译码器会选通对应的七段LED。

2. 数字时钟的各单元电路原理说明a. 时钟信号生成器的原理:晶振电路通过将晶振与逻辑电路相连,通过振荡来生成稳定的时钟信号。

晶振的振荡频率决定了时钟的精确度,一般使用32.768kHz的晶振来实现。

b. 时分秒计数器的原理:时分秒计数器使用触发器和计数器芯片来实现,触发器可以保存二进制的计数值,并在时钟信号的作用下进行状态切换。

计数器芯片可以根据触发器的状态进行计数和重置操作。

c. 译码器的原理:译码器根据计数器输出的二进制数据选择对应的七段LED。

七段LED通过加电来显示数字的不同线条,然后通过译码器的工作,将二进制数据转换为驱动七段LED的信号。

通过以上的设计方案和原理说明,我们可以更好地理解数字时钟各单元电路的工作原理。

数字时钟通过时钟信号生成器来提供稳定的时钟信号,时分秒计数器记录并计算时间,译码器将计数结果转化为可以驱动七段显示器的信号。

数字电子钟逻辑电路设计

数字电子钟逻辑电路设计

数字电子钟逻辑电路设计一、简述数字电子钟是一种用数字显示秒、分、时、日的计时装置,与传统的机械钟相比,它具有走时准确,显示直观、无机械传动装置等优点,因而得到了广泛的应用;小到人们日常生活中的电子手表,大到车站、码头、机场等公共场所的大型数显电子钟;数字电子钟的电路组成方框图如图所示;图数字电子钟框图由图可见,数字电子钟由以下几部分组成:石英晶体振荡器和分频器组成的秒脉冲发生器;校时电路;六十进制秒、分计数器,二十四进制或十二进制计时计数器;秒、分、时的译码显示部分等;二、设计任务和要求用中、小规模集成电路设计一台能显示日、时、分、秒的数字电子钟,要求如下:1.由晶振电路产生1Hz标准秒信号;2.秒、分为00~59六十进制计数器;3. 时为00~23二十四进制计数器;4. 周显示从1~日为七进制计数器;5. 可手动校时:能分别进行秒、分、时、日的校时;只要将开关置于手动位置,可分别对秒、分、时、日进行手动脉冲输入调整或连续脉冲输入的校正;6. 整点报时;整点报时电路要求在每个整点前呜叫五次低音500Hz,整点时再呜叫一次高音1000Hz;三、可选用器材1. 通用实验底板2. 直流稳压电源3. 集成电路:CD4060、74LS74、74LS161、74LS248及门电路4. 晶振:32768 Hz5. 电容:100μF/16V 、22pF 、3~22pF 之间6. 电阻:200Ω、10K Ω、22M Ω7. 电位器:Ω或Ω8. 数显:共阴显示器LC5011-119. 开关:单次按键10. 三极管:805011. 喇叭:1 W /4,8Ω四、设计方案提示根据设计任务和要求,对照数字电子钟的框图,可以分以下几部分进行模块化设计;1. 秒脉冲发生器脉冲发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体振荡器发出的脉冲经过整形、分频获得1Hz 的秒脉冲;如晶振为32768 Hz,通过15次二分频后可获得1Hz 的脉冲输出,电路图如图所示;74LS741Hz图 秒脉冲发生器2. 计数译码显示秒、分、时、日分别为60、60、24、7进制计数器、秒、分均为60进制,即显示00~59,它们的个位为十进制,十位为六进制;时为二十四进制计数器,显示为00~23,个位仍为十进制,而十位为三进制,但当十进位计到2,而个位计到4时清零,就为二十四进制了;周为七进制数,按人们一般的概念一周的显示日期“日、1、2、3、4、5、6”,所以我们设计这个七进制计数器,应根据译码显示器的状态表来进行,如表所示;按表状态表不难设计出“日”计数器的电路日用数字8代替;所有计数器的译码显示均采用BCD—七段译码器,显示器采用共阴或共阳的显示器;表状态表3.校时电路在刚刚开机接通电源时,由于日、时、分、秒为任意值,所以,需要进行调整;置开关在手动位置,分别对时、分、秒、日进行单独计数,计数脉冲由单次脉冲或连续脉冲输入;4.整点报时电路当时计数器在每次计到整点前六秒时,需要报时,这可用译码电路来解决;即当分为59时,则秒在计数计到54时,输出一延时高电平去打开低音与门,使报时声按500Hz频率呜叫5声,直至秒计数器计到58时,结束这高电平脉冲;当秒计数到59时,则去驱动高音1KHz频率输出而鸣叫1声;五、参考电路数字电子钟逻辑电路参考图如图所示;图数字电子钟逻辑电路参考图六、参考电路简要说明1. 秒脉冲电路由晶振32768Hz经14分频器分频为2Hz,再经一次分频,即得1Hz标准秒脉冲,供时钟计数器用;2. 单次脉冲、连续脉冲这主要是供手动校时用;若开关K1打在单次端,要调整日、时、分、秒即可按单次脉冲进行校正;如K1在单次,K2在手动,则此时按动单次脉冲键,使周计数器从星期1到星期日计数;若开关K1处于连续端,则校正时,不需要按动单次脉冲,即可进行校正;单次、连续脉冲均由门电路构成;3. 秒、分、时、日计数器这一部分电路均使用中规模集成电路74LS161实现秒、分、时的计数,其中秒、分为六十进制,时为二十四进制;从图3中可以发现秒、分两组计数器完全相同;当计数到59时,再来一个脉冲变成00,然后再重新开始计数;图中利用“异步清零”反馈到/CR端,而实现个位十进制,十位六进制的功能;时计数器为二十四进制,当开始计数时,个位按十进制计数,当计到23时,这时再来一个脉冲,应该回到“零”;所以,这里必须使个位既能完成十进制计数,又能在高低位满足“23”这一数字后,时计数器清零,图中采用了十位的“2”和个位的“4”相与非后再清零;对于日计数器电路,它是由四个D触发器组成的也可以用JK触发器,其逻辑功能满足了表1,即当计数器计到6后,再来一个脉冲,用7的瞬态将Q4、Q3、Q2、Q1置数,即为“1000”,从而显示“日”8;4.译码、显示译码、显示很简单,采用共阴极LED数码管LC5011-11和译码器74LS248,当然也可用共阳数码管和译码器;5.整点报时当计数到整点的前6秒钟,此时应该准备报时;图3中,当分计到59分时,将分触发器QH置1,而等到秒计数到54秒时,将秒触发器QL置1,然后通过QL与QH相与后再和1s标准秒信号相与而去控制低音喇叭呜叫,直至59秒时,产生一个复位信号,使QL清0,停止低音呜叫,同时59秒信号的反相又和QH相与后去控制高音喇叭呜叫;当计到分、秒从59:59—00:00时,呜叫结束,完成整点报时;6.呜叫电路呜叫电路由高、低两种频率通过或门去驱动一个三极管,带动喇叭呜叫;1KHz和500Hz从晶振分频器近似获得;如图中CD4060分频器的输出端Q5和Q6;Q5输出频率为1024Hz,Q6输出频率为512Hz;。

AT89C2051数字电子钟的设计

AT89C2051数字电子钟的设计

AT89C2051数字电子钟的设计一、设计任务与要求1.通过单片机技术使 LED 数码管输出显示时间。

2. 可通过按键设置闹钟功能,且停闹无须手工操作。

3. 提高计时精度,使计时误差最小。

4. 通过键盘 2 个键,从左到右依次标名为 SET,DOWN,UP,ENTER, 用来修改和设置系统时钟。

二、方案设计与论证其主要设计思想是:整个系统用单片机为中央控制器,由单片机执行采集时钟芯片的时间信号并通过显示模块来输出信号及相关的控制功能。

时钟芯片产生时钟信号,利用单片机的 I/O 口传给单片机;并通过 I/O 口实现 LCD 的显示。

系统设有 4 个按键可以对时间星期年月日进行调整,还可以设置闹钟。

本电路以一片AT89C2051 单片机为主体,其显示数据从P3.0-P3.7 口输出,P1 口输出对应的六位位选信号。

电子钟程序设计时使用了 T0 作为计时,T1 为调整时显示用。

只要对程序稍加更改,可以很容易的实现 8 路定时功能。

电子钟只用一个轻触式按键来完成所有的设置。

为了使闹钟音量足够大,采用了 PNP 型三极管 8550 来驱动蜂鸣器,驱动电阻用 1K 的,蜂鸣器为 5V 小型蜂鸣器。

若用 NPN 来驱动蜂鸣器音量要小一点。

LED 数码管位驱动用8850,电子钟采用自制的 3A 开关电源供电。

AT89C205 是一个低电压,高性能 CMOS 8 位单片机,片内含 2k bytes 的可反复擦写的只读 Flash 程序存储器和 128 bytes 的随机存取数据存储器(RAM),器件采用 ATMEL 公司的高密度、非易失性存储技术生产,兼容标准 MCS-51 指令系统,片内置通用 8 位中央处理器和 Flash 存储单元,功能强大。

但它只有 20 个引脚,15 个双向输入/输出(I/O)端口,其中 P1 是一个完整的 8 位双向 I/O 口,两个外中断口,两个 16 位可编程定时计数器,两个全双向串行通信口,一个模拟比较放大器。

多功能数字钟电路设计

多功能数字钟电路设计

多功能数字钟电路设计
1.时钟显示:设计一个数字时钟显示电路,可以显示当前的时间(小
时和分钟)。

可以使用七段显示器来显示数字。

2.闹钟功能:设计一个闹钟功能,可以设置闹钟时间,并在到达闹钟
时间时发出提示声音或闹铃。

3.温度显示:设计一个温度传感器电路,并将当前温度显示在数字时
钟上。

4.日历功能:设计一个日历功能,可以显示当前的日期和星期。

5.定时器功能:设计一个定时器功能,可以设置一个特定的时间间隔,并在到达时间间隔时发出提示声音或闹铃。

6.闹钟休眠功能:设计一个闹钟休眠功能,可以设置一个特定的时间
间隔,在此时间间隔内按下按钮可以将闹钟功能暂时关闭。

7.闹钟重复功能:设计一个闹钟重复功能,可以设置一个特定的时间
间隔,使闹钟在每天相同的时间段重复响铃。

8.亮度调节功能:设计一个亮度调节功能,可以调整数字时钟的显示
亮度。

这些功能可以根据需求进行组合设计,可以使用逻辑门、计数器、显
示器驱动器、温度传感器、按钮等元件来完成电路设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

59 分显示器 译码器 分计数器 校时电路
分频器
59 秒显示器 译码器 秒计数器
秒脉冲
三、主体电路的设计与装调
主体电路是由功能部件或单元电路组成的。在设计这些电路或选择部件时,尽量 选用同类型的器件,如所有功能部件都采用TTL集成电路或都采用CMOS集成电路。整 个系统所用的器件种类应尽可能少。下面介绍各功能部件与单元电路的设计。
分十位 Q0
&Leabharlann Q21分个位 Q0 Q3
&
秒十位 Q0
1
Q2
秒个位 Q0
1kHz
&
秒个位 Q3
1
&
& 500Hz
只有当 分十位的Q2M2Q0M2=11 分个位的Q3M1Q0M1=11
秒十位的Q2S2Q0S2=11 秒个位的Q0S1=1时 音 &1响 电 音响电路才能工作 路
3. 报整点时数电路的设计 报整点时数电路的功能是:每当数字钟计时到整点时发出音响,且几点响几声。实现这一功能的电 路主要由以下几部分组成:
校时电路原理图
四、功能扩展电路的设计 定时控制电路的设计 仿广播电台正点报时电路的设计 报整点时数电路的设计 触摸报整点时数电路的设计
1. 定时控制电路的设计
数字钟在指定的时刻发出信号,或驱动音响电路“闹时”;或对某装置的电源进行接通 或断开“控制”。
不管是闹时还是控制,都要求时间准确,即信号的开始时刻与持续时间必须满 足规定的要求。
1. 定时控制电路的设计 所以闹时控制信号Z的表达式为
Z (2 Q 1 Q 0 ) H (1 2 Q 0 ) M (3 2 Q Q 0 ) M M 1
式中,M为上午的信号输出,要求M=1
如果用与非门实现上式所表示的逻辑功能,则可以将Z进行布尔代数变换,即
1. 定时控制电路的设计
Q0 时个位 Q1
1. 定时控制电路的设计
例 要求上午7时59分发出闹时信号,持续时间为1分钟。 解 7时59分对应数字钟的时个位计数器的状态为(Q3Q2Q1Q0)H1=0111,分十位计数器的 状态为(Q3Q2Q1Q0)M2=0101,分个位计数器的状态为(Q3Q2Q1Q0)M1=1001。若将上述计数 器输出为“1”的所有输出端经过与门电路去控制音响电路,可以使音响电路正好在7点 59分响,持续1分钟后(即8点时)停响。
1. 振荡器的设计
振荡器是数字钟的核心。振荡器的稳定度及频率的精确度决定了数字钟计时的准 确程度,通常选用石英晶体构成振荡器电路。一般来说,振荡器的频率越高,计时精 度越高。
1. 振荡器的设计
如图所示为晶体振荡器电路, 常取晶振的频率为32768Hz,经分 频 电路,可得到1Hz的标准脉冲
1
RF 22M
500Hz的低音频信号等
电台报时用的1kHz的高音频信号和
选用3片中规模集成电路计数器74LS90可以完成上述功能 因每片为1/10分频,3片级联则可获得所需要的频率信号 即第1片的Q0端输出频率为500Hz,第2片的Q3端输出为10Hz,第3片的Q3端输出为1Hz
74LS90十进制计数器
异步清零R01、R02 异步置9端R91、R92 计数时: R01或R02为低电平
设计数字时钟电路设计课件
1
一、设计课题:多功能数字时钟电路
功能要求: (1)基本功能(必做)
①准确计时,以数字形式显示时、分、秒的时间 ②小时的计时要求“24翻1”,分和秒要求60进位 ③校正时间 (2)扩展功能(选做) ①定时控制 ②报整点时数
二、数字时钟原理 23
时显示器 译码器 时计数器
振荡器
Q2
M
分十位
Q0 Q2
分个位
Q0 Q3
& & 74LS20
+5V
& RL 3.3k
Z
&
&
& 74LS00
1kHz
74LS03
+5V
22 1k
3DG130
8 音响电路
2. 仿广播电台正点报时电路的设计
仿广播电台正点报时电路的功能要求是: 每当数字钟计时快要到正点时发出声响; 通常按照4低音1高音的顺序发出间断声响; 以最后一声高音结束的时刻为正点时刻。
减法计数器 完成几点响几声的功能。即从小时计数器的整点开始进行减法计数,直到零 为止。
编码器 将小时计数器的5个输出端Q4、Q3、Q2、Q1、Q0按照“12翻1”的编码要求转换为减 法计数器的4个输入端D3、D2、D1、D0所需的BCD码。
4.译码器和显示器 采用74LS48译码,与8421编码器配合
BI、LT应为高电平
七段LED共阴极显示器
5. 校时电路的设计
当数字钟接通电源或者计时出现误差时,需要校正时间(或称校时) 校时是数字钟应具备的基本功能。一般电子手表都具有时、分、秒等校时功能 为使电路简单,这里只进行分和小时的校时
5.校时电路 采用74LS00(四—二与非门)74LS04(六反相器)
及R91或R92为低电平 或全部低电平
QA与CKB相连
3.计数器 秒、分为60进制计数器,时为24进制计数器
(1) 60进制计数器 由十进制和六进制级联而成。十进制由74LS90组成,六进制由74LS92组成,引脚图如 下:
异步清零R01、R02 计数时: R01或R02为低电平 QA与CKB相连
JT
32768Hz C1 3/22pF
1 vo
R 150k
C2 20pF
1.振荡器的设计 本课题采用集成电路定时器555与RC组成 多谐振荡器,一方面是为了练习555集成 块的使用,同时可节省器材。
f 1.43 RC 1
C2用来滤除电源电流跳变引入的高 频干扰
2.分频器
分频器的功能主要有两个: a.产生标准秒脉冲信号 b.提供功能扩展电路所需要的信号,如仿
74LS92十二进制计数器
60进制计数器连线图
74LS92六分频接线: Q3 Q2 Q1 Q0 0 1 0 1 (5) 1 0 0 0 (6)
(2)二十四进制计数器
当:“24”时,两集成块的R01、R02均为“1”,两计数器清零
Q3 Q2 Q1 Q0
Q3 Q2 Q1 Q0
0 0 1 0 (2) 0 1 0 0 (4)
2. 仿广播电台正点报时电路的设计 秒个位计数器状态
设4声低音(约500Hz)分别发生在59分51秒、53秒 、55秒及57秒,最后一声高音(约1kHz)发生在59分 59秒,它们的持续时间均为1秒。由表可得
Q 3S1
“ 0”时 50H , 0音 z 响输 “ 1”时 1KH , 音 z 响输
2. 仿广播电台正点报时电路的设计
相关文档
最新文档