自喷系统水力计算
自动喷水灭火系统水力计算中作用面积法的计算过程

自动喷水灭火系统水力计算中作用面积法的计算过程嘿,咱今儿就来唠唠自动喷水灭火系统水力计算里那作用面积法的计算过程哈。
你想啊,这自动喷水灭火系统就像是个守护小天使,关键时候能派上大用场呢!而作用面积法呢,就是咱搞定它的一个重要法门。
首先呢,咱得确定那个关键的作用面积。
这就好比是给小天使划定一个战斗区域,得选对地方呀!这个面积可不是随便选的,得根据规范和实际情况来敲定。
然后呢,在这作用面积里,咱要把喷头们都考虑进去。
每个喷头都像是个小战士,它们得协同作战呢!计算它们的喷水强度呀,水流速度啥的,可都得仔细着来。
接着呢,咱还得算一算管道里的水流情况。
这就好比是给小天使修了条输送能量的通道,得保证水能够顺畅地流到该去的地方,可不能在半道上堵住啦。
再然后呢,根据这些计算结果,咱来确定水泵的压力和流量。
这水泵就像是小天使的力量源泉,得给它足够的劲儿,才能让灭火工作顺利进行呀!你说这计算过程是不是挺有意思的?就好像搭积木一样,一块一块地往上堆,最后搭成一个坚固的城堡。
而且啊,这作用面积法的计算过程可不能马虎,每一个步骤都得认真对待。
要是稍微出点差错,那后果可不堪设想呀!就像走钢丝一样,得小心翼翼地保持平衡。
咱再想想,如果计算不准确,到时候真起火了,这自动喷水灭火系统没发挥好作用,那得多糟糕呀!那损失可就大啦!所以说呀,咱得把这个计算过程搞得明明白白的。
总之呢,自动喷水灭火系统水力计算中的作用面积法的计算过程虽然有点复杂,但咱只要认真对待,就一定能搞定它!让咱的小天使在关键时刻发挥出最大的威力,保护好我们的生命和财产安全!这多重要呀,是不是?咱可不能小瞧了它哟!。
喷淋水力计算

Kc—流速系数(m/L)4/(1000*3、14*d2)
镀锌钢管管径(mm)
150
Kc(m/L)
5、852
3、105
1、883
1、054
0、796
0、471
0、284
0、201
0、115
0、075
0、053
管道得局部水头损失,宜采用当量长度法计算:
hj=ALdh=i*L=0、0000107*V2/d1、3*L=0、0000107*(KC*Q)2/d1、3*L=0、0000107*KC2*Q2/d1、3*L=(0、0000107*KC2/d1、3)*Q2*L =A*Q2*L
0、0008623
0、00003395
表 当量长度表(m)
管件名称
管件直径(mm)
25
32
4
25
150
45º弯头
0、3
0、3
0、6
0、6
0、9
0、9
1、2
1、5
2、1
90º弯头
0、6
0、9
1、2
1、5
1、8
2、1
3、1
3、7
4、3
三通或四通
1、5
1、8
2、4
3、1
3、7
4、6
6、1
7、6
9、2
蝶阀
1、8
按照这个理念,由于喷头布置间距一样,只要最不利点喷头与其周围3个喷头围成得面积内喷水强度大于等于85%规范规定得喷水强度,则作用面积内得任何四个喷头都会满足这个要求,由此得出
q/L2≥85%*8L/min·m2;又有
则P≥0、0585Mpa=0、06Mpa
1、水力计算
自动喷水灭火系统管网的水力计算及程序实现

自动喷水灭火系统管网的水力计算及程序实现目前水力计算方法有二类:一.面积计算法:首先确定最不利位置作用面积,然后按各喷头出水量(按最不利点喷头出水量计)均相等计算作用面积内的喷水量,作用面积后的管段流量不再增加,仅计算管道的水头损失.二.特性系数法:作用面积内每个喷头喷水量按喷头处的水压计算确定.具体计算步骤参见有关技术书籍,本文不作详细讨论.当采用特性系数法,不同方向计算至同一点出现不同压力时,低压力方向管段的流量应根据该点的高压值进行修正.实际工程中,面积计算法适用于初步设计或一些不需要精确数据的场合;而特性系数法适用于绝大多数场合,且能得到较为精确的数据.从现有的资料看,特性系数法的误差主要来自于其修正过程.手册中提供的修正式是:H1/H2=Q12/Q22 Q2=Q1√(H2/H1)(1)式中Q2---- 所求低压方向管段的修正后的流量(l/s).H1---- 低压方向管段计算至此点的压力(mH2O).Q1---- 低压方向管段计算至此点的流量(l/s).H2---- 高压方向管段计算至此点的压力(mH2O).也有的把这种修正式变化为“管道特性系数法”(具体见有关参考书).这种方法把流量的平方和压力看成是简单的线性关系,显然有一定的误差.倘若各管段采用了不同口径不同类型的喷头时,误差更大.因此,有人提出了另一种修正方法,即“倒推法”:Q12=B1H1Q22=B2H2...Qn2=BnHn(2)式中Q---- 低压方向管段上某喷头流量(l/s)B---- 低压方向管段上某喷头特性系数H---- 低压方向管段上某喷头处压力(mH2O)设该修正点高压为Hm,低压方向管段最后一段管长为ln,管道比阻为An,则可得Hm=Hn+AnlnQn2(3)将(3)式,(2)式结合公式Hn=Hn-1+An-1ln-1Qn-12倒推至H1,即可得在修正点高压为Hm时,低压方向管段最不利点的确切水压H1.最终可得到修正后的精确流量.该方法用手工计算极为繁琐,一般通过计算机编程,选用有效的算法加以解决.针对倒推法的复杂,笔者认为:若手算,要得到精确的结果,采用手册提供的特性系数修正式(1)便可满足要求;若是计算机编程实现精确计算,不妨采用以下思路:1.确定精度;2.将修正点的高压值与低压值比较;3.若比较后达到精度要求,则完成计算,可得出精确的流量,否则进行下一步;4.在高压值与低压方向最不利点压力值之间取一个值赋予低压方向管段的最不利点;。
解析建筑消防中自动喷水灭火系统与水力计算

解析建筑消防中自动喷水灭火系统与水力计算随着现代建筑技术的不断发展,消防安全机制也日益完善。
在建筑消防系统的设计中,自动喷水灭火系统是一个非常重要的组成部分,它能够在火灾发生时自动释放水源,快速灭火。
同时,为了确保自动喷水灭火系统能够有效运作,水力计算也是不可或缺的环节。
一、自动喷水灭火系统1.1 概述自动喷水灭火系统是一种建筑火灾自动灭火系统,它是由喷水控制器、自动火灾报警装置、喷头等组成。
当火灾发生时,自动喷水灭火系统可以自动启动,并释放具有足够威力的水流压力,将火灾扑灭。
它广泛应用于各类公共场所、商业建筑、工业厂房及住宅区等。
1.2 自动喷水灭火系统的优点自动喷水灭火系统具有以下几个优点:(1)自动启动:当火灾发生时,它能够自动启动,不需要人为干预。
(2)快速反应:使火灾迅速被扑灭,降低火灾造成的损失。
(3)可靠性高:自动喷水灭火系统采用高品质的材料制造,能够在长时间的使用中保证其稳定性和可靠性。
1.3 自动喷水灭火系统的分类根据其使用的水源和喷头类型,自动喷水灭火系统可以分为以下几类:(1)干式喷水灭火系统:使用气体储存罐作为压力源,释放气体驱动水流进入灭火区域。
(2)湿式喷水灭火系统:使用公共供水系统作为压力源,喷头在火灾时释放水流进行灭火。
(3)预动式喷水灭火系统:介于干式和湿式之间,是一种在火情出现之前泵入少量水的消防系统。
1.4 自动喷水灭火系统的喷头种类自动喷水灭火系统的喷头是非常重要的部分,常见的喷头种类有:(1)遮盖型喷头:适用于半开放的空间或固定物体,它可以把水流喷出很远并散开。
(2)喷洒型喷头:适用于固定的、能够承受喷头施加的压力的物体上,如大型机器等。
(3)喷雾型喷头:适用于容易燃烧的物品上,能够将水分散成雾状,增加水分的覆盖面积。
二、水力计算水力计算是自动喷水灭火系统中非常重要的环节,它是确保系统正常工作的基础。
水力计算主要包括两个方面:水流计算和压力计算。
2.1 水流计算水流计算是指计算自动喷水灭火系统中所需的水流量。
自喷系统水力计算

自喷系统水力计算应注意的几个问题蓝为平摘要:对自动喷水灭火系统水力计算过程中最不利点喷头工作压力、管径等几个问题进行探讨,并提出一些建议,以便确定合理的计算结果。
关键词:自动喷水灭火系统水力计算工作压力在自动喷水灭火系统工程设计中,设计人员对火灾危险级别选定、喷头布置、报警阀控制喷头数量等很重视,但往往忽视了水力计算,主要有以下几个问题:一是没有根据规范的流量公式计算,而是以旧规范的作用面积乘以喷水强度来估算系统设计流量;二是系统压力仅根据建筑高度加上估计的水头损失,而不是根据喷头进行逐点计算;三是认为最不利点喷头压力应为0.05MPa(规范要求的最小压力);四是一味强调配水支管压力不能超过0.4MPa。
但笔者在工作中发现,根据现行规范公式进行计算得出的压力、流量数值与经验估算或老规范计算方法均相差较大,最不利点喷头压力也不应简单定为0.05MPa,配水管压力并非不能超过0.4MPa。
现对自喷系统水力计算进行举例说明,因出现分歧的地方主要是作用面积内的计算结果,所以本文仅比较作用面积内的计算过程。
首先按理论间距布置喷头,再根据计算结果对管径、喷头压力进行比较、调整,最后以实际工程进行核算,以期找出合理的管径、压力。
根据不同建筑类型,自喷系统分为6个危险级别,民用建筑设计中经常遇到的有轻危险级、中危险级Ⅰ级、Ⅱ级。
现以中危险级Ⅱ级为例,其设计参数为:喷水强度8L/(min.m2),计算作用面积160 m2,最不利点喷头工作压力不小于0.05MPa,正方形布置喷头间距不大于3.4m。
先按标准间距布置喷头,且以规范建议的喷头数采用管径,喷头布置如下图(配水管两边喷头对称布置,实际作用面积为173m2):1、最不利点喷头工作压力的确定规范要求不得小于0.05MPa,且需经水力计算确定。
本例先取0.05MPa,用水力计算软件计算结果见下表:前编号后编号流量(l/s)调整q(l/s)管径(DN)流速(m/s)坡度(MPa/m)管长(m)流量系数管件当量(m)计算管长(m)水损(MPa)前压(MPa)后压(MPa)1 2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.06552 3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.08623 4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.11514 5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.17185 6 6.44 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.19536 7 6.44 65 1.83 0.00120 3.40 80 4.20 7.60 0.0091 0.1953 0.20447 8 13.02 80 2.62 0.00198 3.40 80 5.20 8.60 0.0170 0.2044 0.22148 9 19.88 80 4.00 0.00461 3.40 80 4.60 8.00 0.0369 0.2214 0.2583A1 A2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.0655 A2 A3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.0862 A3 A4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.1151 A4 A5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.1718 A5 7 6.44 6.59 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.1953B1 B2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.0655 B2 B3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.0862 B3 B4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.1151 B4 B5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.1718 B5 8 6.44 6.86 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.1953 根据规范,中危险级Ⅱ级最不利作用面积内任意4个喷头围合范围内平均喷水强度不小于85%的设计强度,即6.8 L/min.m2。
自动喷水灭火系统支管特性系数水力计算法

自动喷水灭火系统支管特性系数水力计算法摘要鉴于目前常用的自动喷水灭火系统特性系数水力计算法所存在的缺陷,在理论推导了配水支管起端水压与同支管末端喷头出流量关系的基础上,提出了支管特性系数水力计算法,并介绍了利用EXCEL软件简化计算的方法。
关键词自动喷水灭火系统;支管特性系数水力计算法;EXCELHydraulic Calculation Method on Range Pipe Characteristic Coefficient for Fire Protection SprinklerSystemAbstract:Due to a defect in the common hydraulic calculation method of fire protection sprinkler system on characteristic coefficient,hydrauliccalculation method on range pipe characteristic coefficient is put forward basedon theoretical deduction on relationship between pressure at starting point of arange pipe and nozzle flow at the end of the pipe,also by using software ofEXCEL ways are introduced to simplify calculation.Key words:Fire Protection Sprinkler System;Hydraulic Calculation Method on Range Pipe Characteristic Coefficient;EXCEL1 问题的提出便捷准确、便于设计人员应用的自动喷水灭火系统的水力计算方法,对于提高设计质量、保证系统在火灾时有效运行具有重要意义。
建筑消防系统:自动喷水灭火系统的水力计算

在火灾报警后,先注入一小量水,然后再启动 喷头的建筑消防系统。
湿管系统
使用充满水的管道连接到喷头的建筑消防系统。
雨淋系统
适用于火灾可能造成严重损失的危险场所,如 计算机房、电力仪表室等。
自动喷水灭火系统的需求
1 自动喷水灭火系统的作用
自动检测并启动灭火装置,控制火势蔓延。
2 建筑消防系统中的自动喷水灭火系统的重要性
建筑消防系统:自动喷水灭火 系统的水力计算
欢迎来到本次分享!了解建筑消防系统和自动喷水灭火系统的水力计算是确 保建筑安全的重要一环。
什么是建筑消防系统
建筑消防系统是一系列用于预防和应对火灾的设备和措施。它包括消火栓系 统、自动喷水灭火系统、火灾报警系统等。
不同类型的建筑消防系统
干管系统
使用干管直接连接到喷头的建筑消防系统。
为火灾扑灭提供关键的灭火手段。
水力计算的基本原理
1 水力计算的定义和目的
通过计算水流速度和压力,确保喷头能提供足够的水量来灭火。
2 水力计算的基本参数
包括消火栓系统的供水压力、管道直径、喷头的喷水角度和距离等。
自动喷水灭火系统的水力计算方法
1
水流速度和压力的计算
2
根据建筑平面图和系统参数计算出水流
速度和压力。
3实践Βιβλιοθήκη 的挑战4水力计算需要考虑各种因素,如管道阻 力、材料摩擦等,需要经验和专业知识。
常用的水力计算方法
根据具体的建筑要求和消防设计规范选 择适当的计算方法。
实际案例分析
通过分析实际案例,了解水力计算在消 防系统设计中的应用。
建筑消防系统:自动喷水灭火系统的水力计算

2、特性系数法:严重、仓库危险级 (1)确定作用面积的位置,计算作用面积的边长 矩形(长边//支管)
(2)计算作用面积内的喷头数 (3)确定第一个喷头出流量
精品文档
(4)计算管段流量
精品文档
(5)确定DN 同作用面积法 (6)计算水头损失,确定H 同作用面积法 3、减压措施 (1)减压孔板:87页图3.4.1( a ) (2)节流管: 87页图3.4.1( b ) (3)减压阀:报警阀组入口前;过滤器
相邻配水支管之间距离 4、作用面积与设计喷水保护的最大面积 矩形(长边//支管)
例
5、设计喷水强度(L/min.m2)
3.4.2 管网水力计算
目的: 1)确定DN 2)确定H 3)选择升压贮水设备 前提: 1)完成平面布置;绘制系统草图 2)确定设计参数
精品文档
1、作用面积法:轻、中危险级 (1)确定作用面积的位置,计算作用面积的边长 矩形(长边//支管)
例
(2)计算作用面积内的喷头数 (3)确定喷头出流量
精品文档
(4)计算作用面积内的设计秒流量
(5)校核喷水强度
a)平均喷水强度
规定值
b)作用面积内任意4个喷头平均喷水强度 轻、中 ≥85%规定值
(6)计算管段流量,确定DN 初步设计时估算:90页表3.4.4 水力计算:q→DN,i(经济流速;v≤10m/s) (7)计算水头损失,确定H 沿程
3.6
4.0
12.5
1.8
8
3.4
3.6
11.5
1.7
≥12
3.0
3.6
9.0
1.5
民用建筑和工业厂房的系统设计基本参数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自喷系统水力计算应注意的几个问题蓝为平摘要:对自动喷水灭火系统水力计算过程中最不利点喷头工作压力、管径等几个问题进行探讨,并提出一些建议,以便确定合理的计算结果。
关键词:自动喷水灭火系统水力计算工作压力在自动喷水灭火系统工程设计中,设计人员对火灾危险级别选定、喷头布置、报警阀控制喷头数量等很重视,但往往忽视了水力计算,主要有以下几个问题:一是没有根据规范的流量公式计算,而是以旧规范的作用面积乘以喷水强度来估算系统设计流量;二是系统压力仅根据建筑高度加上估计的水头损失,而不是根据喷头进行逐点计算;三是认为最不利点喷头压力应为0.05MPa(规范要求的最小压力);四是一味强调配水支管压力不能超过0.4MPa。
但笔者在工作中发现,根据现行规范公式进行计算得出的压力、流量数值与经验估算或老规范计算方法均相差较大,最不利点喷头压力也不应简单定为0.05MPa,配水管压力并非不能超过0.4MPa。
现对自喷系统水力计算进行举例说明,因出现分歧的地方主要是作用面积内的计算结果,所以本文仅比较作用面积内的计算过程。
首先按理论间距布置喷头,再根据计算结果对管径、喷头压力进行比较、调整,最后以实际工程进行核算,以期找出合理的管径、压力。
根据不同建筑类型,自喷系统分为6个危险级别,民用建筑设计中经常遇到的有轻危险级、中危险级Ⅰ级、Ⅱ级。
现以中危险级Ⅱ级为例,其设计参数为:喷水强度8L/(min.m2),计算作用面积160 m2,最不利点喷头工作压力不小于0.05MPa,正方形布置喷头间距不大于3.4m。
先按标准间距布置喷头,且以规范建议的喷头数采用管径,喷头布置如下图(配水管两边喷头对称布置,实际作用面积为173m2):1、最不利点喷头工作压力的确定规范要求不得小于0.05MPa,且需经水力计算确定。
本例先取0.05MPa,用水力计算软件计算结果见下表:前编号后编号流量(l/s)调整q(l/s)管径(DN)流速(m/s)坡度(MPa/m)管长(m)流量系数管件当量(m)计算管长(m)水损(MPa)前压(MPa)后压(MPa)1 2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.06552 3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.08623 4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.11514 5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.17185 6 6.44 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.19536 7 6.44 65 1.83 0.00120 3.40 80 4.20 7.60 0.0091 0.1953 0.20447 8 13.02 80 2.62 0.00198 3.40 80 5.20 8.60 0.0170 0.2044 0.22148 9 19.88 80 4.00 0.00461 3.40 80 4.60 8.00 0.0369 0.2214 0.2583A1 A2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.0655 A2 A3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.0862 A3 A4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.1151 A4 A5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.1718 A5 7 6.44 6.59 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.1953B1 B2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.0655 B2 B3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.0862 B3 B4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.1151 B4 B5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.1718 B5 8 6.44 6.86 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.1953 根据规范,中危险级Ⅱ级最不利作用面积内任意4个喷头围合范围内平均喷水强度不小于85%的设计强度,即6.8 L/min.m2。
本处计算4个喷头,编号为1、2、A1、A2,它们围合范围内的喷水强度是[0.94+(2.02-0.94)+0.94+(2.02-0.94)]×60/46.24=5.24L/min.m2<6.8 L/min.m2所以最不利点喷头工作压力0.05MPa不能满足规范要求,经多次试算后,最不利点喷头工作压力取0.09MPa,计算结果如下表:前编号后编号流量(l/s)调整q(l/s)管径(DN)流速(m/s)坡度(MPa/m)管长(m)流量系数管件当量(m)计算管长(m)水损(MPa)前压(MPa)后压(MPa)1 2 1.26 25 2.38 0.00698 3.40 80 0.60 4.00 0.0279 0.0900 0.11792 3 2.71 32 2.86 0.00690 3.40 80 2.00 5.40 0.0373 0.1179 0.15523 4 4.37 40 3.48 0.00851 3.40 80 2.70 6.10 0.0519 0.1552 0.20714 5 6.29 40 5.01 0.01762 3.40 80 2.40 5.80 0.1022 0.2071 0.30935 6 8.64 50 4.07 0.00826 1.70 80 3.40 5.10 0.0421 0.3093 0.35156 7 8.64 65 2.45 0.00216 3.40 80 4.20 7.60 0.0164 0.3515 0.36787 8 17.47 80 3.52 0.00357 3.40 80 5.20 8.60 0.0307 0.3678 0.39858 9 26.67 80 5.37 0.00831 3.40 80 4.60 8.00 0.0664 0.3985 0.4650A1 A2 1.26 25 2.38 0.00698 3.40 80 0.60 4.00 0.0279 0.0900 0.1179 A2 A3 2.71 32 2.86 0.00690 3.40 80 2.00 5.40 0.0373 0.1179 0.1552 A3 A4 4.37 40 3.48 0.00851 3.40 80 2.70 6.10 0.0519 0.1552 0.2071 A4 A5 6.29 40 5.01 0.01762 3.40 80 2.40 5.80 0.1022 0.2071 0.3093 A5 7 8.64 8.84 50 4.07 0.00826 1.70 80 3.40 5.10 0.0421 0.3093 0.3515B1 B2 1.26 25 2.38 0.00698 3.40 80 0.60 4.00 0.0279 0.0900 0.1179 B2 B3 2.71 32 2.86 0.00690 3.40 80 2.00 5.40 0.0373 0.1179 0.1552 B3 B4 4.37 40 3.48 0.00851 3.40 80 2.70 6.10 0.0519 0.1552 0.2071 B4 B5 6.29 40 5.01 0.01762 3.40 80 2.40 5.80 0.1022 0.2071 0.3093B5 8 8.64 9.20 50 4.07 0.00826 1.70 80 3.40 5.10 0.0421 0.3093 0.3515 最不利4个喷头喷水强度为:[1.26+(2.71-1.26)+1.26+(2.71-1.26)]×60/46.24=7.03L/min.m2>6.8 L/min.m2,满足规范要求。
所以中危险级Ⅱ级的最不利点喷头工作压力不应直接取0.05MPa,而应多次试算。
按标准间距布置的喷头,最不利点喷头工作压力为0.09MPa,与旧规范0.1 MPa的数值相差不大。
笔者理解,规范定0.05MPa是考虑到火灾初期系统由高位水箱供水,因客观原因,水箱无法满足规定压力而确定的数值。
2、管径的确定前面经试算确定最不利点喷头工作压力为0.09MPa后,计算得系统设计流量为26.67L/S,作用面积起端(节点8)工作压力为0.3985MPa。
系统流量与大家经验值差不多,但工作压力明显偏大。
问题出在哪呢?仔细观察计算表发现,局部管道水头损失太大,如节点4、5间损失居然达到0.1MPa,很明显是管径偏小造成的。
这说明按规范推荐的管径并不合理,为了节约管材而造成水头损失增大,并进而造成水泵扬程增大、功率增大,不经济也不科学。
笔者对部分管径进行了调整,见下图。
再按最不利点喷头工作压力0.09MPa进行计算,结果见下表:前编号后编号流量(l/s)调整q(l/s)管径(DN)流速(m/s)坡度(MPa/m)管长(m)流量系数管件当量(m)计算管长(m)水损(MPa)前压(MPa)后压(MPa)1 2 1.26 25 2.38 0.00698 3.40 80 0.60 4.00 0.0279 0.0900 0.11792 3 2.71 40 2.16 0.00327 3.40 80 2.70 6.10 0.0200 0.1179 0.13793 4 4.28 40 3.40 0.00814 3.40 80 2.40 5.80 0.0472 0.1379 0.18514 5 6.09 50 2.87 0.00411 3.40 80 3.40 6.80 0.0280 0.1851 0.21315 6 8.04 50 3.79 0.00716 1.70 80 3.10 4.80 0.0344 0.2131 0.24756 7 8.04 80 1.62 0.00075 3.40 80 5.35 8.75 0.0066 0.2475 0.25417 8 16.18 100 1.87 0.00070 3.40 80 6.90 10.30 0.0072 0.2541 0.26138 9 24.45 100 2.82 0.00160 3.40 80 6.10 9.50 0.0152 0.2613 0.2764A1 A2 1.26 25 2.38 0.00698 3.40 80 0.60 4.00 0.0279 0.0900 0.1179 A2 A3 2.71 40 2.16 0.00327 3.40 80 2.70 6.10 0.0200 0.1179 0.1379 A3 A4 4.28 40 3.40 0.00814 3.40 80 2.40 5.80 0.0472 0.1379 0.1851 A4 A5 6.09 50 2.87 0.00411 3.40 80 3.40 6.80 0.0280 0.1851 0.2131 A5 7 8.04 8.15 50 3.79 0.00716 1.70 80 3.10 4.80 0.0344 0.2131 0.2475B1 B2 1.26 25 2.38 0.00698 3.40 80 0.60 4.00 0.0279 0.0900 0.1179 B2 B3 2.71 40 2.16 0.00327 3.40 80 2.70 6.10 0.0200 0.1179 0.1379 B3 B4 4.28 40 3.40 0.00814 3.40 80 2.40 5.80 0.0472 0.1379 0.1851 B4 B5 6.09 50 2.87 0.00411 3.40 80 3.40 6.80 0.0280 0.1851 0.2131 B5 8 8.04 8.26 50 3.79 0.00716 1.70 80 3.10 4.80 0.0344 0.2131 0.2475 可以看到,作用面积起端(节点8)处工作压力为0.2613MPa,设计流量为24.45L/S。