有机硅在建筑业的应用

合集下载

有机硅发展与分析

有机硅发展与分析

有机硅发展与分析有机硅是一种重要的化学物质,具有广泛的应用领域和巨大的市场需求。

在过去的几十年中,有机硅行业经历了快速发展,成为化工行业的重要组成部分。

本文将从有机硅的定义、发展历程、市场状况和应用领域等方面进行分析和探讨。

首先,有机硅是一类化合物,它由硅原子与碳原子及其他原子(如氧、氮等)通过共价键连接而成。

有机硅具有一些独特的物理和化学性质,如良好的耐高温性、耐候性、低表面张力、优异的电绝缘性能等,这些性质使它在许多领域得到广泛应用。

有机硅的发展历程可以追溯到20世纪30年代,当时美国化学家Richard Muller首次合成了硅有机化合物。

随后,随着化学技术和工艺的进一步发展,有机硅逐渐应用于胶水、润滑油、密封材料等领域。

20世纪50年代至60年代,有机硅开始在建筑、电子、汽车等工业中得到大规模应用,有机硅行业进入高速发展阶段。

目前,有机硅市场呈现出快速增长的趋势。

据统计,2024年全球有机硅市场规模约为300亿美元,预计到2027年将达到600亿美元。

中国作为全球最大的有机硅生产和消费国,其市场规模已经超过了100亿元人民币,且年增长率超过10%。

有机硅具有广泛的应用领域。

首先,有机硅在化工领域中被广泛应用于有机合成、涂料和染料、塑料和橡胶增塑等方面。

其次,有机硅在建筑行业中用于防水材料、密封材料、建筑涂料等。

再次,有机硅在电子行业中主要应用于电子封装、导热材料、绝缘材料等方面。

此外,有机硅还被应用于火车、汽车、航空等交通工具的制造和维修领域。

然而,有机硅行业也面临一些挑战和问题。

首先,目前有机硅市场竞争激烈,行业集中度较低,存在很多中小型企业。

其次,有机硅的生产过程中会产生大量的废弃物和环境污染问题,需要加强环保措施。

另外,有机硅的高端产品仍然需要依赖进口,国内企业在技术创新和产品升级方面还有待提高。

为了促进有机硅行业的健康发展,政府部门需要加大对有机硅产业的支持力度,提供资金和政策支持。

有机硅材料有哪些应用?

有机硅材料有哪些应用?

有机硅材料有哪些应用?1.国防高科技上的应用硅橡胶与特种纤维制的复合材料能瞬时耐数千摄氏度高温,是远程运载火箭的耐烧蚀绝热材料如火箭喷管及返回式航天运载器耐烧蚀隔热涂层;耐热、耐寒的硅橡胶用作耐高低温的密封圈等适用于寒区、极地和高空及月球上;作航天、航空运载器耐寒密封条;作太阳能电池用的耐原子氧、耐辐照黏合剂;抗辐照性能好的高苯基硅油与高苯基硅橡胶用于原子能工业和加速器中;难燃硅橡胶绝缘电线电缆用于军舰、飞机等要求高可靠场合;耐油有机硅橡胶腻子作飞机油箱密封;航空航天器用硅油作防冻、耐热的润滑油、液压油、陀螺仪油、仪表油;有机硅涂料用于卫星作为隔热温控涂层,用于飞机作蒙皮漆、耐候漆;有机硅塑料作飞机发动机用耐高电压、强电流、耐电弧的微动开关、耐热、绝缘的支撑架;有机硅凝胶作飞机三合风档玻璃的中间黏合层;耐高温、耐潮湿、不变黄、透光率高达91%;有机硅单体是高性能硅碳纤维及硅氮纤维等的起始原料;有机硅是耐热光导纤维不可缺少的涂覆材料。

2.农业上的应用(1)植物生长促进剂:有生物活性的-种杂氮硅三环,在前苏联已有工业化生产称为米哇尔(MиBaл) ,以其稀水溶液浸种,可促进棉花、蔬菜、玉米、小麦、大豆、土豆、葡萄、豌豆等农作物发芽,提高这些作物的生存能力和产量: 如用于处理棉花种子,可使棉花增产一成,特别是在贫瘠土地和恶劣气候条件下增产效果更为明显:处理小麦和玉米种子,可使小麦增产一成多。

玉米增产可高达一半;栽土豆苗时先在坑中灌入米哇尔水溶液,收获时增重三成多。

处理葡萄苗,在-21°C下成活率近一半。

另有一种称为米古梗(MиryreH) 的杂氮硅三环,对棉花也有类似效果,但水解稳定性差,应用受到限制。

米哇尔和米古梗还可作桑蚕和家禽的生长促进剂。

卤代乙基烃氨基硅烷会产生乙烯对植物起催熟作用,比磷乙烯利药效高、残效期长、毒性小但价格较贵(2)有机硅杀虫剂德国研制成含硅的有机硅杀螨剂,类似已在我国登记使用的、Shell公司推出的、称为托尔克的杀螨剂类似物,药效基本相同。

有机硅cas号

有机硅cas号

有机硅cas号
【原创实用版】
目录
1.介绍有机硅的定义和用途
2.阐述有机硅的化学性质
3.说明有机硅的 CAS 号
4.探讨有机硅的安全性和注意事项
正文
有机硅是一种广泛应用于工业领域的化学物质,它具有很多优良的特性,如耐高温、耐腐蚀、润滑等。

有机硅是一种由硅和氧组成的有机化合物,其化学性质非常稳定,在很多工业生产过程中都可以看到它的身影。

有机硅的 CAS 号是 200-553-5,它是一种无色至微黄色透明或半透明粘稠液体。

有机硅的密度约为 1.06g/cm3,不溶于水,但可溶于醇、醚等有机溶剂。

在工业生产中,有机硅被广泛应用于建筑、电子、纺织、汽车、个人护理等领域。

在建筑中,有机硅可用于防水剂、抗冻剂等;在电子工业中,有机硅可用于绝缘材料和封装材料;在纺织行业中,有机硅可用于柔软剂和抗静电剂;在汽车工业中,有机硅可用于防锈剂和润滑剂;在个人护理产品中,有机硅可用于洗发水、护发素等。

虽然有机硅在工业生产中具有很多优点,但它也具有一定的毒性。

如果人体长期接触有机硅,可能会引发呼吸道疾病、皮肤病等。

因此,在生产和使用有机硅时,需要严格遵守安全操作规程,穿戴好防护设备,避免直接接触。

同时,储存有机硅的地方应保持通风干燥,避免与酸碱物质接触。

总之,有机硅是一种具有很多优良特性的化学物质,它在工业生产中
发挥着重要作用。

有机硅用途

有机硅用途

有机硅用途
有机硅是指含有硅元素的有机化合物,在工业生产中有广泛的用途。

以下是其中几个主要的用途:
1. 电子材料:有机硅用于电子元器件,例如半导体、光伏电池、液晶屏幕等。

2. 化妆品:有机硅在化妆品中作为稳定剂、增稠剂、滑磨剂和保湿剂等。

3. 涂料和塑料:有机硅用于合成聚硅氧烷(SiO2)树脂,其
具有优异的物理性能和化学稳定性,广泛应用于涂料和塑料工业中。

4. 化学试剂:有机硅用于制备其他有机硅化合物,例如硅烷、硅醇、硅氧烷等,是化学试剂的重要原料。

5. 医药工业:有机硅用于制备医用材料,例如医用硅胶、尿袋、导管等。

6. 密封材料:有机硅作为密封剂和胶水,在建筑和机械行业中有广泛应用。

其具有良好的耐高温、耐腐蚀和抗紫外线等性能。

7. 润滑剂:有机硅润滑剂是高性能润滑剂,通常用于高速、高负荷、高温环境下的机械设备和发动机。

其具有优异的抗磨损、耐高温和抗氧化等性能。

有机硅胶用途

有机硅胶用途

有机硅胶用途
有机硅胶是一种高分子材料,具有很多优良的性能,因此在工业和民用领域中有着广泛的应用。

以下是有机硅胶的几个主要用途: 1. 电子工业:有机硅胶具有优异的绝缘性能,而且耐高温、耐寒、耐辐射,因此广泛应用于电子器件的封装、涂覆和粘接。

2. 汽车工业:有机硅胶耐高温、耐油、耐酸碱、耐老化,可以用于汽车制造中的密封、润滑、防水、防尘等方面。

3. 医疗保健:由于有机硅胶无毒、无味、无刺激性,因此可以用于医疗器械和假体的制造,如人工心脏瓣膜、乳房假体等。

4. 建筑和家居:有机硅胶可以用于防水、密封、隔音、减震等方面,在建筑和家居领域中有广泛的应用,如密封玻璃幕墙、防水屋顶、隔音地板等。

5. 化妆品:有机硅胶具有良好的亲水性、保湿性和光滑感,可以用于化妆品的生产中,如口红、粉底、护肤品等。

因为有机硅胶的优异性能和广泛用途,它在各行各业中都有着重要的地位。

- 1 -。

有机硅的作用

有机硅的作用

有机硅的作用有机硅是一类以硅为骨架的有机化合物,其分子中含有碳硅键。

有机硅广泛应用于医药、农业、建筑、汽车、电子等领域,并具有以下重要作用。

首先,有机硅在医药领域有着广泛的应用。

有机硅化合物可以作为药物的携带剂,提高药物的溶解度和稳定性,增强药物的活性。

此外,有机硅还常用于制造医疗器械和人工器官,例如人工关节和人工眼镜等。

有机硅制备的人工器官具有良好的生物相容性和耐用性,可以有效改善患者的生活质量。

其次,有机硅在农业领域起着重要的作用。

有机硅化合物可以用作植物生长调节剂,促进作物生长,提高产量和品质,增强植物的逆境抗性。

有机硅还可以用作农药助剂,改善农药的喷雾效果,提高农药的吸附和附着能力,减少农药的流失,提高农作物的防病防虫效果。

此外,有机硅在建筑领域也有着重要的应用。

有机硅弹性体是一种优异的建筑材料,具有优异的耐候性、耐磨性和耐久性,能够在高温和低温环境中保持高弹性,被广泛用于高速公路、桥梁、地下道、机场跑道等工程中,提高工程的耐久性和安全性。

此外,有机硅还可以用于建筑涂料和密封材料的制造,提高建筑物的防水性和耐候性。

另外,有机硅在汽车行业中也有着重要的应用。

有机硅润滑油具有优异的热稳定性和抗磨性能,能够有效减少发动机的磨损和摩擦,延长发动机的使用寿命;有机硅密封胶具有良好的粘接性和耐高温性,用于汽车玻璃的密封,能够有效防止漏风漏水,提高汽车的密封性和安全性。

最后,有机硅还广泛应用于电子行业。

有机硅涂料可以用于电子元器件的保护,提高元器件的防尘、防潮和耐腐蚀性能,延长元器件的使用寿命;有机硅薄膜可以用于电子显示屏的制造,提高显示屏的对比度和亮度,增强图像的清晰度和真实感。

综上所述,有机硅在医药、农业、建筑、汽车、电子等领域都有着广泛的应用,具有重要的作用。

未来随着科技的不断发展,有机硅的应用领域还将不断拓展,为人类社会的发展和进步做出更大的贡献。

硅的用途及应用

硅的用途及应用

硅的用途及应用硅是一种常见的非金属元素,具有广泛的应用和用途。

在现代科技和工业领域中,硅起着极其重要的作用。

以下将详细介绍硅的用途及应用。

首先,硅的最重要的用途之一是在半导体工业中。

半导体材料是现代电子器件的基础材料,而硅是最主要的半导体材料之一。

硅具有半导体性质,并且在高温下具有良好的稳定性和可靠性。

通过控制硅的纯度和晶体结构,可以制造出各种不同的半导体器件,如晶体管、集成电路、太阳能电池等。

这些器件广泛应用于计算机、通信、电子产品、能源等领域,推动了现代科技的发展。

其次,硅在化工行业中也有重要的应用。

硅含有丰富的有机硅化合物,这些化合物具有很强的化学稳定性和耐高温性能,可以用于制备各种高分子材料。

比如,硅橡胶是一种重要的弹性材料,具有耐高温、耐候性好、电绝缘性能优良等特点,被广泛应用于汽车制造、电子工业、航空航天等领域;硅油则是一种高性能润滑油,可以在极低温到高温条件下稳定使用,被广泛应用于食品、医药、塑料等工业领域。

此外,硅在建筑行业中也有重要的用途。

硅酸盐水泥是建筑和工程中常用的一种材料,其中主要成分是硅酸盐矿物。

硅酸盐水泥具有良好的抗压、抗拉强度和耐久性,可以用于制作混凝土、砂浆、砖块等建筑材料,广泛应用于建筑、道路、桥梁等工程。

此外,硅的高温稳定性和导热性能使其成为制造耐热材料的重要原料。

例如,硅石棉是一种耐热、耐腐蚀的纤维材料,广泛应用于高温烟囱、锅炉、高温设备的隔热和保温。

另外,硅碳化物和氮化硅是高性能陶瓷材料,具有高硬度、高热导率、耐高温等特点,适用于电子器件封装、切削工具等领域。

此外,硅还在化学试剂、玻璃制造、冶金工业、环保等领域发挥作用。

硅酸盐和硅沙可以用于制备玻璃制品,硅能够与氧化铝、氢氧化钠等反应生成高纯度的二氧化硅,这种材料具有良好的光学性能和机械性能,被广泛应用于光学镜片、触摸屏、平板显示器等高科技产品中。

综上所述,硅具有广泛的应用和用途。

从半导体材料到高温耐热材料、从弹性材料到高性能陶瓷,硅在现代科技和工业领域发挥着重要作用,在推动科技进步和经济发展中发挥了重要作用。

涂料有机硅

涂料有机硅

涂料有机硅涂料有机硅是一种新型的涂料材料,具有优异的耐候性和化学稳定性,被广泛应用于建筑、汽车、船舶等领域。

有机硅涂料的出现,不仅改变了传统涂料的施工方式和性能表现,还为涂料行业带来了巨大的发展机遇。

有机硅涂料的核心原料是有机硅树脂,这是一种由有机硅单体聚合而成的高分子化合物。

有机硅树脂具有极强的附着力和耐磨性,使涂料具有优异的耐候性和耐化学性能。

此外,有机硅涂料还具有优异的防水性能和抗紫外线能力,能够有效延长涂料的使用寿命。

有机硅涂料在建筑领域得到了广泛应用。

由于建筑外墙长期受到紫外线、酸雨等自然环境的影响,传统涂料容易出现开裂、脱落等问题。

而有机硅涂料的耐候性和化学稳定性优异,能够有效抵御外界环境的侵蚀,使建筑外墙持久保持美观。

此外,有机硅涂料还具有极佳的耐污性能,使建筑外墙长期保持清洁,减少了清洁和维护成本。

在汽车领域,有机硅涂料也得到了广泛应用。

汽车表面经常受到高温、高速风刮等因素的影响,传统涂料容易因此褪色和起泡。

有机硅涂料具有优越的耐高温性能和耐候性能,能够有效保护汽车表面免受外界环境的侵蚀。

此外,有机硅涂料的超强光泽效果,使汽车表面更加光亮动人,提升了汽车的整体美感。

船舶是在恶劣海洋环境中航行的,表面涂层需要具有极强的耐侵蚀性。

有机硅涂料具有优异的抗海水侵蚀性和耐盐雾腐蚀性,能够有效延长船舶的使用寿命。

有机硅涂料还具有极佳的耐碱性和耐磨性,使船体在艰苦的海上环境中依然能够保持优异的外观和性能。

除了在建筑、汽车、船舶领域,有机硅涂料还在其他工业领域得到了广泛应用。

例如在电子产品表面涂装、工程机械防锈等方面,有机硅涂料都发挥着重要作用。

有机硅涂料的优良性能,为各种应用场景提供了可靠的保护,有效延长了产品的使用寿命。

然而,有机硅涂料也面临一些挑战和问题。

首先,有机硅涂料的生产成本相对较高,使其售价较传统涂料高出不少。

其次,有机硅涂料的施工要求较高,需要专业的施工团队和技术人员进行操作,增加了施工成本和难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8. Silicones in the Construction IndustryA. Wolf, Dow Corning GmbH, Wiesbaden (Germany)Silicone sealants and adhesives as used in the construction industry were introduced approximately forty years ago, and many of the silicones applied in the early days are still performing today. Products are available in a variety of forms, from paste-like materials to flowable adhesives. Both single- and multi-component versions are available, each with several different cure chemistries.The commercial importance of silicone sealants and adhesives is based on their unique combination of properties that permit them to satisfy important needs in a broad variety of markets. These properties include excellent weather and thermal stability, ozone and oxidation resistance, extreme low temperature flexibility, high gas permeability, good electrical properties, physiological inertness and curability by a variety of methods at both elevated and ambient temperatures. Because of their low surface energy, they wet most substrates, even under difficult conditions, and when formulated with suitable adhesion promoters, they exhibit very good adhesion. These unique characteristics are the result of a scientific endeavour to combine some of the most stable chemical and physical attributes of the inorganic world with the highly utilizable aspects of organic materials.A qualitative list of the features of siloxane polymers that contribute to the unique combination of properties of silicone sealants and adhesives relevant in construction applications is given in Table 1. Almost all these inherent attributes are a consequence of four fundamental aspects: the low intermolecular forces between dialkylsiloxane molecules, the dipolar nature and the strength of the siloxane bond and the flexibility of the siloxane backbone.Probably the most important properties of silicone sealants for construction are durability and adhesion.Table 1. Silicone Attributes Contributing to DurabilitySealant Property Silicone AttributeExcellent substrate wetting (adhesion) Low surface tensionHigh water repellence Low surface tensionExcellent flexibility Low glass transition temperatureLarge free volumeLow apparent energy of activation for viscous flow Low activation energy of Si-O-Si bond rotationSmall temperature variation of physical properties Configuration of siloxane polymer chain and small interaction between methyl groupsLow activation energy of Si-O-Si bond rotationLow reactivity Configuration of siloxane polymer chain and small interaction between methyl groupsHigh gas permeability Large free volumeLow activation energy of Si-O-Si bond rotationHigh thermal and oxidative stability High Si-methyl bond energy Ultraviolet light resistance High Si-O bond energyAdhesionAlthough the primary function of sealants is to seal, in most applications they cannot provide this function without proper and durable adhesion to the substrate(s). Furthermore, in many applications, it is difficult to distinguish between an adhesive and a sealant. For example, structural silicone adhesives are used in the building construction industry owing to their sealing, adhesive and elastomeric properties, as well as their resistance to harsh environmental conditions.The type of application dictates the adhesion requirements. For instance, sealants and adhesives for general use are expected to achieve primerless adhesion to a broad variety of substrates.Siloxane polymers spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with sealant or adhesive, giving an interfacial phase that is continuous and without voids. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. However, these initial interactions are purely physical in nature. Theoretically, these physical intermolecular interactions would provide adhesion energy on the order of several mJ/m2. This would be sufficient to provide some basic adhesion between the adhesive and the substrate. However, the energy of adhesion required in many applications is on the order of kJ/m2. Therefore, physical intermolecular forces across the interphase are not sufficient to sustain a high stress under severe environmental conditions. However, chemisorption also plays an important role in the adhesion of reactive silicone sealants and adhesives; thus, physisorption and chemisorption both account for bond strength [1].Obviously, the ideal silicone adhesive or sealant is one that is self-priming; that is, the adhesion promoter is included in the formulation and is generally part of the curing reaction system. This is the most common type of commercial silicone sealant or adhesive, as it often provides adhesion without the need of a complicated pretreatment procedure such as priming, corona- or plasma-treatment. However, even with self-priming systems, proper cleaning of the substrate prior to application is required to eliminate weak boundary layers and to achieve strong and durable adhesion.DurabilityProperly formulated silicone sealants and adhesives exhibit outstanding durability in a variety of environments. They are known for their high movement capability; their excellent resistance to ultraviolet light, high temperature and ozone; their low water absorption and low temperature flexibility, as well as their ability to form strong chemical bonds to the surface of typical construction and industrial substrates [2]. The outstanding UV stability of silicones is derived from the bond strength of the silicon-oxygen linkages in the polymer chain, as well as the absence of any double-bond or other ultraviolet (UV) light-absorbing groups.The principal environmental factors acting on a sealant or adhesive in outdoor exposures are: - Temperature extremes (high and low)- Water- Solar radiation (UV and IR)- Oxygen/ozone- Corrosive gases (sulphur dioxide, nitrogen oxides)- Mechanical stressFor radiation energy to initiate chemical changes, the molecules of the material in question must absorb it. Silicones absorb very little ultraviolet radiation in the 300-400 nm region, which is the wavelength range that causes problems with most other polymers at, or near, ground level. When irradiated under conditions of natural photo-aging, silicones are slowly oxidised. The oxidation of the hydrocarbon side-groups results in the formation of carbonyl groups [3-4-5-6]. Since carbonyl groups do not interact strongly, the oxidation has little effect on the mechanical properties of the sealant or adhesive. This is consistent with the fact that, even after 20 years of outdoor weathering in sunny climates, silicone elastomers show comparatively little change in physical properties [7-8].Under natural weathering conditions, the effects of oxygen and ozone are inextricably connected to those of elevated temperatures and sunlight. At room temperature, oxidation by oxygen is not noticeable. The excellent oxidation resistance of silicones is a consequence of the dipolar character of the siloxane backbone. The positively polarised silicon atom acts as an electron drain for the methyl group, rendering it less susceptible to oxidation [9]. Oxidation in air generally becomes noticeable above 200ºC, resulting in cleavage of the Si-C bond. However, one can raise the upper service temperature by using suitable oxidation inhibitors.Changes in the physical properties of silicones under artificial or natural weathering conditions, involving alternating periods of wet and dry conditions, are mainly due to the physical effects of water [10]. Since the hydrolysis reaction is reversible, some of the siloxane bonds that were ruptured by hydrolysis are formed again by the condensation of silanol groups upon drying [11]. Thus, during alternating periods of wet and dry conditions, a relatively small number of siloxane bonds in the bulk of the sealant or adhesive are constantly broken and reformed.Silicone sealants and adhesives show excellent resistance to the combined effect of the key weathering factors: water, heat and ultraviolet light [12-13]. Compared to organic sealants and adhesives, silicones are more thermally stable, perform over a wider range of temperatures, have a higher movement capability and are less susceptible to fatigue resulting from cyclic mechanical strain. They are also more resistant to UV light as well as oxygen and ozone attack. They are also known for their low water absorption and the ability to form strong chemical bonds to typical construction substrates.A weaker aspect of the environmental stability of silicones is their susceptibility to hydrolysis reactions, particularly at the extremes of acidity or alkalinity and at elevated temperatures. Exposure to strong acids and bases as well as to super-heated steam are detrimental to the stability of silicone sealants. Under natural weathering conditions (involving small amounts of water incorporated in the bulk of the sealant or adhesive), mass action effects keep the hydrolysis reaction within limits, a condition much aided by the low water wettability of the siloxane polymer.ApplicationsThe construction industry represents the largest market segment for silicones. Siliconesealants, primarily as one-part room temperature vulcanisable (RTV) products, are widely used by the construction industry for applications such as sealing building and highway expansion joints, general weatherproofing of joints in porous and nonporous substrates, sanitary joints around bathroom and kitchen fixtures, as well as fire-rated joints around pipes, electrical conduits, ducts, and electrical wiring within building walls and ceilings. In a variety of applications, silicone sealants also perform the functions of an adhesive (i.e., they act as structural sealants). For example, silicones are used in structural glazing, where the cured sealant becomes part of the overall load-bearing design, or in insulating glass secondary seals, which structurally bond two panes of glass together. Structural glazing is the application that most importantly is enabled by the outstanding durability of silicone sealants. Structural silicone glazing (SSG) is the method of bonding glass, ceramic, metal, stone or composite panels to the frame of a building by using the bond strength, movement capability and durability of a silicone structural sealant. Figure 1 shows the Burj-Al-Arab hotel in Dubai as one example of the many exceptionally well-designed buildings sporting silicone structural glazing façades.Figure 1. Burj-Al-Arab Hotel, Dubai; a tribute to the use of structural glazing silicone adhesive in a high-rise façade.Because of the elastomeric character and the chemical adhesion of silicone structural bonding seals, SSG design concepts offer a number of performance benefits [14]:•Effective air- and weather-sealing of the facade•Improved thermal and sound insulation•Protection of the supporting structure from the elements by a durable glass skin•Increased rigidity and stability of the facade, resulting in the ability to withstand higher wind-loads•Ability to absorb differential movements between glass and building frame, resultingin superior performance of SSG facades during seismic eventsFor the facade designer, SSG provides the possibility to construct facades with free-flowing, uninterrupted bands of glass or smooth, uninterrupted total glass surfaces.The SSG technique uses both the adhesive and sealing properties of structural silicone sealants. Medium modulus, good elastomeric properties, and excellent, highly durable adhesion are important to support the weight of glazed panels and to resist wind load, while simultaneously being able to absorb differential movements between dissimilar materials induced by thermal fluctuations, seismic loading or other forces. It is essential for the success of SSG design to use a structural sealant and not a rigid adhesive because the structural seal needs to resist both loads and movements without creating unduly high stresses at the glass interface or failing cohesively [15]. Since the interface between structural seal and glass is directly exposed to sunlight, the sealant must develop extremely UV-stable bonds to the glass substrate to achieve an expected service life of 30 to 50 years. Because of this requirement, only silicone sealants are allowed for structural glazing applications.References1 Parbhoo, B.; O'Hare, L. -A.; Leadley, S. R. Fundamental aspects of adhesion technology in silicones(Chapter 14). In Adhesion Science and Engineering, Volume II, Surfaces, Chemistry & Applications, M. Chaudhury and A.V. Pocius, Eds., Elsevier: Amsterdam, 2002; 677-711.2 Wolf, A. T. Durability of silicone sealants, In Durability of Building Sealants, RILEM State-of-the-ArtReport; A.T. Wolf, Ed., RILEM Publications: 92220 Bagneux, 2000; 253-273.3 Israeli, Y.; Phillipart, J. L.; Cavezzan, J.; Lacoste, J.; Lemaire, J. Polymer Degradation and Stability1992,36 (2), 179-185.4 Israeli, Y.; Cavezzan, J.; Lacoste, J. Polymer Degradation and Stability 1992, 37, 201-208.5 Israeli, Y.; Cavezzan, J.; Lacoste, J.; Lemaire, J. Polymer Degradation and Stability 1993, 42, 267-279.6 Israeli, Y.; Lacoste, J.; Cavezzan, J.; Lemaire, J. Polymer Degradation and Stability 1995,47(3), 357-362.7 Gorman, P. D. Weathering of Various Sealants in the Field - a Comparison. In Science and Technology ofBuilding Seals, Sealants, Glazing and Waterproofing, Fourth Volume, ASTM STP 1243, D. H.Nicastro, Ed., ASTM International: West Conshohocken, USA, 1995; 3-28.8 Oldfield, D.; Symes, T. Polymer Testing 199615, 115-128.9 Owen, M. J.; Klosowski, J. M. Durability of Silicone Sealants. In Adhesives, Sealants and Coatings forSpace and Harsh Environments, L. -H. Lee, Ed., Plenum Publishing Corp.: New York, 1998; 281-291.10 Bridgewater, T. J.; Carbary, L. D. Accelerated Weathering and Heat stability of Various PerimeterSealants. In Science and Technology of Building Seals, Sealants and Waterproofing, Second Volume, ASTM STP 1200, J. M. Klosowski, Ed., ASTM International: West Conshohocken, USA, 1992; 45-63.11 Vondracek, P.; Gent, A. N. Journal of Applied Polymer Science 1982,27, 4517-4523.12 Fedor, G.; Brennan, P. Adhesives Age 1990, 33:5, 22-27.13 Chew, M.Y.L.; Yi, L.D. Building and Environment 1997,32:3, 187-193.14 Renckens, J., Ed., Facades and Architecture, FAECF Federation of European Window and Curtain WallManufacturers: Walter-Kolb-Strasse 1-7, 60594 Frankfurt/Main, Germany, ISBN 3-00-002321-6;1998.15 Iker, J.; Wolf, A. T. Materials and Structures 1992, 25, 137-144.This article has been published in the chapter “Silicones in Industrial Applications” in Inorganic Polymers, an advanced research book by Nova Science Publishers (); edited by Roger De Jaeger (Lab. de Spechtrochimie Infrarouge et Raman, Univ. des Sciences and Tecn. de Lille, France) and Mario Gleria (Inst. di Scienze e Tecn. Molecolari, Univ. di Padoa, Italy). Reproduced here with the permission of the publisher.。

相关文档
最新文档