专题13 概率-2019年高考理科数学易错题训练
2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题含解析)

2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题)一、单选题1.(2019•浙江)设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大2.(2019•全国Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.3.(2019•全国Ⅲ)(1+2x2)(1+x)2的展开式中x3的系数为()A. 12B. 16C. 20D. 244.(2019•卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.5.(2019•卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 中位数B. 平均数C. 方差D. 极差6.(2019•卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。
从这些新生中用系统抽样方法等距抽取1000名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.(2019•卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化。
每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--",下图就是一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.二、填空题8.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.9.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.10.(2019•卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.11.(2019•卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)。
《高考真题》专题13 概率与统计-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

专题13 概率与统计【母题来源一】【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.【母题来源二】【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法, 故所求概率为31=4515,故选C . 【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.【命题意图】本类问题主要涉及古典概型、对立事件概率的计算及概率与统计的综合,要求掌握利用古典概型求概率的方法,掌握利用互斥事件概率的加法公式及对立事件的概率公式求概率的方法.【命题规律】古典概型是高考命题的重点,题目难度中等,要求考生通过阅读提取信息,并掌握必要的计数方法:枚举法,树状图或者排列组合知识等.【答题模板】解答本类题目,以2018年高考这题试题为例,一般考虑如下三步:第一步:分析已知条件选择古典概型模型;第二步:找基本事件总数以及事件包含的基本事件数;第三步:带入古典概型的计算公式求解.【方法总结】1.古典概型是概率论中最简单而又直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.求古典概型的概率(1)对于事件A的概率的计算,关键是要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式()mP An求出事件A的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.(3)如果基本事件个数比较多,列举有一定困难时,可以用树状图法,树状图法适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2),(2,1)相同.(4)较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:①转化为几个互斥事件的和,利用互斥事件的加法公式求解;学科.网②采用间接法,先求事件A的对立事件A的概率,再由P(A)=1-P(A)求事件A的概率.1.【宁夏石嘴山市第三中学2019届高三下学期三模考试数学试题】袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A.19B.318C.29D.518【答案】C【解析】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有:021,001,031,130共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为42189=,故选C.【名师点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式mPn=求得概率.2.【辽宁省沈阳市2019届高三上学期一模数学试题】某英语初学者在拼写单词“steak”时,对后三个字母的记忆有些模糊,他只记得由“a”、“e”、“k”三个字母组成并且字母“k”只可能在最后两个位置中的某一个位置上.如果该同学根据已有信息填入上述三个字母,那么他拼写正确的概率为A .16 B .14 C .13D .12【答案】B【解析】因为某英语初学者在拼写单词“steak ”时, 对后三个字母的记忆有些模糊,他只记得由“a ”、“e ”、“k ”三个字母组成,并且字母“k ”只可能在最后两个位置中的某一个位置上. 该同学根据已有信息填入上述三个字母,满足题意的字母组合有四种,分别是eka,ake,eak,aek , 拼写正确的组合只有一种eak , 所以他拼写正确的概率为14P =.故选B . 【名师点睛】本题主要考查概率的求法,考查古典概型、列举法等基础知识,是基础题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率. 3.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是A .101B .103C .35D .25【答案】C【解析】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故选C.【名师点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.4.【吉林省实验中学2019届高三下学期第八次月考数学试题】从1,2,3,4,5中任取5个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是A .23 B .35C .12D .25【答案】D【解析】从1,2,3,4,5这5个数字中任取5个数字组成没有重复数字的五位数, 基本事件总数n =55A =120,这个五位数是偶数包含的基本事件个数m =1424C A =48, ∴这个五位数是偶数的概率P =4821205m n ==. 故选D .【名师点睛】本题考查古典概型概率的求法,是基础题.5.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考数学试题】已知函数()322113fx x a x b x =+++,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为A .79 B .13 C .59D .23【答案】D【解析】将a 记为横坐标,将b 记为纵坐标,可知总共有()()()()()()()()()1,0,1,1,1,2,2,0,2,1,2,2,3,0,3,1,3,2共9个的结果,而函数有两个极值点的条件为其导函数有两个不相等的实根,22()2f 'x x ax b =++,满足题中条件为22440a b ∆=->,即a b >,所以满足条件的基本事件有()()()()()()1,0,2,0,2,1,3,0,3,1,3,2共6个基本事件,所以所求的概率为6293P ==,故选D .6.【山东省青岛市2019届高三9月期初调研检测数学试题】已知某运动员每次投篮命中的概率是40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683.该运动员三次投篮恰有两次命中的概率为A .15 B .35C .310D .910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数, 故所求概率为310. 故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.7.【宁夏银川市2019届高三下学期质量检测数学试题】根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为A .16B .14C .13D .12【答案】A【解析】派四位专家对三个县区进行调研,每个县区至少派一位专家,基本事件总数:2343C A 36n ==,甲,乙两位专家派遣至同一县区包含的基本事件个数:212232C C A 6m ==,∴甲,乙两位专家派遣至同一县区的概率为:61366m p n ===, 故选A.【名师点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题. 8.【2019年甘肃省兰州市高考数学一诊试卷】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A 或B 被选中的概率是A .15 B .25C .35D .710【答案】D【解析】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人, 赴区属的某贫困村进行驻村扶贫工作,基本事件总数n =25C =10, A 或B 被选中的对立事件是A 和B 都没有被选中,则A 或B 被选中的概率是P =1-2325C 7C 10=.故选D .【名师点睛】本题主要考查古典概型的求解,侧重考查数学建模和数学运算的核心素养.9.【甘肃省天水市第一中学2019届高三一轮复习第六次质量检测数学试题】为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是 A .0.3 B .0.4 C .0.6D .0.7【答案】D【解析】由题意得,从五个节日中随机选取两个节日的所有情况有25C 10=种,设“春节和端午节至少有一个被选中”为事件A ,则事件A 包含的基本事件的个数为12322C C 7+=. 由古典概型概率公式可得()1232252C C 70.7C 10P A +===. 故选D .【名师点睛】解答本题的关键有两个:一是判断出所求概率的类型,本题中结合题意可得属于古典概型;二是正确求出所有的基本事件数和所求概率的事件包含的基本事件数.求事件的个数时可根据排列组合的知识求解,本题考查分析判断能力和计算能力,属于基础题.10.【新疆2019届高三第三次诊断性测试数学试题】将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,恰好是两面涂色的概率是A.29B.827C.49D.1627【答案】C【解析】由题可得:大正方体的最上层有4个恰好是两面涂色的小正方体,大正方体的中间一层及最底层都有4个恰好是两面涂色的小正方体,所以恰好是两面涂色的小正方体个数为4312⨯=个,所以从这些小正方体中任取一个,恰好是两面涂色的概率是124279p==,故选C.【名师点睛】本题主要考查了古典概型概率计算,考查空间思维能力,属于基础题.11.【内蒙古2019年呼和浩特市高三年级第二次质量普查调研考试数学试题】一个盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,其余两个是黄球,若从中任取两个球,则取的两个球颜色不同,且恰有1个球的号码是偶数的概率是A.115B.215C.315D.415【答案】D【解析】盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,5,6号是黄球,从中任取两个球,有12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15种情况,恰有1个球的号码是偶数有16,25,36,45共有4种情况,故所求概率P=4 15.故选D.【名师点睛】本题考查古典概型的概率公式的应用,属于基础题.12.【内蒙古赤峰市2019届高三4月模拟考试数学试题】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是A .23B .35C .59D .34【答案】A【解析】因为双方各有3匹马,所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为9种, 满足“齐王获胜”的这一条件的情况为: 齐王派出上等马,则获胜的事件数为3; 齐王派出中等马,则获胜的事件数为2; 齐王派出下等马,则获胜的事件数为1; 故满足“齐王获胜”这一条件的事件数为6种, 根据古典概型公式可得,齐王获胜的概率6293P ==,故选A. 【名师点睛】本题考查了古典概型问题,解题的关键是求出满足条件的事件数,再根据古典概型的计算公式求解问题,属于基础题.13.【陕西省咸阳市2019届高三高考模拟检测(二)数学试题】一个三位数的百位,十位,个位上的数字依次是a ,b ,c ,当且仅当a b <且b c >时称为“凸数”.现从1,2,3,4中任取三个组成一个三位数,则它为“凸数”的概率是______. 【答案】13【解析】从1,2,3,4中任取三个组成一个三位数,有34A 24=种排法,满足凸数的个数为:当b =4时,有23A 6=种排法;当b =3时,有2种排法,共8种.概率为81.243= 故答案为13. 【名师点睛】解排列组合问题要遵循两个原则: ①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).14.【陕西省榆林市2019届高三第二次模拟试题数学试题】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,则摸到同色球的概率为________. 【答案】25【解析】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,基本事件总数n 25C ==10,摸到同色球包含的基本事件个数m 2232C C =+=4,∴摸到同色球的概率42105m P n ===. 故答案为25. 【名师点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15.【广西南宁市2019届高三毕业班第一次适应性测试数学】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.【答案】516【解析】5个格子用0与1两个数字随机填入共有5232=种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:①全是1,有1种方法;②第一个格子是1,另外4个格子有一个0,有4种方法;③第一个格子是1,另外4个格子有2个0,有5种方法,所以共有14510++=种基本方法,那么概率1053216P ==. 故答案为516. 【名师点睛】本题主要考查了古典概型的求解,解题的关键是采用分类的方式计算满足条件的基本事件数,属于中档题.16.【辽宁省辽阳市2019届高三上学期期末考试数学试题】现有两对情侣都打算从巴黎、厦门、马尔代夫、三亚、泰国这五个地方选取一个地方拍婚纱照,且这两对情侣选择的地方不同,则这两对情侣都选在国外拍婚纱照的概率为_______. 【答案】310【解析】两对情侣所有选择方案为(巴黎,厦门),(巴黎,马尔代夫)(巴黎,三亚),(巴黎,泰国),11 (厦门,马尔代夫),(厦门,三亚),(厦门,泰国),(马尔代夫,三亚),(马尔代夫,泰国),(三亚,泰国),共有10种,其中有3种满足题意,故所求概率为310, 故答案为310. 【名师点睛】本题考查了古典概型,考查了利用列举法解决排列组合的问题,属于基础题.17.【河北省省级示范性高中联合体2019届高三3月联考数学试题】小张要从5种水果中任选2种赠送给好友,其中芒果、榴莲、椰子是热带水果,苹果、葡萄是温带水果,则小张送的水果既有热带水果又有温带水果的概率为________. 【答案】3(0.6)5或【解析】由题从5种水果中任选2种的事件总数为25C 10,= 小张送的水果既有热带水果又有温带水果的基本事件总数为1123C C 6,=∴小张送的水果既有热带水果又有温带水果的概率为63105=. 故答案为35.。
易错题库-(精校版)2019年全国卷Ⅱ理数高考试题文档版(有答案)

合题目要求的。
1.设集合 A={ x|x2–5x+6>0} , B={ x|x–1<0} ,则 A∩B=
A . (–∞, 1)
B .( –2, 1)
C. (–3, –1)
D .(3, +∞ )
2.设 z=–3+2i ,则在复平面内 z 对应的点位于
A .第一象限 C.第三象限
B .第二象限 D .第四象限
2
42
A . f(x)= │ cosx2│
B .f (x)= │sin2x│
C. f(x)=cos │x│
D .f (x)=sin│x│
10.已知 α∈(0 , ),2sin2 α=cos2α+1,则 sin α= 2
1 A.
5
B. 5 5
C. 3 3
2 D.
5
5
x2 y2 11.设 F 为双曲线 C: a 2 b2 1(a 0, b 0) 的右焦点, O 为坐标原点,以 OF 为直径的圆与
2 ( 1)求 C 的方程,并说明 C 是什么曲线; ( 2)过坐标原点的直线交 C 于 P, Q 两点,点 P 在第一象限, PE ⊥x 轴,垂足为 E,连结 QE 并
延长交 C 于点 G.
( i )证明: △ PQG 是直角三角形;
( ii )求 △ PQG 面积的最大值 .
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计
1.则该半正多面体共有
________个面,其棱长为 _________.(本题第一空 2 分,第二空 3 分.)
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第
2019高考数学备考冲刺之易错点点睛系列专题 概率与统计(理科)(学生版)

概率与统计一、高考预测计数原理、概率统计部分是高中数学中使用课时最多的一个知识板块,高考对该部分的考查分值也较多.从近几年的情况看,该部分考查的主要问题是排列组合应用问题,二项式定理及其简单应用,随机抽样,样本估计总体,线性回归分析,独立性检验,古典概型,几何概型,事件的独立性,随机变量的分布、期望和方差,正态分布的简单应用,在试卷中一般是2~3个选择题、填空题,一个解答题,试题难度中等或者稍易.预计2019年该部分的基本考查方向还是这样,虽然可能出现一些适度创新,但考查的基本点不会发生大的变化.计数原理、概率统计部分的复习要从整体上,从知识的相互关系上进行.概率试题的核心是概率计算,其中事件之间的互斥、对立和独立性是概率计算的核心,排列组合是进行概率计算的工具,在复习概率时要抓住概率计算的核心和这个工具;统计问题的核心是样本数据的分布,反映样本数据的方法:样本频数表、样本频率分布表、频率分布直方图、频率折线图、茎叶图,得到样本数据的方法是随机抽样,在复习统计部分时,要紧紧抓住这些图表和方法,把图表的含义弄清楚,这样剩下的问题就是有关的计算和对统计思想的理解,如样本均值和方差的计算,用样本估计总体等.二、知识导学(4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件独立事件n次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.(1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:ξ1… k… nPn n q p C 00111-n n q p C…k n k kn q p C -q p C n n n称这样随机变量服从二项分布,记作,其中、为参数,并记:),;(p n k b q p C kn k k n =-.(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生.随机变量ξ的概率分布为:要点要点4 抽样方法与总体分布的估计3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.要点5 正态分布与线性回归1.正态分布的概念及主要性质2.线性回归 简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法. 变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:ˆybx a =+.其中1221,,()ni ii nii x y nxyb a y b x xn x ==-==-⋅-∑∑,其中y x ,分别为|i x |、|i y |的平均数.三、易错点点睛【易错点2】二项式展开式中的项的系数与二项式系数的概念掌握不清,容易混淆,导致出错1、在5322x x ⎛⎫+ ⎪⎝⎭的展开式中,5x 的系数为 ,二项式系数为 。
2019数学(理科)高考题分类(高考真题+模拟题) 概率

K 单元 概率K1 随机事件的概率K2 古典概型6.J1,J2,K2[2019·全国卷Ⅰ] 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“- -”,图1-3就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )图1-3A .516B .1132C .2132D .11166.A [解析] 每一重卦由6个爻组成,每个爻可以是阳爻也可以是阴爻,所以共有26=64(种)重卦,恰有3个阳爻的情况有C 63=20(种),所以对应的概率为2064=516.17.I1,I2,K2,K6,K9[2019·北京卷] 改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000] (1000,2000] 大于2000 仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B 两种支付方式都使用的概率. (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.17.解:(1)由题意知,样本中仅使用A 的学生有18+9+3=30(人),仅使用B 的学生有10+14+1=25(人),A,B 两种支付方式都不使用的学生有5人. 故样本中A,B 两种支付方式都使用的学生有100-30-25-5=40(人).所以从全校学生中随机抽取1人,该学生上个月A,B 两种支付方式都使用的概率估计为40100=0.4. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且P (C )=9+330=0.4,P (D )=14+125=0.6. 所以P (X=2)=P (CD )=P (C )P (D )=0.24,P (X=1)=P (C ∪C D ) =P (C )P (D )+P (C )P (D ) =0.4×(1-0.6)+(1-0.4)×0.6 =0.52,P (X=0)=P (C D )=P (C )P (D )=0.24.所以X 的分布列为 X0 1 2 P0.240.520.24故X 的数学期望E (X )=0×0.24+1×0.52+2×0.24=1.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P (E )=1C 303=14060.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.6.K2[2019·江苏卷]从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.6.7[解析]3名男同学记为A,B,C,2名女同学记为D,E.10基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个,其中至少.有1名女同学的基本事件有7个,故所求概率为710K3 几何概型K4 互斥事件有一个发生的概率15.K4,K5[2019·全国卷Ⅰ]甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是.15.0.18[解析]由题意可知,甲、乙两队共比赛了5场,前4场甲队只输了其中1场,且第5场甲队获胜.分两种情况:①甲在第1,2场的主场比赛中输了1场,由独立事件的概率计算公式得,其概率为C21×0.4×0.6×0.5×0.5×0.6=0.072;②甲在第3,4场的客场比赛中输了1场,同理可得其对应的概率为C21×0.6×0.6×0.5×0.5×0.6=0.108.所以由互斥事件的概率加法计算公式得所求的概率为0.072+0.108=0.18.18.K4,K5[2019·全国卷Ⅱ]11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.18.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分,因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.16.K4,K5,K6,K8[2019·天津卷]设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为2 3,故X~B(3,23),从而P(X=k)=C3k(23)k(13)3-k,k=0,1,2,3.所以,随机变量X的分布列为X0123P12729 49 827随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P (M )=P ({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243.K5 相互对立事件同时发生的概率15.K4,K5[2019·全国卷Ⅰ] 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是 .15.0.18 [解析] 由题意可知,甲、乙两队共比赛了5场,前4场甲队只输了其中1场,且第5场甲队获胜.分两种情况:①甲在第1,2场的主场比赛中输了1场,由独立事件的概率计算公式得,其概率为C 21×0.4×0.6×0.5×0.5×0.6=0.072;②甲在第3,4场的客场比赛中输了1场,同理可得其对应的概率为C 21×0.6×0.6×0.5×0.5×0.6=0.108.所以由互斥事件的概率加法计算公式得所求的概率为0.072+0.108=0.18.18.K4,K5[2019·全国卷Ⅱ] 11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X=2);(2)求事件“X=4且甲获胜”的概率.18.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分,因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.16.K4,K5,K6,K8[2019·天津卷]设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为2 3,故X~B(3,23),从而P(X=k)=C3k(23)k(13)3-k,k=0,1,2,3.所以,随机变量X的分布列为X0123P 1272949827随机变量X的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B(3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243.K6 离散型随机变量及其分布列21.D3,K6[2019·全国卷Ⅰ] 为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X. (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i=0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i-1+bp i +cp i+1(i=1,2,…,7),其中a=P (X=-1),b=P (X=0),c=P (X=1).假设α=0.5,β=0.8.(i)证明{p i+1-p i }(i=0,1,2,…,7)为等比数列;(ii)求p 4,并根据p 4的值解释这种试验方案的合理性. 21.解:(1)X 的所有可能取值为-1,0,1.P (X=-1)=(1-α)β, P (X=0)=αβ+(1-α)(1-β), P (X=1)=α(1-β).所以X 的分布列为X-101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i)证明:由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ii)由(i)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=48-1p1.3,所以由于p8=1,故p1=348-1p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=44-1p13.=1257p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为≈0.0039,此时得出错误结论的概率非常小,说明这种0.8时,认为甲药更有效的概率为p4=1257试验方案合理.17.I1,I2,K2,K6,K9[2019·北京卷]改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000] (1000,2000] 大于2000 仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B 两种支付方式都使用的概率. (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.17.解:(1)由题意知,样本中仅使用A 的学生有18+9+3=30(人),仅使用B 的学生有10+14+1=25(人),A,B 两种支付方式都不使用的学生有5人. 故样本中A,B 两种支付方式都使用的学生有100-30-25-5=40(人).所以从全校学生中随机抽取1人,该学生上个月A,B 两种支付方式都使用的概率估计为40100=0.4. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且P (C )=9+330=0.4,P (D )=14+125=0.6. 所以P (X=2)=P (CD )=P (C )P (D )=0.24,P (X=1)=P (C D ∪C D ) =P (C )P (D )+P (C )P (D ) =0.4×(1-0.6)+(1-0.4)×0.6 =0.52,P(X=0)=P(C D)=P(C)P(D)=0.24.所以X的分布列为X012P0.240.520.24故X的数学期望E(X)=0×0.24+1×0.52+2×0.24=1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E)=1C303=1 4060.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.16.K4,K5,K6,K8[2019·天津卷]设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为2 3,故X~B(3,23),从而P(X=k)=C3k(23)k(13)3-k,k=0,1,2,3.所以,随机变量X 的分布列为X 0123P12729 49 827随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P (M )=P ({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243. 7.B5,K6[2019·浙江卷] 设0<a<1,随机变量X 的分布列是则当a 在(0,1)内增大时, ( )A .D (X )增大B .D (X )减小C .D (X )先增大后减小 D .D (X )先减小后增大7.D [解析] 方法一:因为E (X )=0×13+a ×13+1×13=a+13, 所以D (X )=(0−a+13)2×13+(a −a+13)2×13+(1−a+13)2×13=29(a 2-a+1),其图像的对称轴为a=12,所以选D .方法二:因为E (X )=0×13+a ×13+1×13=a+13, 所以E (X 2)=0×13+a 2×13+1×13=a 2+13, 所以D (X )=E (X 2)-E 2(X )=29(a 2-a+1),其图像的对称轴为a=12, 所以选D .K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布23.K8[2019·江苏卷]在平面直角坐标系xOy 中,设点集A n ={(0,0),(1,0),(2,0),…,(n ,0)},B n ={(0,1),(n ,1)},C n ={(0,2),(1,2),(2,2),…,(n ,2)},n ∈N *.令M n =A n∪B n ∪C n .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n=1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示). 23.解:(1)当n=1时,X 的所有可能取值是1,√2,2,√5.X 的概率分布为P (X=1)=7C 62=715,P (X=√2)=4C 62=415,P (X=2)=2C 62=215,P (X=√5)=2C 62=215.(2)设A (a ,b )和B (c ,d )是从M n 中取出的两个点. 因为P (X ≤n )=1-P (X>n ),所以仅需考虑X>n 的情况.①若b=d ,则AB ≤n ,不存在X>n 的取法;②若b=0,d=1,则AB=√(a -c)2+1≤√n 2+1,所以X>n 当且仅当AB=√n 2+1,此时a=0,c=n 或a=n ,c=0,有2种取法;③若b=0,d=2,则AB=√(a -c)2+4≤√n 2+4.因为当n ≥3时,√(n -1)2+4≤n ,所以X>n 当且仅当AB=√n 2+4,此时a=0,c=n 或a=n ,c=0,有2种取法;④若b=1,d=2,则AB=√(a -c)2+1≤√n 2+1,所以X>n 当且仅当AB=√n 2+1,此时a=0,c=n 或a=n ,c=0,有2种取法.综上,当X>n时,X 的所有可能取值是√n 2+1和√n 2+4,且P (X=√n 2+1)=4C 2n+42,P (X=√n 2+4)=2C 2n+42.因此,P (X ≤n )=1-P (X=√n 2+1)-P (X=√n 2+4)=1-6C 2n+42.16.K4,K5,K6,K8[2019·天津卷] 设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B (3,23),从而P (X=k )=C 3k (23)k (13)3-k,k=0,1,2,3.所以,随机变量X 的分布列为X 0123P12729 49 827随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P (M )=P ({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243.K9 单元综合17.I1,I2,K2,K6,K9[2019·北京卷] 改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B 两种支付方式都使用的概率. (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.17.解:(1)由题意知,样本中仅使用A 的学生有18+9+3=30(人),仅使用B 的学生有10+14+1=25(人),A,B 两种支付方式都不使用的学生有5人. 故样本中A,B 两种支付方式都使用的学生有100-30-25-5=40(人).所以从全校学生中随机抽取1人,该学生上个月A,B 两种支付方式都使用的概率估计为40100=0.4. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且P (C )=9+330=0.4,P (D )=14+125=0.6. 所以P (X=2)=P (CD )=P (C )P (D )=0.24,P (X=1)=P (C D ∪C D ) =P (C )P (D )+P (C )P (D ) =0.4×(1-0.6)+(1-0.4)×0.6 =0.52,P (X=0)=P (C D )=P (C )P (D )=0.24.所以X的分布列为X012P0.240.520.24故X的数学期望E(X)=0×0.24+1×0.52+2×0.24=1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E)=1C303=1 4060.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.11.[2019·安徽合肥一检]某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会.规定:若第一次取出的两个小球的号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸奖,若与第一次取出的两个小球的号码相同,则中奖,否则不中奖.按照这样的规则摸奖,中奖的概率为()A.45B.1925C.2350D.4110011.C[解析]根据题意可知中奖的概率为4C52+C52-4C52·1C52=25+350=2350,故选C.1.[2019·长沙一检] 已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还可以正常工作,则这个元件的使用寿命超过2年的概率为( )A .0.75B .0.6C .0.52D .0.481.A [解析] 设“这种元件的使用寿命超过1年”为事件A ,“这种元件的使用寿命超过2年”为事件B ,则P (A )=0.8,P (AB )=0.6,故P (B|A )=P(AB)P(A)=0.60.8=0.75,故选A .3.[2019·江西上饶联考] 某校为某项数学比赛选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格.该校有900名学生参加了初赛,所有学生的分数均在区间(30,150]内,按(30,50],(50,70],(70,90],(90,110],(110,130],[130,150]分组后,得到频率分布直方图如图T11-1所示.图T11-1(1)求本次初赛分数的中位数.(2)从初赛分数在区间(110,150]内的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流会,那么从分数在区间(110,130]与(130,150]内的参赛者中各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流会,设X 表示分数在(110,130]内参加全市座谈交流会的人数,学校打算给这4人一定的物质奖励,若该生分数在(110,130]内则给予500元奖励,若该生分数在(130,150]内则给予800元奖励,用Y 表示学校发的奖金数额,求Y 的分布列和数学期望.3.解:(1)由题意知分数在(30,90]内的频率为20×(0.002 5+0.007 5+0.007 5)=0.35,分数在(110,150]内的频率为20×(0.005 0+0.012 5)=0.35,所以分数在(90,110]内的频率为1-0.35-0.35=0.3, 从而分数在(90,110]内的频率组距=0.320=0.015. 设本次初赛分数的中位数为x ,则由题意得0.35+(x-90)×0.015=0.5,解得x=100. (2)分组区间(110,130]与(130,150]的频率之比为0.012 5∶0.005 0=5∶2.因为要从得分在区间(110,150]内的参赛者中,利用分层抽样的方法随机抽取7人, 所以应从分数在区间(110,130]与(130,150]内的参赛者中各抽取5人,2人. (3)X 的可能取值为2,3,4,则P (X=2)=C 52C 22C 74=27,P (X=3)=C 53C 21C 74=47,P (X=4)=C 54C 20C 74=17,从而Y 的分布列为Y 2600 23002000P274717∴Y 的数学期望E (Y )=2600×27+2300×47+2000×17=16 4007. 6.[2019·广东揭阳期末] 某公司培训员工的某项技能,培训有如下两种方式:方式一,周一到周五每天培训1小时,周日测试;方式二,周六一天培训4小时,周日测试.并规定,本周测试达标后,下周不再培训,否则继续培训,直到测试达标.公司有多个班组,每个班组60人,现任选两个班组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表.第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016其中第一、二周达标的员工评为优秀. (1)在甲组内任选两人,求恰有一人优秀的概率.(2)若每个员工技能测试是否达标相互独立,且以频率作为概率.(i)设公司员工在方式一、方式二下的受训时间分别为ξ1,ξ2,求ξ1,ξ2的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.6.解:(1)因为甲组60人中有45人优秀,所以从中任选两人,恰有一人优秀的概率为C 451C 151C 602=45×1530×59=45118. (2)(i)ξ1的分布列为ξ1 5101520P13512 16 112E (ξ1)=5×13+10×512+15×16+20×112=10. ξ2的分布列为ξ2 481216P215415 13 415E (ξ2)=4×215+8×415+12×13+16×415=4×4115=16415, ∵E (ξ1)<E (ξ2),∴公司应选培训方式一.(ii)按培训方式一,从公司任选一人,其优秀的概率为13+512=34, 则从公司任选两人,恰有一人优秀的概率为C 21×34×(1-34)=38.。
第13题 概率(文)-2019年高考数学23题试题分析与考题集训含答案

第13题 概率(文)【考法】本主题考题形式为选择题或填空题,与函数、不等式、统计等知识结合考查古典概型、几何概型及互斥事件、对立事件的概率求法,考查应用意识、运算求解能力,难度为容易题或中档试题,分值为5至10分.【考前回扣】1.古典概型的概率(1)公式P (A )=m n =A 中所含的基本事件数基本事件总数. (2)古典概型的两个特点:所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等. 2.几何概型的概率(1)P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).(2)几何概型应满足两个条件:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.3.概率的性质及互斥事件的概率 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (A )=1. (3)不可能事件的概率:P (A )=0.(4)若A ,B 互斥,则P (A ∪B )=P (A )+P (B ),特别地P (A )+P (A -)=1.【易错点提醒】1.应用互斥事件的概率加法公式,一定要注意确定各事件是否彼此互斥,并且注意对立事件是互斥事件的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.几何概型的概率计算中,几何“测度”确定不准而导致计算错误3.求古典概型的概率的关键是正确列举出基本事件的总数和待求事件包含的基本事件数,两点注意:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏. (2)当直接求解有困难时,可考虑求其对立事件的概率.4..利用古典概型计算事件A 的概率应注意的问题:①本试验是否是等可能的;②本试验的基本事件有多少个;③事件A 是什么,它包含的基本事件有多少个,回答好这三个方面的问题,解题才不会出错.【考向】考向一 古典概型【解决法宝】1.求古典概型的概率的关键是正确列举出基本事件的总数和待求事件包含的基本事件数.2..基本事件数的探求方法:①列举法:适合于较简单的试验;②树状图法:适合于较为复杂的问题中的基本事件的探求.③列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.例1.【2019届四川省宜宾市二诊】一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是A.B.C.D.【分析】先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率【解析】一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,6.从中任取2个球,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A表示“两个球中有白球”这一事件,则A包含的基本事件有:{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},{5,6}共9个,这2个球中有白球的概率是,故选B.考向二几何概型【解决法宝】1.当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;2.利用几何概型求概率时,关键是构成试验的全部结果的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.例2【2019届广西柳州市3月模拟】在区间上随机取一个数,使直线与圆相交的概率为()A.B.C.D.【分析】先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可.【解析】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得.所以在区间上随机取一个数,使直线与圆相交的概率为,故选C.考向三互斥事件和对立事件【解决法宝】1.注意区分互斥事件和对立事件,互斥事件是在同一试验中不可能同时发生的两个或多个事件,对立事件是同一试验中不可能同时发生的两个事件,且其和事件为必然事件;2.一个事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”、“至多”等问题往往用这种方法求解;例3.【河北沧州市2018届一模】甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为.【分析】利用互斥事件的概率公式进行求解.【解析】因为甲获胜的概率,甲、乙下和棋的概率以及乙获胜的概率三者之和为1,所以乙获胜的概率为.【集训】1.【江西省上饶市2018届二模】欧阳修的《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm 的圆面,中间有边长为1cm的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A.49πB.14πC.19πD.116π【答案】B2. 【2019届辽宁省丹东市质测(一)】从甲乙丙丁4人中随机选出2人参加志愿活动,则甲被选中且乙未被选中的概率是()A.B.C.D.【答案】B【解析】个人中选人,基本事件有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁六种,其中甲被选中且乙未被选中的事件有甲丙、甲丁两种,故概率为.故选B.3.【山西省2018届一模】甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙分钟的概率是()A. B. C. D.【答案】C【解析】建立直角坐标系如图,分别表示甲,乙二人到达的时刻,则坐标系中每个点可对应甲,乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是,其构成的区域为如图阴影部分,则所求的概率为,故选C4. 【2019届安徽省安庆市二模】“勾股圆方图”是我国古代数学家赵爽设计的一幅用来证明勾股定理的图案,如图所示.在“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.若直角三角形中较小的锐角满足,则从图中随机取一点,则此点落在阴影部分的概率是()A.B.C.D.【答案】D【解析】设大正方形边长为,由知直角三角形中较小的直角边长为,较长的直角边长为,所以小正方形的边长为且面积,大正方形的面积为25,则则此点落在阴影部分的概率是,故选D.5.【四川省凉山州2018届第二次诊断】在区间[]02,上任取两个数,则这两个数之和大于3的概率是( )A.18 B. 14 C. 78 D. 34【答案】A【解析】如图:不妨设两个数为x y ,,故3x y +>,如图所示,其概率为,故选A6.【2019届安徽省蚌埠市一质检】一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为 A .4 B .5C .8D .9【答案】B【解析】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B . 7.【河南省濮阳市2018届二模】在内任取一个实数,设,则函数的图象与轴有公共点的概率等于( )A.B.C. D.【答案】D【解析】的图象与轴有公共点,或在内取一个实数,函数的图象与轴有公共点的概率等于,故选D.8.【2019届安徽省六安市毛坦厂中学3月联考】若是从区间内任意选取的一个实数,也是从区间内任意选取的一个实数,则点在圆:内的概率为()A.B.C.D.【答案】C【解析】因为是从区间内任意选取的一个实数,也是从区间内任意选取的一个实数,所以点的所有取值构成边长为4的正方形区域,且正方形面积为;如图所示,作出满足题意的正方形和圆,在圆:内,由可得,所以,所以;因此,所以阴影部分面积为,所以点在圆:内的概率为,故选C9.【湖南省衡阳市2018届一模】2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行为此发行了以此为主题的金质纪念币,如图所示,该圆形金质纪念币,直径22mm.为了测算图中军旗部分的面积,现用1粒芝麻(将芝麻近似看作一个点)向硬币内随机投掷220次,其中恰有60次落在军旗内,据此可估计军旗的面积大约是A. 32B. 33C. 132D. 133【答案】B【解析】设军旗的面积为s ,由题知,圆的半径为11mm ,由几何概型公式知,,解得233mm s π=,故选B.10.【2019届湖南省怀化市一模】《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为( ) A . B .C .D .【答案】B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B .11.【广东省2018届一模】下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )A. B. C. D.【答案】A【解析】根据圆的面积公式以及几何概型概率公式可得,此点取自黑色部分的概率是,故选A.12.【2019届河北省石家庄市3月质检】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。
2019高考试题汇编理科数学---概率统计

(Ⅲ)由题意结合概率的定义给出结论即可.
【详解】(Ⅰ)由题意可知,两种支付方式都是用的人数为: 人,则:
该学生上个月A,B两种支付方式都使用的概率 .
(Ⅱ)由题意可知,
仅使用A支付方法的学生中,金额不大于1000的人数占 ,金额大于1000的人数占 ,
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
【答案】(Ⅰ) ;
(Ⅱ)见解析;
(Ⅲ)见解析.
【解析】
【分析】
(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;
.
(2019全国1理)21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为 和 ,一轮实验中甲药的得分记为 .
2019年高考数学二轮复习解题思维提升专题13概率小题部分训练手册(附答案)

专题13 概率小题部分【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理及简单的排列组合,及列举法求概率。
6、理解随机变量的概念,掌握随机变量分布列的性质;7、掌握随机变量分布列的求法,及期望计算公式。
8、掌握条件概率的计算公式,掌握正态分布,二项分布的期望和方差公式。
【温馨小提示】概率在高考中有一道小题一道大题,17分左右,对于理科生来讲,只要掌握了基本的概念及公式,这是属于送分题,因此在练习时要注意总结方法。
【名校试题荟萃】1、袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A.①B.②C.③D.④【答案】B【解析】至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.2、张卡片上分别写有数字,从这张卡片中随机抽取2张,则取出张卡片上数字之和为偶数的概率为( )A. B. C. D.【答案】B【解析】由题知基本事件总数为,如果2张卡片上数字之和为奇数,需1奇1偶,共有种,∴取出2张卡片上数字之和为奇数的概率为,因此取出2张卡片上数字之和为偶数的概率为.3、从5张100元,3张200元,2张300元的奥运会决赛门票中任取3张,则所取3张中于至少有2张价格相同的概率为()A. B. C. D.【答案】B【解析】先求三张价格均不相同的概率所求概率为。
4、国庆期间,甲去某地的概率为,乙和丙二人去此地的概率为、,假定他们三人的行动相互不受影响,这段时间至少有人去此地旅游的概率为()A. B. C. D.【答案】B5、已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A. B. C. D.【答案】C【解析】记“第一次取出次品”为事件,“第二次取出次品”为事件,则,,所以.6、设随机变量服从正态分布,若,则函数没有极值点的概率是()A. B. C. D.【答案】C【解析】由无相异实根得,因此函数没有极值点的概率是,选C.7、将本不同的书全发给名同学,每名同学至少有一本书的概率是( )A. B. C. D.【答案】A8、已知是球面上的五个点,其中在同一圆周上,若不在所在的圆周上,则从这五个点的任意两点的连线中取出条,这两条直线是异面直线的概率是()A. B. C. D.【答案】D【解析】由题意,得是四棱锥的五个顶点,任取两点,共有条直线,从条直线中任取两条直线,共有对,其中异面直线对是一条侧棱与地面上三条相等(如侧棱与)共有对异面直线,由古典概型的概率公式,得这两条直线是异面直线的概率是.9、某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A. B. C. D.【答案】C10、一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该运动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A. B. C. D.【答案】A【解析】由运动员一次射箭击中环数的期望为环,可知,即,则,当,即时取等号,此时,则.11、在区间内随机取两个实数,,则满足的概率是( )A. B. C. D.【答案】D【解析】由题意知表示的区域为边长为2的正方形,面积为4,满足的区域即为图中阴影部分,面积为,所以所求概率为,.12、若是从区间中任取的一个实数,是从区间中任取的一个实数,则的概率是( )A. B. C. D.【答案】A【解析】试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为.其中满足的结果构成的区域为图中阴影部分,其面积为.则所求概率为.13、如图,将半径为的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A. B. C. D.【答案】A14、在如图所示的正方形中随机投掷个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,A. B. C. D.【答案】C【解析】根据题意得,设落入阴影部分点的个数为,则,则.15、有一批产品,其中有件正品和件次品,有放回地任取件,若表示取到次品的件数,则_________.【答案】【解析】由题意知取到次品的概率为,∴,∴.16、已知随机变量,若,则_________.【答案】【解析】,所以,所以,解得,所以.17、设随机变量的分布列为,其中为常数,则_________.【答案】18、设随机变量的概率分布律如下表所示:其中成等差数列,若随机变量的的均值为,则的方差为________.【答案】【解析】由题意有,,,解得,则其方差为.19、有一种游戏规则如下:口袋里共装有个红球和个黄球,一次摸出个,若颜色都相同,则得分;若有个球颜色相同,另一个不同,则得分,其他情况不得分. 小张摸一次得分的期望是________.【答案】20、设随机变量,且,则实数的值为_________.【答案】3【解析】∵随机变量,∴正态曲线关于对称,∵,∴与关于对称,所以∴.21、某校高三一模理科参加数学考试学生共有1016人,分数服从,则估计分数高于105分的人数为________.【答案】508【解析】因为分数服从,所以由正态分布的性质可知,估计分数高于105分的人数为故,答案为508.22、如图,是以为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用表示事件“豆子落在正方形内”,表示事件“豆子落在扇形(阴影部分)内”,则______.【答案】【解析】故答案为.23、袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出黑球,设“第一次摸得红球”为事件,“摸得的两球同色”为事件,则概率_________.【答案】【解析】由, ,根据条件概率可知.24、设集合,,分别从集合和中随机取一个数和,确定平面上一个点,设“点落在直线上”为事件,若事件的概率最大,则的值为________.【答案】2【解析】由题意知,点的坐标的所有情况为,,,,,,,,,共种.当时,落在直线上的点的坐标为,共种;当时,落在直线上的点的坐标为和,共种;当时,落在直线上的点的坐标为,,,共种;当时,落在直线上的点的坐标为,,共种;当时,落在直线上的点的坐标为,共种.因此,当的概率最大时,.25、个男生,个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数有________.【答案】288026、将名新的同学分配到、、三个班级中,每个班级至少安排名学生,其中甲同学不能分配到班,那么不同的分配方案数为_________.(请用数字作答)【答案】24【解析】将甲同学分配到班或班,有种;剩下的名同学分配方案为种,所以不同的分配方案为种.27、某班组织文艺晚会,准备从等个节目中选出个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为_________.【答案】1140【解析】分两类:第一类,只有一个选中,则不同演出顺序有种;第二类,同时选中,则不同演出顺序有种,共有.故答案应填:.28、甲、乙两位高一学生进行新高考“七选三”选科(即在物、化、生、政、史、地、技术等七门科中任选择三门学科),已知学生甲必选政治,学生乙必不选物理,则甲、乙两位学生恰好有两门选课相同的选法有________种.(用数字作答)【答案】110【解析】(1)甲选物理:;(2)甲不选物理:;共有种.29、为了调查观众对央视某节目的关注度,现从某社区随机抽取名青年人进行调查,再从中挑选名做进一步调查,则这名青年人中的小张、小李至少有人被选中,而小汤没有被选中做进一步调查的不同选法有________种. 【答案】149630、有个大学报送名额,计划分别到个班级,每班至少一个名额,则不同的分法种数为种.【答案】6【解析】一共有个保送名额,分到个班级,每个班级至少一个保送名额,即将名额分成份,每份至少个(定行数).将个名额排成一列产生个空,中间有个空(定空位).即只需在中间个空中插入个隔板,隔板不同的方法共有种.(插隔板)专题13 概率(小题部分)(文)【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理,及列举法求概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题13 概率1.(我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115D .118【答案】C【名师点睛】先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法: (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3 B .0.4 C .0.6D .0.7【答案】B【解析】设事件A 为只用现金支付,事件B 为只用非现金支付,事件C 为既用现金支付也用非现金支付. 则()()()()P A B C P A P B P C =++.因为()()0.45,0.15P A P C ==,所以()0.4P B =.故选B.【名师点睛】本题主要考查事件的基本关系和概率的计算,属于基础题.由公式()()()()P A B C P A P B P C=++计算可得.3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3【答案】D【名师点睛】分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能个数及事件“选中的2人都是女同学”的总可能个数,代入概率公式可求得概率.应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A;第二步,分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;第三步,利用公式()mP An=求出事件A的概率.4.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是A.13B.16C.14D.112【答案】A【解析】幼童把这三张卡片进行随机排列,基本事件总数n=23C=3,∴该幼童能将这句话排列正确的概率p=13.故选A.【名师点睛】先排好医字,共有23C种排法,再排国字,只有一种方法.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.5.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=A.0.4 B.0.5C.0.6 D.0.7【答案】A6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683该运动员三次投篮恰有两次命中的概率为A.15B.35C.310D.910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数,故所求概率为3 10.故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的可以通过列举得到共3组随机数,根据概率公式,得到结果.7.传说战国时期,齐王与田忌各有上等,中等,下等三匹马,且同等级的马中,齐王的马比田忌的马强,但田忌的上、中等马分别比齐王的中、下等马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜.如果齐王将马按上,中,下等马的顺序出阵,而田忌的马随机出阵比赛,则田忌获胜的概率是A .B .C .D .【答案】C8.有一底面半径为1,高为2的圆柱,点O为圆柱下底面圆的圆心,在这个圆柱内随机取一点P,则点P 到点O的距离大于l的概率为A.13B.23C.34D.14【答案】B【解析】设点P到点O的距离小于等于1的概率为P1,由几何概型,得P1=322π13π12VV⨯⨯⨯半球圆柱==13,故点P到点O的距离大于1的概率P=1-13=23.故选B.9.有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是A.0.01×0.992B.0.012×0.99C.13C0.01×0.992D.1-0.993【答案】D【名师点睛】本题主要考查了互斥事件概率的求法,解题的关键是熟练掌握互斥事件的概率和为1,属于基础题.根据题意求出事件“三盒中没有次品”的概率,然后根据互斥事件的概率和为1,即可得到答案.10.运行如图所示的程序框图,设输出数据构成的集合为,从集合中任取一个元素,则函数是增函数的概率为A.B.C.D.【答案】C【解析】该程序的运行过程如下:x=-3,输出,输出,输出,输出,输出,输出,输出y=15,程序结束,故A={3,0,-1,8,15},其中有3个正元素,可使得函数是增函数,故所求概率为.故选C.11.设函数f(x)=e,01ln e,1ex xx x⎧≤<⎨+≤≤⎩在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是A.1eB.1﹣1eC.e1e+D.11e+【答案】B12.(2018新课标I卷理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设,,AC b AB c BC a ===,则有222b c a +=,从而可以求得ABC △的面积为112S bc =, 黑色部分的面积为22221πππ2222c b a S bc ⎡⎤⎛⎫⎛⎫⎛⎫=⋅+⋅-⋅-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2221π4442c b a bc ⎛⎫=+-+ ⎪⎝⎭ 22211π422c b a bc bc +-=⋅+=,其余部分的面积为2231π1π2242a a S bc bc ⎛⎫=⋅-=- ⎪⎝⎭,所以有12S S =,根据面积型几何概型的概率公式,可以得到12p p =. 故选A.【名师点睛】该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果.13.(2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】310【名师点睛】先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.14.(2018上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是_____. 【答案】15【解析】编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个, 从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况, 所有的事件总数为:35C =10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2,共两个, 所以这三个砝码的总质量为9克的概率是:210=15, 故答案为:15. 【名师点睛】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.15.已知向量()()2,1,,x y ==,a b 若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量∥a b 的概率为_______. 【答案】16【名师点睛】本题考查了古典概型概率计算公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.先求出基本事件的个数,利用向量平行确定满足∥a b 的基本事件个数,然后代入古典概型概率计算公式求概率.16.(1)一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求在第一次取到白球的条件下,第二次取到黑球的概率为____________;(2)有一批种子的发芽率为0.95,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,这粒种子能成长为幼苗的概率为____________. 【答案】(1)49;(2)0.76. 【解析】(1)记“第一次取到白球”为事件A ,“第二次取到黑球”为事件B .注意这里的问题与“求第一次取到白球,第二次取到黑球的概率”不一样.方法一:显然,事件“第一次取到白球,第二次取到黑球”的概率()644()()10915n AB P AB n Ω⨯===⨯, 由条件概率的计算公式,得4()415()6()9|10P AB P B A P A ===. 方法二:因为1169C C()n A =,1164C (C)n AB =,所以11641169C C ()4()()C C |9n AB P B A n A ===.(2)设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽且成活为幼苗),则出芽后的幼苗成活率为()0|.8P B A =,()0.95P A =,根据条件概率公式()()()0.950.80.76|P AB P B A P A =⋅=⨯=,故在这批种子中,随机抽取一粒,这粒种子能成长为幼苗的概率为0.76.【名师点睛】(1)由条件概率的定义知,|()P B A 与|()P A B 是不同的;另外,在事件A 发生的前提下,事件B 发生的可能性大小不一定是()P B ,即|()P B A 与()P B 不一定相等.(2)()()()|P AB P B A P A =可变形为()()()|P AB P B A P A =⋅,即只要知道其中两个值就可以求得第三个值.如已知()P A ,()P AB 可求|()P B A ;已知()P A ,|()P B A 可求()P AB .17.设集合1{|216}4x A x =<<,()2{|ln 3}B x y x x ==-,从集合A 中任取一个元素,则这个元素也是集合B 中元素的概率是__________.【答案】1 2【名师点睛】(1)本题主要考查集合的化简和运算,考查几何概型,意在考查学生对这些知识的掌握水平和分析推理能力.先根据集合A,B,求出A∩B,再利用长度型的几何概型的意义求解即可.(2)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A构成的区域长度(角度、弧长等),最后代公式()AP A=构成事件的区域长度试验的全部结果所构成的区域长度;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.18.设随机变量X的分布列为则a = ;E(X)= .【答案】19.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 【答案】(1)0.6;(2)0.8.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25, 由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时, 若最高气温不低于25,则Y =6⨯450-4⨯450=900;若最高气温位于区间 [20,25),则Y =6⨯300+2×(450-300)-4⨯450=300; 若最高气温低于20,则Y =6⨯200+2×(450-200)-4⨯450= -100. 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为0.8.【名师点睛】在解古典概型概率题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率. (1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[)20,25和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率;(2)当湿度大于等于25C 时,需求量为500 ,求出900Y =元;当温度在[)20,25时,需求量为300,求出300Y =元;当温度低于20C 时,需求量为200,求出100Y =-元,从而当温度大于等于20时,0Y >,由此能估计估计Y 大于零的概率.20.为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下:(1)若甲单位数据的平均数是122,求;(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为,令,求的分布列和期望.【答案】(1)8;(2)见解析.【解析】(1)由题意,解得;(2)随机变量的所有取值有0,1,2,3,4.;;的分布列为:21.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?【答案】(1)不能;(2);(3)【解析】(1)根据抽样调查数据,一、二等品所占比例的估计值为=,由于该估计值小于,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定.(3)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为=,“质量提升月”活动后,产品质量指标值近似满足,即质量指标值的均值约为.所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了22.(2018天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案】(1)应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人;(2)(i)见解析;(ii)67.【解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.(2)(i)随机变量X的所有可能取值为0,1,2,3.P (X =k )=34337C C C k k-⋅(k =0,1,2,3).所以,随机变量X 的分布列为随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=. (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥,由(i )知,P (B )=P (X =2),P (C )=P (X =1),故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67. 所以,事件A 发生的概率为67.________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________。