工程热力学的 平衡状态的稳定性-课件·PPT
合集下载
热力学基本概念2-平衡态、准静态、几种热力过程

工程热力学
状态公理State postulate
闭口系: 不平衡势差 状态变化 能量传递
消除一种 达到某一 消除一种能量 不平衡势差 方面平衡 传递方式 而不平衡势差彼此独立 独立参数数目N=不平衡势差数 =能量转换方式的数目 =各种功的方式+热量= n+1 n 容积变化功、电功、拉伸功、表面张力功等
工程热力学
平衡状态Equilibrium state
温差 — 热不平衡势 压差 — 力不平衡势 相变 — 相不平衡势 化学反应 — 化学不平衡势
平衡的本质:不存在不平衡势 In an equilibrium state there are no unbalanced potentials
工程热力学
工程热力学
Many types of Equilibrium
2、力平衡Mechanical equilibrium : if there is no change in pressure at any point of the system with time
The variation of pressure as a result of gravity in most thermodynamic system is relatively small and usually disregarded 压差 Pressure differential 力不平衡势Unbalanced potentials
绝热简单可压缩系统 N = ?
工程热力学
状态方程Equation of state
状态方程 基本状态参数(p,v,T)之间 的关系 简单可压缩系统:N = 2
v f ( p, T )
工程热力学
状态公理State postulate
闭口系: 不平衡势差 状态变化 能量传递
消除一种 达到某一 消除一种能量 不平衡势差 方面平衡 传递方式 而不平衡势差彼此独立 独立参数数目N=不平衡势差数 =能量转换方式的数目 =各种功的方式+热量= n+1 n 容积变化功、电功、拉伸功、表面张力功等
工程热力学
平衡状态Equilibrium state
温差 — 热不平衡势 压差 — 力不平衡势 相变 — 相不平衡势 化学反应 — 化学不平衡势
平衡的本质:不存在不平衡势 In an equilibrium state there are no unbalanced potentials
工程热力学
工程热力学
Many types of Equilibrium
2、力平衡Mechanical equilibrium : if there is no change in pressure at any point of the system with time
The variation of pressure as a result of gravity in most thermodynamic system is relatively small and usually disregarded 压差 Pressure differential 力不平衡势Unbalanced potentials
绝热简单可压缩系统 N = ?
工程热力学
状态方程Equation of state
状态方程 基本状态参数(p,v,T)之间 的关系 简单可压缩系统:N = 2
v f ( p, T )
工程热力学
工程热力学课件完整版

的热消失时,必产生相应量的功;消耗一定量的功时 ,必出现与之对应的一定量的热。
第三章 理想气体的性质
基本要求: 1、熟练掌握并正确应用理想气体状态方程式; 2、正确理解理想气体比热容的概念,熟练应用比热容计算理想 气体热力学能、焓、熵及过程热量; 3、掌握有关理想气体的术语及其意义; 4、掌握理想气体发生过程; 5、了解理想气体热力性质图表的结构,并能熟练应用它们获得 理想气体的相关状态参数。
T
不可逆过程的熵增(过程角度)
q
T
0
克劳休斯积分不等式(循环角度)
dsiso 0
孤立系统角度
ds sf sg 非孤立系统角度
熵、热力学第二定律的数学表达式
1. 熵的定义
ds qre
T
2. 循环过程的熵
3. 可逆过程的熵变
qre Tds
ds 0,则 q 0 可逆过程中ds 0,则 q 0
dv
q cndT Tds
T s
n
T cn
T ,定容过程 cV
T ,定压过程 cp
4个基本过程中的热量和功的计算
2
2
1、定容过程
w pdv 0 1
wt 1 vdp v( p2 p1)
2、定压过程
qv u cv (T2 T1)
2
w 1 pdv p(v2 v1)
热力学上统一规定:外界向系统传热为正,系统向外界传热为负。
可逆过程的热量
T
1
B
qre = Tds
T
A
2
q
ds qrev
T
S1
S dS S2
q “+”
q “-”
热力循环
功:工质从某一初态出发,经历一系列热力状态后,又回到原来 初态的热力过程称为热力循环,即封闭的热力过程,简称循环。
第三章 理想气体的性质
基本要求: 1、熟练掌握并正确应用理想气体状态方程式; 2、正确理解理想气体比热容的概念,熟练应用比热容计算理想 气体热力学能、焓、熵及过程热量; 3、掌握有关理想气体的术语及其意义; 4、掌握理想气体发生过程; 5、了解理想气体热力性质图表的结构,并能熟练应用它们获得 理想气体的相关状态参数。
T
不可逆过程的熵增(过程角度)
q
T
0
克劳休斯积分不等式(循环角度)
dsiso 0
孤立系统角度
ds sf sg 非孤立系统角度
熵、热力学第二定律的数学表达式
1. 熵的定义
ds qre
T
2. 循环过程的熵
3. 可逆过程的熵变
qre Tds
ds 0,则 q 0 可逆过程中ds 0,则 q 0
dv
q cndT Tds
T s
n
T cn
T ,定容过程 cV
T ,定压过程 cp
4个基本过程中的热量和功的计算
2
2
1、定容过程
w pdv 0 1
wt 1 vdp v( p2 p1)
2、定压过程
qv u cv (T2 T1)
2
w 1 pdv p(v2 v1)
热力学上统一规定:外界向系统传热为正,系统向外界传热为负。
可逆过程的热量
T
1
B
qre = Tds
T
A
2
q
ds qrev
T
S1
S dS S2
q “+”
q “-”
热力循环
功:工质从某一初态出发,经历一系列热力状态后,又回到原来 初态的热力过程称为热力循环,即封闭的热力过程,简称循环。
大物热学第一章 热力学系统的平衡态及平衡方程PPT课件

i1
vi v
pV vRT p pi
Dalton’s law of partial pressure: 混合气体的压强等于
-steady state 在外界影响下,系统的各部分宏观性质不随时间而
变化的状态。 例:
-Non-equilibrium state 系统的宏观性质随时间而变化的状态。
从非平衡态到平衡态的转变,称为驰豫过程。其时间
常数称为驰豫时间。
可编辑课件
8
-Quasi-static (quasi-stationary) state 从非平衡态到平衡态转变的热力学过程中,每一个
热学
Heat (and Thermodynamics)
什么是热学
研究热现象的规律及其应用的学科
热学包含的内容
1. 热学的基本参量——温度和热量的概念
2. 物质的热性质
状态方程 热膨胀 比热 热传递的规律
3. 热力学定律
第零、第一、第二、第三定律
4. 热现象的微观理论
气体分子运动论 统计物理
可编辑课件
强趋于零时的极限(稀薄气体)。(可以证明理想气体
的内能与压强无关)
理想气体在平衡态时满足
Charles law
pT
Gay-Lussac law V T Boyle-Marriotle law—一定质量的气体,当温度一定 时,P和V成反比
PV = const (T) 对于1 mole 理想气体
PVm = RT R为Universal gas constant
III.气体分子运动论的初步概念(1.1,1.6节)
可编辑课件
20
Ⅱ Equation of State 1. 什么是状态方程(状态方程的一般讨论)
vi v
pV vRT p pi
Dalton’s law of partial pressure: 混合气体的压强等于
-steady state 在外界影响下,系统的各部分宏观性质不随时间而
变化的状态。 例:
-Non-equilibrium state 系统的宏观性质随时间而变化的状态。
从非平衡态到平衡态的转变,称为驰豫过程。其时间
常数称为驰豫时间。
可编辑课件
8
-Quasi-static (quasi-stationary) state 从非平衡态到平衡态转变的热力学过程中,每一个
热学
Heat (and Thermodynamics)
什么是热学
研究热现象的规律及其应用的学科
热学包含的内容
1. 热学的基本参量——温度和热量的概念
2. 物质的热性质
状态方程 热膨胀 比热 热传递的规律
3. 热力学定律
第零、第一、第二、第三定律
4. 热现象的微观理论
气体分子运动论 统计物理
可编辑课件
强趋于零时的极限(稀薄气体)。(可以证明理想气体
的内能与压强无关)
理想气体在平衡态时满足
Charles law
pT
Gay-Lussac law V T Boyle-Marriotle law—一定质量的气体,当温度一定 时,P和V成反比
PV = const (T) 对于1 mole 理想气体
PVm = RT R为Universal gas constant
III.气体分子运动论的初步概念(1.1,1.6节)
可编辑课件
20
Ⅱ Equation of State 1. 什么是状态方程(状态方程的一般讨论)
工程热力学课件ppt

热力系统的环境影响评价
环境影响
环境影响是指人类活动对环境产生的各种影响,包括正面和负面 影响。
生命周期评价
生命周期评价是一种用于评估产品或服务在整个生命周期内对环境 的影响的方法。
热力系统的环境影响
热力系统在运行过程中会产生各种环境影响,如排放污染物、消耗 能源等。
可持续性与可再生能源在热力学中的应用
高效热力系统的研究与开发
高效热力系统设计
针对不同应用场景,研究开发高效热 力系统,如高效燃气锅炉、高效空调 系统等,通过优化系统结构和运行参 数,降低能耗和提高能效。
高效热力系统评估
建立和完善高效热力系统的评估体系 ,制定相关标准和规范,为实际应用 提供指导和依据。
热力学在可再生能源利用中的应用
热力学在工程中的应用
热力发动机
热力发动机原理
热力发动机利用燃料燃烧产生的 热能转化为机械能,通过活塞、 转子或涡轮等机构输出动力。
热力发动机类型
热力发动机有多种类型,如内燃 机、蒸汽机和燃气轮机等,每种 类型都有其特点和应用领域。
热力发动机效率
提高热力发动机效率是重要的研 究方向,通过优化设计、改善燃 烧过程和减少热量损失等方法可 以提高效率。
新型热力材料与技术
新型热力材料
随着科技的发展,新型热力材料不断涌现,如纳米材料、复合材料等,这些材料 具有优异的热物理性能和热力学特性,为热力系统的优化和能效提升提供了新的 可能性。
新型热力技术
新型热力技术如热管技术、热泵技术、热电技术等在工程热力学领域的应用越来 越广泛,这些技术能够实现高效能的热量传递和转换,提高能源利用效率。
要点二
详细描述
热力系数是衡量热力学系统转换效率的参数,表示系统输 出功与输入功的比值。它反映了系统转换能量的能力,是 评价系统性能的重要指标之一。热力效率是衡量系统能量 转换效率的参数,表示系统输出有用功与输入总功的比值 。它反映了系统在能量转换过程中的损失程度,也是评价 系统性能的重要指标之一。
工程热力学课件第三章

卡诺循环的效率由两个温度决定,即高温热源的温度$T_1$和低温 热源的温度$T_2$。根据卡诺定理,卡诺循环的效率$eta$可以用 以下公式表示:$eta = 1 - frac{T_2}{T_1}$。
05
实际气体与蒸汽
实际气体的性质
在此添加您的文本17字
实际气体与理想气体对比
在此添加您的文本16字
热力学第一定律的应用
热量计算
01
利用热力学第一定律可以计算系统在加热或冷却过程中吸收或
释放的热量。
能量转换效率
02
利用热力学第一定律可以分析能量转换过程中的效率,例如发
动机、发电厂等。
热量传递过程
03
利用热力学第一定律可以分析热量传递过程,例如散热器、保
温材料等。
03
理想气体
理想气体的定义
理想气体
在制冷技术中,热力学第二定律用于解释制冷剂的工作原理,以及为什么制冷剂能够从低温物体吸收热 量并排放到高温环境中。
在汽车工程中,热力学第二定律用于指导发动机设计和优化,以提高燃油效率和减少排放。
卡诺循环与卡诺定理
卡诺循环由四个过程组成:等温吸热、绝热膨胀、等温放热和绝 热压缩。在等温过程中,卡诺循环从高温热源吸收热量并对外做 功;在绝热过程中,系统与外界无热量交换。
理想气体状态方程的推导
理想气体状态方程可以通过分子运动论的基本假设和实验 数据推导得到。其推导过程涉及到分子动理论、统计力学 和热力学的基本原理,是理解和掌握热力学基本概念和公 式的重要基础。
理想气体状态方程的应用
理想气体状态方程在工程领域中有着广泛的应用,如气体 压缩、膨胀、流动和换热等过程。通过理想气体状态方程 ,可以计算气体的压力、体积和温度等参数,以及气体的 能量转换和传递过程。
05
实际气体与蒸汽
实际气体的性质
在此添加您的文本17字
实际气体与理想气体对比
在此添加您的文本16字
热力学第一定律的应用
热量计算
01
利用热力学第一定律可以计算系统在加热或冷却过程中吸收或
释放的热量。
能量转换效率
02
利用热力学第一定律可以分析能量转换过程中的效率,例如发
动机、发电厂等。
热量传递过程
03
利用热力学第一定律可以分析热量传递过程,例如散热器、保
温材料等。
03
理想气体
理想气体的定义
理想气体
在制冷技术中,热力学第二定律用于解释制冷剂的工作原理,以及为什么制冷剂能够从低温物体吸收热 量并排放到高温环境中。
在汽车工程中,热力学第二定律用于指导发动机设计和优化,以提高燃油效率和减少排放。
卡诺循环与卡诺定理
卡诺循环由四个过程组成:等温吸热、绝热膨胀、等温放热和绝 热压缩。在等温过程中,卡诺循环从高温热源吸收热量并对外做 功;在绝热过程中,系统与外界无热量交换。
理想气体状态方程的推导
理想气体状态方程可以通过分子运动论的基本假设和实验 数据推导得到。其推导过程涉及到分子动理论、统计力学 和热力学的基本原理,是理解和掌握热力学基本概念和公 式的重要基础。
理想气体状态方程的应用
理想气体状态方程在工程领域中有着广泛的应用,如气体 压缩、膨胀、流动和换热等过程。通过理想气体状态方程 ,可以计算气体的压力、体积和温度等参数,以及气体的 能量转换和传递过程。
力学平衡稳定性稳定平衡、不稳定平衡和随遇平衡 ppt课件

dS0 因而达到平衡态后,熵有最大值,且不变化。
设 想 此 时 有 一 个 偏 离 平 衡 态 的 虚 变 动 , 则 有 :
S1S2S0
2
平 衡 态 的 条 件 是 : 1S0(平 衡 判 据 ) 2S0( 稳 定 性 判 据 )
由 热 力 学 第 一 、 二 定 律 :
dUTdSdW 系
1
等熵、无外功的系统过程:
在等温不做功的情况下: dF 0
由此可得: 等温不做功的系统中进行的过程, 系统的自由能绝不会增加,而平衡 对应于自由能F取最小值的宏观态
若将系统对外做功分为膨胀功与非膨胀功,有: dW系 PdV dW系
有之前1式:
dU TdS dW系 作勒让德变换:
dG SdT VdP dW系
同理分析:
T T P P
(热平衡条件) (力学平衡条件) (相平衡条件)
将 稳 定 性 判 据 2 U 0 应 用 于 热 力 学 系 统 :
2 U 2 S U 2 V S 2 2 S 2 U V SV V 2 U 2 SV 2 0
写成二次型的形式
由2式,同时T
=
U S
V
:
2U
S2
V
T S
V
T U
V
U S
V
T CV
0
( T 0 ) C V d Q 系 d T V 0
具体分析
热平衡时: T系 =Ta
由系统内部的涨落,使得: T系>Ta
此 时 ,热 量 从 系 统 传 向 外 界 , 则 : dQ系0
代入热平衡稳定性条件:
U1U2U0
2
1U0 (平衡判据) 2U0(平衡稳定性判据)
热力学势 平衡判据 (熵除外)
设 想 此 时 有 一 个 偏 离 平 衡 态 的 虚 变 动 , 则 有 :
S1S2S0
2
平 衡 态 的 条 件 是 : 1S0(平 衡 判 据 ) 2S0( 稳 定 性 判 据 )
由 热 力 学 第 一 、 二 定 律 :
dUTdSdW 系
1
等熵、无外功的系统过程:
在等温不做功的情况下: dF 0
由此可得: 等温不做功的系统中进行的过程, 系统的自由能绝不会增加,而平衡 对应于自由能F取最小值的宏观态
若将系统对外做功分为膨胀功与非膨胀功,有: dW系 PdV dW系
有之前1式:
dU TdS dW系 作勒让德变换:
dG SdT VdP dW系
同理分析:
T T P P
(热平衡条件) (力学平衡条件) (相平衡条件)
将 稳 定 性 判 据 2 U 0 应 用 于 热 力 学 系 统 :
2 U 2 S U 2 V S 2 2 S 2 U V SV V 2 U 2 SV 2 0
写成二次型的形式
由2式,同时T
=
U S
V
:
2U
S2
V
T S
V
T U
V
U S
V
T CV
0
( T 0 ) C V d Q 系 d T V 0
具体分析
热平衡时: T系 =Ta
由系统内部的涨落,使得: T系>Ta
此 时 ,热 量 从 系 统 传 向 外 界 , 则 : dQ系0
代入热平衡稳定性条件:
U1U2U0
2
1U0 (平衡判据) 2U0(平衡稳定性判据)
热力学势 平衡判据 (熵除外)
《工程热力学》课件

理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。
§1.2热力学系统的平衡态ppt

热力学平衡( §1.2.3 热力学平衡(Thermodynamic Equilibrinm) ) 系统处于平衡态时应不存在热流与粒子流。 系统处于平衡态时应不存在热流与粒子流。 1、热学平衡条件:热流由系统内部温度不均匀而产生的,温度处 、热学平衡条件:热流由系统内部温度不均匀而产生的, 处相等看作是热学平衡( 处相等看作是热学平衡(Thermal Equilibrium)建立的标准。 )建立的标准。 粒子流有两种, 粒子流有两种,一种是宏观上能察觉到成群粒子定向移动的粒子 这是由气体内部存在压强差异而使粒子群受力不平衡所致。 流。这是由气体内部存在压强差异而使粒子群受力不平衡所致。 气体不发生宏观流动的一个条件是系统内部各部分的受力平衡。 气体不发生宏观流动的一个条件是系统内部各部分的受力平衡。 2、力学平衡(Mechanical Equilibrium)条件:即系统内部各部 、力学平衡( )条件: 分之间、系统与外界之间应达到力学平衡。在通常(例如在没有 分之间、系统与外界之间应达到力学平衡。在通常( 外场等)情况下,力学平衡反映为压强处处相等。第二种粒子流, 外场等)情况下,力学平衡反映为压强处处相等。第二种粒子流, 它不存在由于成群粒子定向运动所导致的粒子宏观迁移。 它不存在由于成群粒子定向运动所导致的粒子宏观迁移。 扩散现象( ):有一隔板将容器分隔为左右两部分 扩散现象(Diffusion):有一隔板将容器分隔为左右两部分,左 ):有一隔板将容器分隔为左右两部分, 边氧气,右边为氮气,两边压强、温度相等,若将隔板抽出, 边氧气,右边为氮气,两边压强、温度相等,若将隔板抽出,由 于气体分子无规则运动,最后将达到氧气、氮气均匀混合的状态。 于气体分子无规则运动,最后将达到氧气、氮气均匀混合的状态。 在扩散的整个过程中,压强处处相等,力学平衡条件始终满足, 在扩散的整个过程中,压强处处相等,力学平衡条件始终满足, 却看到了氧、氮之间的相互混合,粒子的宏观“流动” 却看到了氧、氮之间的相互混合,粒子的宏观“流动”。