北师大版《数学》(七年级下册)概念总结
北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]
![1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/753d962ccc7931b765ce1584.png)
北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习全等三角形的概念和性质(基础)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形【答案】D;解析:A、两个等腰三角形的45°不一定同是底角或顶角,还缺少对应边相等,所以,两个三角形不一定全等,故本选项错误;B、两个等边三角形的边长不一定相等,所以,两个三角形不一定全等,故本选项错误;C、40°角不一定是两个三角形的顶角,所以,两个三角形不一定全等,故本选项错误;D、腰和顶角对应相等的两个等腰三角形可以利用“边角边”证明全等,故本选项正确.类型二、全等三角形的对应边,对应角2、(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【思路点拨】由全等三角形的性质:对应角相等即可得到问题的选项【答案与解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.【答案】AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠ADB和∠AEC是对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【思路点拨】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE ,都减去∠ACE 即可.【答案与解析】解:AB 的对应边为DE ,∵△ABC ≌△DEC ,∴∠ACB=∠DCE ,∴∠ACB —∠ACE=∠DCE —∠ACE ,即∠BCE=∠DCA=40°.【总结升华】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.。
北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
七年级下册数学各章知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
七年级下册数学北师大版知识点总结

七年级下册数学北师大版知识点总结
一、数与式
1、按数轴给出区间,在区间内求有限个数的等差数列和等比数列和中项;
2、利用已知条件解动态系统;
3、两倍求和公式——全部求和公式,并应用;
4、等比数列求和公式的应用;
5、能够把多项式的标准根式换成指数表达式,指数表达式换成标准根式;
6、求多项式根;
二、几何
1、三角形的等份,三角形两边和夹角关系;
2、求J类锐角三角形的角平分线,斜边中点到另两边的距离;
3、极点、极角、极径的概念,求给出三角形的极点和极角;
4、旋转:比喻法、直线点式、方程式;
5、点是否在椭圆内,求椭圆外一点到椭圆上的切线;
6、判断两圆的关系;
7、求给定的圆的切线方程,由两点式求第三点的坐标;
三、弧与面
1、求三角形的外接圆;
2、求圆弧上一点的切线与覆盖圆内一点的切线;
3、球面、圆台面、球磨比较;
4、求圆锥、圆柱的体积;
四、统计
1、求分类数据的众数、比例;
2、求统计量:最大值、最小值、中位数、平均数;
3、应用统计量求特定分类数据及误差;
4、直方图及其应用;
5、图表中图例的意义;
五、概率
1、区间的概念;
2、十架统一概念;
3、概率的概念,求统一概念的概率;
4、随机变量的概念;
5、概率分布的概念及特点;
6、正态分布的概念和应用;。
北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
北师大版《数学》(七年级下册)概念总结

北师大版《数学》(七年级下册)概念总结第一章整式的乘除1.同底数幂相乘,底数不变,指数相加。
2.幂的乘方,底数不变,指数相乘。
3.积的乘方等于积中每一个因式分别乘方。
4.同底数幂相除,底数不变,指数相加。
5.除0外的任何数的零次方都是一6.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
7.单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把所得的积相加。
8.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
9.平方差公式:两数和与这两数差的积,等于与他们的平方差。
10.完全平方公式:11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。
12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第二章相交线与平行线1.在同一平面内,两条直线的位置关系有相交和平行。
2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。
3.在同一平面内,不相交的两条直线叫平行线。
4.对顶角相等。
5.如果两个角的和是180°,称这两个角互为补角。
6.如果两个角的和是90°,称这两个角互为余角。
7.同角或等角的余角相等,同角或等角的补角相等。
8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
9,平面内,过一点有且只有一条直线与已知直线垂直。
10.垂线线段最短。
11、在同一平面内:同位角相等内错角相等两直线平行同旁内角互补.12.过直线外一点有且只有一条直线与已知直线平行。
平行于同一条直线的两只线平行。
13.平行线的定义:同位角相等两直线平行内错角相等同旁内角互补第三章三角形1三角形的内角和是180°。
2直角三角形的两个锐角互余。
北师大版七年级下册数学各章知识点总结复习整理

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版《数学》(七年级下册)概念总结第一章整式的乘除
1.同底数幂相乘,底数不变,指数相加。
2.幂的乘方,底数不变,指数相乘。
3.积的乘方等于积中每一个因式分别乘方。
4.同底数幂相除,底数不变,指数相加。
5.除0外的任何数的零次方都是一
6.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连
同它的指数不变,作为积的因式。
7.单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把
所得的积相加。
8.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,
再把所得的积相加。
9.平方差公式:两数和与这两数差的积,等于与他们的平方差。
10.完全平方公式:
11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。
12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第二章相交线与平行线
1.在同一平面内,两条直线的位置关系有相交和平行。
2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。
3.在同一平面内,不相交的两条直线叫平行线。
4.对顶角相等。
5.如果两个角的和是180°,称这两个角互为补角。
6.如果两个角的和是90°,称这两个角互为余角。
7.同角或等角的余角相等,同角或等角的补角相等。
8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
9,平面内,过一点有且只有一条直线与已知直线垂直。
10.垂线线段最短。
11、在同一平面内:同位角相等
内错角相等两直线平行
同旁内角互补.
12.过直线外一点有且只有一条直线与已知直线平行。
平行于同一条直线的两只线平行。
13.平行线的定义:同位角相等
两直线平行内错角相等
同旁内角互补
第三章三角形
1三角形的内角和是180°。
2直角三角形的两个锐角互余。
3.三角形任意两边之和大于第三边,三角形任意两边之和小于第三边。
4.在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线,
5.三角形的三条中线交于一点,这个点成为三角形的重心。
6.在三角形中,一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
三角形的角平分线交于一点。
7.从三角形的一个顶点向他的对边所在直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
三角形的三条高所在的直线交于一点。
8.能够完全重合的两个图形成为全等图形。
9.全等三角形的形状和大小都相同。
10.能够完全重合的三角形叫做全等三角形。
全等三角形的对应边相等,对应角相等。
11.三边分别相等的两个三角形全等,简写“边边边”或“SSS”.
12.两边及其夹角分别相等的两个三角形,简写“角边角”或“ASA”.
13.两边分别相等且其中一组对边等角的对边相等的两个三角形,简写“角角边”或“AAS”。
14.两边及其夹角分别相等的两个三角形,简写“边角边”或“SAS”。
第四章变量之间的关系
1.事物A随着事物B的变化而变化,A是自变量,B是因变量。
在变化过程中始终不变化的量叫做常量。
2.可以用:①关系式②图象来表示变量之间的关系。
3.用图象表示变量之间的关系时,通常用横轴上的点表示自变量,用竖轴上的数表示因变量。
第五章生活中的对称轴
1.如果一个平面图形沿一条直线折叠后,直线两边的部分能够互相重合,那么这个图形为轴对称图形,这条直线叫做对称轴。
2.如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。
3.在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。
4.等腰三角形是轴对称图形。
等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),他们所在的直线都是等腰三角形的对称轴。
等腰三角形的两个底角相等。
5.线段是轴对称图形,垂直且平分线段的直线是它的一条对称轴。
6.垂直于一套直线,并且平分这条线段的直线,叫做这条线段的垂直平分线。
7.线段垂直平分线上的点到这条线段两个短点的距离相等。
8.角是轴对称图形,角平分线所在的直线就是他的对称轴。
9,角平分线上的点到这个角的两边的距离相等。
第六章概率初步
1.在一定条件下,有些事情我们事先肯定他一定发生,这些事情称为必然事件。
2.有些事情我们事先能肯定他一定不会发生,这些事情称为不可能事件。
3,必然事件与不可能事件统称确定事件。
4.有许多时间我们事先无法肯定他发生不发生,这些事称为不可能事件,也称随机事件。
5.在试验次数很大时的频率都会在一个常数附近摆动,这就是频率的稳定性。
6.我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。
7.必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A发生的概率P(A)是0与1之间的一个常数。
8.如果一个试验有N种等可能的结果,事件A包含其中的M种结果,那么事件A发生的概率是为:P(A)=。