高数全套公式
大学高数公式大全

向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )
大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
(完整word版)高数公式大全,推荐文档

x导数公式: (tanx) sec x (cotx) csc x (secx) secx tanx (cscx) cscx cotx (a x) a xl na1(log a x)xl na 基本积分表: kdx kx C (k 为常数) x In x Cdx arcs in x C 1 x 2 sin xdx cosx C Idx csc xdx cot x C sinx cscxcotxdxcscx C a xdx xa In a 两个重要极限: sin x lim x 0 高等数学公式(arcsinx)(arccosx) (arctan x)(arccot x)1111 x 21 1 x 2u 1u,xx dx Cu 1arctan x C cosxdx sin x C2—dxsec xdx tan x Ccos xsecx tan xdx secx C e x dx e x Clim(1xe三角函数公式:sin 2 2sin cos2 2cos 2 2cos 1 1 2s in 2cos.2 sinsin 22cossec 1 tan 2零点定理: 设函数f x 在闭区间a, b 上连续,且fa f b 0 ,那么在开区间 a, b 上至少一点 使f 0。
(考点:禾U 用定理证明方程根的存在性。
当涉及唯一根时,还需证明方程对应的函数的单调 性)罗尔定理:如果函数f x 满足三个条件:(1 )在闭区间 a,b 上连续; (2) 在开区间 a,b 内可导;(3)在区间端点处的函数值相等,即fa f b ,那么在 a,b 内至少有一点 a b ,使得f ' 0。
(选择题:选择符合罗尔定理条件的函数;证明题)拉格朗日中值定理:如果函数f x 满足(1) 在闭区间 a,b 上连续;(2) 在开区间 a,b 内可导,那么在 a, b 内至少有一点 a b ,使等式f b f a f b a 成立。
高数的全部公式大全

(tgx),=sec x (ctgx),= -CSC 2x (secx)'=secx tgx (cscx) ‘ = -cscx ctgx (a x)' = a xl na (log a x)'=1xln a(arcsin x),= . 1:J l -x 21 (arccos x)'= — 一’ j 1—x 21(arctgx)'= __21 +x 1(arcctgx )' = 一 --1 + x基本积分表:三角函数的有理式积分:导数公式:高等数学公式Jtgxdx = -1 n cosx +C Jctgxdx =1 n sin X +C Jsecxdx = In secx+tgx +CJcscxdx = In cscx-ctgx +C f 巴=fsec xdx = tgx + C ' cos x 、dx 2J ———=Jcsc xdx = -ctgx + C 'sin X 、fsecx tgxdx = secx + Cdx J 2 , 2a +x 「 dx J —2 2 x -af dxJ ""2 2 a -x' 2寸a -x1 x =一 arctg -七 a 亠n2a _ 1 . g+c X +aa -x X =arcsi n — +CaI n J cscx ctgxdx =-cscx + C xfa xd^-^ +C ln a Jshxdx = chx +CJchxdx = shx +Cdx=ln( X + J x 2±a 2) + C2=Jsin n xdx = Jcos nxdx =0 0N x 2 -a 2dx = *J x 2 -a 22口I nd n2 , _______________________+ —l n(x +J x 2 +a 2)+C 2ln X + J x 2 - a 2+C 2222 .a - X . c-x + ——arcsi n —+C2 a2usin X = --- 7,1+u,x u=tg-,dx 严1+u 2一些初等函数: 两个重要极限:-sin (a ±P)=si n^cosP ±cos。
(完整word版)高数公式大全

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1—tanα·tanβ)tan(α-β)=(tanα—tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=s inα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ—sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1—tanα·tanβ-tanβ·tanγ—tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα—4sin^3(α)cos(2α)=cos^2(α)—sin^2(α)=2cos^2(α)-1=1—2sin^2(α)cos(3α)=4cos^3(α)-3cosαtan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1—cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)—sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=—(1/2)[cos(α+β)-cos(α—β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α—β)/2]sinα—sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα—cosβ=—2sin[(α+β)/2]sin[(α—β)/2]·推导公式tanα+cotα=2/sin2αtanα—cotα=—2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n—1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)—e^(-ix)]/(2i) cosx=[e^(ix)+e^(—ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(—ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数公式大全

高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin coscos 22cos 1 12sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1n a >=;lim 1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
高数公式大全(全)

高数公式大全1.基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
3诱导公式:记忆规律: 竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)二、一元二次函数、方程和不等式 1ο4521ο4512ο30ο603三、因式分解与乘法公式22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 四、等差数列和等比数列()()()11111 22n n n n a a n d n a a n n n S S na d =+-+-==+1.等差数列 通项公式: 前项和公式或()()1100n n n GP a a qa q -=≠≠2.等比数列 通项公式,()()()11.1111n n n a q q S qna q ⎧-⎪≠=-⎨⎪=⎩前项和公式 五、常用几何公式基本初等函数一、初等函数:()()()()()()()()()1.lim (2.lim 0lim 0,:lim 03.lim 0,:0lim 004.lim0C C C f x M f x f x f x C C f x f x M f x C f x C C C C C αααα=≤=⇒⋅==⇒⋅=≤⇒=∞=≠⇒=∞+∞>⎧=⎨-∞<⎩是常值函数)若(即是有界量),(即是无穷小量), 特别若(即是有界量) 特别()()5.010.,,.(sin ~,1~,ln 1~)x A B x x e x x x -+未定式型分子分母含有相同的零因式消去零因式等价无穷小替换常用()()()()()()()().,,lim,,lim limf x f x f x C f xg x g x g x g x ''''=''洛必达法则:要求存在且存在此时 ()2.,,,.,,...A B C ∞∞型忽略掉分子分母中可以忽略掉的较低阶的无穷大保留最高阶的无穷大再化简计算分子分母同除以最高阶无穷大后再化简计算洛必达法则()型型或转化为数有理化通过分式通分或无理函型"""00",3∞∞∞-∞ ()⎪⎪⎪⎩⎪⎪⎪⎨⎧=∞∞∞=∞∞⋅00100104转化为 ()()()().1lim 170600510或求对数来计算通过型型型求对数求对数e x xx =+∞⋅−−→−∞∞⋅−−→−→∞二、分段函数:,.分段点的极限用左右极限的定义来求解切线方程为:))((000x x x f y y -'=- 法线方程为)()(1000x x x f y y -'-=- 基本初等函数的导数公式(1) 0)(='C ,C 是常数 (2)1)(-='αααx x(3) a a a x x ln )(=',特别地,当e a =时,x xe e =')( (4) a x x a ln 1)(log =', 特别地,当e a =(5)x x cos )(sin =' (6) x x sin )(cos -='(7) x x x 22sec cos 1)(tan ==' (8) x xx 22csc sin 1)(cot -=-=' (9) x x x tan )(sec )(sec =' (10) x x x cot )(csc )(csc -='(11) =')(arcsin x 211x- (12) 211)(arccos xx --='(13)(14) 21(arccot )1x x '=-+ 函数的和、差、积、商的求导法则可导都在点及函数x x v v x u u )()(==,)()(x v x u 及的和、差、商 (除分母为 0的点外) 都在点 x 可导,)()(])()([)1(x v x u x v x u '±'='±)()()()(])()([)2(x v x u x v x u x v x u '+'=')()()()()()()()3(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡)0)((≠x v基本初等函数的微分公式(1)、0dc =(c 为常数);(2)、1()d x x dx μμμ-=(μ为任意常数);(3)、()ln x x d a a adx =,特别地,当e a =时,()x x d e e dx =; (4)、1(log )ln a d x dx x a =,特别地,当e a =时,1(ln )d x dx x=; (5)、(sin )cos d x xdx =; (6)、(cos )sin d x xdx =-; (7)、2(tan )sec d x xdx =; (8)、2(cot )csc d x xdx =-; (9)、(sec )sec tan d x x xdx =; (10)、(csc )csc cot d x x xdx =-; (11)、(arcsin )d x =; (12)、(arccos )d x =;(13)、21(arctan )1d x dx x =+; (14)、21(cot )1d arc x dx x=-+. 曲线的切线方程000'()()y y f x x x -=-幂指函数的导数极限、可导、可微、连续之间的关系条件A ⇒ 条件B ,A 为B 的充分条件 条件B ⇒ 条件A ,A 为B 的必要条件 条件A ⇔ 条件B ,A 和B 互为充分必要条件 边际分析边际成本 MC =()C q ';边际收益 MR =()R q ';边际利润 ML =()L q ',()()()L q R q C q '''=-= MR —MC弹性分析)(x f y =在点0x 处的弹性,()ED pD p Ep D-'= 特别的,需求价格弹性:罗尔定理若函数)(x f 满足: (1) 在闭区间],[b a 连续;(2) 在开区间),(b a 可导;(3) )()(b f a f =,则在),(b a 内至少存在一点ξ,使0)(='ξf .拉格朗日定理设函数)(x f 满足:(1) 在闭区间],[b a 连续;(2) 在开区间),(b a 可导,则在),(b a 上至少存在一点ξ,使得ab a f b f f --=')()()(ξ .基本积分公式(1) 0dx C =⎰ (2) ()为常数k Ckx kdx +=⎰特别地:dx x C =+⎰(3) ()111-≠μ++μ=+μμ⎰C x dx x()()()()()()()()()'ln v x v x u x u x u x v x u x v x u x ⎛⎫'⎡⎤'=+ ⎪⎪⎣⎦⎝⎭00()x x x Eyy x Exy ='=(4) C x dx x +=⎰||ln 1 (有时绝对值符号也可忽略不写) (5) C aa dx a xx +=⎰ln (6) C e dx e x x +=⎰(7) C x xdx +=⎰sin cos(8) C x xdx +-=⎰cos sin (9) ⎰⎰+==C x xdx x dx tan sec cos 22 (10)⎰⎰+-==C x xdx x dx cot csc sin 22 (11) C x xdx x +=⎰sec tan sec(12) C x xdx x +-=⎰csc cot csc (13)C x x dx +=+⎰arctan 12(或C x arc x dx +-=+⎰cot 12) (14)C x x dx +=-⎰arcsin 12(或C x x dx +-=-⎰arccos 12) (15) C x xdx +-=⎰|cos |ln tan ,(16) C x xdx +=⎰|sin |ln cot ,(17) C x x xdx ++=⎰|tan sec |ln sec ,(18) C x x dx x +-=⎰|cot csc |ln cot ,(19) C a x a x a dx +=+⎰arctan 122,)0(≠a , (20)C a x a x a x a dx +-+=-⎰ln 2122,(0)a ≠, (21)C a x x a dx +=-⎰arcsin 22,)0(>a , (22) C a x x a x dx +±+=±⎰2222ln ,)0(≠a . 常用凑微分公式(1)、()()0,,1≠+=a b a b ax d adx 且为常数 (2)、()221x d xdx =(3)、⎪⎭⎫ ⎝⎛-=x d dx x 112x y 0a b ()y g x =()y f x =y 0x c d ()x y ψ=()x y ϕ=(4)、x d dx x 21=(5)、x d dx x ln 1=(6)、x x de dx e =(7)、()sin cos xdx d x =-(8)、x d xdx sin cos =(9)、x d xdx tan sec 2=(10)、x d xdx cot csc 2-=(11)2arcsin 1d x x =-(12)、x d dx x arctan 112=+一阶线性非齐次微分方程的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰平面图形面积的计算公式1)区域D 由连续曲线和直线x=a,x=b 围成,其中(右图)2)区域D 由连续曲线和直线x=c,x=d 围成,其中(右图)平面图形绕旋转轴旋转得到的旋转体体积公式 ()()dyP x y Q x dx +=()()()f x g x a x b ≤≤≤[]()()baA g x f x dx=-⎰D 的面积 (),()y f x y g x ==(),()x y x y ϕψ==()()()y y c y d ϕψ≤≤≤[]()()dcA y y dyψϕ=-⎰D 的面积1 、绕x 轴的旋转体体积(右图)注意:此时的曲边梯形必须紧贴旋转轴.2、绕y 轴的旋转体体积(右图)注意:此时的曲边梯形必须紧贴旋转轴.由边际函数求总函数000()()((0)q C q f x dx C C C =+=⎰为固定成本) 0()()qR q g x dx =⎰ 总利润函数为00()()()[()()]qL q R q C q g x f x dx C =-=--⎰。