2020年整理光纤传感实验报告.doc
光纤传感测量实验报告

光纤传感测量实验报告光纤传感测量实验报告引言:光纤传感测量是一种基于光纤技术的测量方法,通过光的传输和传感原理,可以实现对各种物理量的精确测量。
本实验旨在探究光纤传感测量的原理和应用,并通过实际操作验证其可行性。
一、光纤传感测量原理光纤传感测量的基本原理是利用光的特性在光纤中传输,并通过光的改变来测量物理量。
光纤传感器由光源、光纤、光电探测器和信号处理器组成。
当物理量作用于光纤时,会引起光纤中的光信号发生变化,进而被光电探测器接收并转化为电信号,最后通过信号处理器进行处理和分析。
二、光纤传感测量的应用领域光纤传感测量在许多领域都有广泛的应用。
其中,温度传感是光纤传感测量的主要应用之一。
通过光纤的热致效应,可以实现对温度的高精度测量。
此外,光纤传感测量还可以应用于压力、应变、湿度等物理量的测量,并且具有灵敏度高、抗干扰能力强等优点。
三、实验步骤及结果1. 实验仪器准备:光源、光纤、光电探测器、信号处理器等。
2. 实验一:温度传感测量。
将光纤传感器固定在温度变化的环境中,通过信号处理器获取温度变化的数据。
实验结果显示,随着温度的升高,光纤中的光信号发生了明显的变化,且与温度呈线性关系。
3. 实验二:压力传感测量。
将光纤传感器连接到压力变化的装置上,通过信号处理器获取压力变化的数据。
实验结果显示,压力的增加会导致光信号的衰减,且与压力呈正相关关系。
4. 实验三:应变传感测量。
将光纤传感器固定在受力物体上,通过信号处理器获取应变变化的数据。
实验结果显示,应变的增加会引起光信号的相位变化,且与应变呈线性关系。
5. 实验四:湿度传感测量。
将光纤传感器放置在湿度变化的环境中,通过信号处理器获取湿度变化的数据。
实验结果显示,湿度的增加会导致光信号的衰减,且与湿度呈负相关关系。
四、实验结果分析通过以上实验可以得出结论:光纤传感测量可以实现对温度、压力、应变和湿度等物理量的精确测量。
实验结果显示,不同物理量的变化会导致光信号的不同变化,这为光纤传感测量的应用提供了可靠的基础。
光纤传输_实验报告

一、实验目的1. 了解光纤传输的基本原理和结构。
2. 掌握光纤传输系统的基本组成和功能。
3. 学习光纤传输的实验方法和测试技术。
4. 熟悉光纤传输中常见问题的解决方法。
二、实验原理光纤传输是一种利用光导纤维传输光信号的技术。
光导纤维由纤芯、包层和涂覆层组成,纤芯具有较高的折射率,包层折射率较低,通过全内反射原理实现光信号的传输。
光纤传输具有以下特点:1. 传输速率高:光纤传输速率可达数十吉比特/秒。
2. 传输距离远:光纤传输距离可达数公里至数十公里。
3. 抗干扰性强:光纤传输不受电磁干扰。
4. 保密性好:光纤传输不易被窃听。
三、实验仪器与设备1. 光纤传输实验装置2. 光源3. 光纤连接器4. 光功率计5. 光频谱分析仪6. 光时域反射计(OTDR)四、实验内容1. 光纤连接器测试2. 光纤传输系统测试3. 光功率测试4. 光频谱分析5. OTDR测试五、实验步骤1. 光纤连接器测试(1)将光纤连接器插入光源,调整光源输出功率。
(2)将光纤连接器插入光功率计,测量输出功率。
(3)比较实际输出功率与理论输出功率,分析误差原因。
2. 光纤传输系统测试(1)搭建光纤传输系统,包括光源、光纤、光功率计等。
(2)测量系统传输速率,记录测试数据。
(3)分析测试数据,评估系统性能。
3. 光功率测试(1)将光功率计插入光纤传输系统,测量系统输出功率。
(2)记录实际输出功率与理论输出功率,分析误差原因。
4. 光频谱分析(1)将光频谱分析仪连接到光纤传输系统。
(2)测量系统输出信号的频谱,记录测试数据。
(3)分析测试数据,了解系统频谱特性。
5. OTDR测试(1)将OTDR连接到光纤传输系统。
(2)测量系统传输损耗,记录测试数据。
(3)分析测试数据,评估系统传输损耗。
六、实验结果与分析1. 光纤连接器测试结果显示,实际输出功率与理论输出功率基本一致,误差在允许范围内。
2. 光纤传输系统测试结果显示,系统传输速率达到预期目标,系统性能良好。
光纤位移传感器实验报告

光纤位移传感器实验报告
实验报告
光纤位移传感器实验报告
一、实验目的
本次实验旨在掌握光纤位移传感器的原理和应用,通过实验了解其测量精度和稳定性。
二、实验原理
光纤位移传感器是一种基于菲涅尔衍射原理的传感器。
其基本原理是将激光光源照射到一根光纤上,光纤的端面形成一定的折射角,使得光束沿着光纤内部进行传输,当光纤存在位移时,光束经过光纤端面的折射角发生变化,从而产生了光程差。
通过检测光程差的变化,可以测量出位移的大小。
三、实验步骤
1.按照实验要求搭建实验装置,其中包括激光光源、光路系统、待测物体、光功率检测器等。
2.调节激光光源的位置和光路系统的组成,使得激光能够正常
发出。
3.将光纤位移传感器连接到待测物体上,确保其位置不变。
4.调整光纤位移传感器上的折射角,使得检测光束经过光纤后
能够与基准光束相互衍射。
5.通过光功率检测器检测检测光束的功率变化,计算出待测物
体的位移。
四、实验结果与分析
经过实验发现,光纤位移传感器在测量位移时具有较高的精度
和稳定性。
我们通过调整折射角和光纤的长度,可以进一步提高
其测量精度和稳定性。
在实验中我们还发现,光纤位移传感器对外界环境的干扰较小,可以在恶劣的环境下正常工作。
五、实验结论
通过本次实验,我们成功地掌握了光纤位移传感器的原理和应用,实验结果表明,光纤位移传感器具有较高的测量精度和稳定性,在工业生产和科学研究中具有广泛的应用前景。
光纤传感综合实验报告

一、实验目的1. 了解光纤传感的基本原理和特点。
2. 掌握光纤传感器的实验操作方法和数据采集技巧。
3. 分析光纤传感器在实际应用中的性能和适用范围。
二、实验原理光纤传感器是一种基于光波导原理的传感器,利用光纤传输光信号,实现对被测量的物理量的检测。
光纤传感器具有体积小、重量轻、抗电磁干扰、防腐性好、灵敏度高等优点,广泛应用于压力、应变、温度、位移等物理量的测量。
本实验主要涉及以下几种光纤传感器:1. 光纤光栅传感器:利用光纤光栅对光波波长进行调制,实现对温度、应变等物理量的测量。
2. 光纤干涉传感器:利用光纤干涉原理,实现对位移、振动等物理量的测量。
3. 光纤激光传感器:利用光纤激光器发出的激光,实现对物体表面缺陷、气体浓度等物理量的测量。
三、实验仪器与材料1. 光纤传感实验仪2. 激光器及电源3. 光纤夹具4. 光纤剥线钳5. 宝石刀6. 激光功率计7. 五位调整架8. 显微镜9. 显示器四、实验步骤1. 光纤光栅传感器实验(1)搭建实验装置,连接光纤传感实验仪和激光器。
(2)调整实验参数,包括光栅长度、温度等。
(3)采集光纤光栅传感器的输出信号,分析光栅对光波波长的影响。
2. 光纤干涉传感器实验(1)搭建实验装置,连接光纤传感实验仪和光纤干涉仪。
(2)调整实验参数,包括干涉仪的间距、光程差等。
(3)采集光纤干涉传感器的输出信号,分析干涉条纹的变化规律。
3. 光纤激光传感器实验(1)搭建实验装置,连接光纤传感实验仪和光纤激光器。
(2)调整实验参数,包括激光功率、检测距离等。
(3)采集光纤激光传感器的输出信号,分析激光光束的传播特性。
五、实验结果与分析1. 光纤光栅传感器实验结果实验结果显示,随着温度的升高,光纤光栅传感器的反射光谱发生红移,反射光谱峰值波长随温度的变化率与光栅的折射率调制周期成正比。
这说明光纤光栅传感器可以实现对温度的精确测量。
2. 光纤干涉传感器实验结果实验结果显示,随着干涉仪间距的增加,干涉条纹的间距增大,条纹数减少。
光纤传感器实验报告

实验题目:光纤传感器实验目的:掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量,加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。
实验仪器:激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调整架,显微镜,光纤传感实验仪,CCD及显示器,等等实验原理:(见预习报告)实验数据:1.光纤传感实验(室温:24.1℃)(1)升温过程(2)降温过程2.测量光纤的耦合效率在光波长为633nm 条件下,测得光功率计最大读数为712.3nw 。
数据处理:一.测量光纤的耦合效率在λ=633nW ,光的输出功率P1=2mW 情况下。
在调节过程中测得最大输出功率P2=712.3nW代入耦合效率η的计算公式:3.56×10-4二.光纤传感实验1.升温时利用Origin 作出拟合图像如下:2040ALinear Fit of AABEquationy = a + bAdj. R-Squ 0.99849ValueStandard ErA Intercep -153.307 1.96249ASlope5.485340.06163由上图可看出k=5.49±0.06条纹数温度/℃根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变2π,则 Δφ=2π×m (m 为移动的条纹数)故灵敏度即为因l=29.0cm故其灵敏度为±1.30)rad/℃2.降温时利用Origin 作出拟合图像如下:30323436-40-20ALinear Fit of AABEquationy = a + Adj. R-Squ 0.9973ValueStandard Er A Intercep -271.754 3.74289ASlope7.4510.11111由上图可看出k=7.45±0.11同上:灵敏度为条纹数温度/℃因l=29.0cm故其灵敏度为±2.38)rad/℃由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。
光纤传感实验报告(最终5篇)

光纤传感实验报告(最终5篇)第一篇:光纤传感实验报告光纤传感实验报告1、基础理论 1 1、1 1 光纤光栅温度传感器原理1、1、1 光纤光栅温度传感原理光纤光栅得反射或者透射峰得波长与光栅得折射率调制周期以及纤芯折射率有关,而外界温度得变化会影响光纤光栅得折射率调制周期与纤芯折射率,从而引起光纤光栅得反射或透射峰波长得变化,这就是光纤光栅温度传感器得基本工作原理.光纤 Bragg 光栅传感就是通过对在光纤内部写入得光栅反射或透射 Br agg 波长光谱得检测,实现被测结构得应变与温度得绝对测量。
由耦合模理论可知,光纤光栅得 Bragg中心波长为式中Λ为光栅得周期;neff 为纤芯得有效折射率。
外界温度对 Bragg 波长得影响就是由热膨胀效应与热光效应引起得。
由公式(1)可知,Bragg 波长就是随与而改变得。
当光栅所处得外界环境发生变化时,可能导致光纤光栅本身得温度发生变化。
由于光纤材料得热光效应,光栅得折射率会发生变化;由于热胀冷缩效应,光栅得周期也会发生变化,从而引起与得变化,最终导致 Bragg 光栅波长得漂移。
只考虑温度对 Bragg波长得影响,在忽略波导效应得条件下,光纤光栅得温度灵敏度为式中F为折射率温度系数;α 为光纤得线性热膨胀系数;p11 与p12 为光弹常数。
由式(2)可知光纤光栅受到应变作用或当周围温度改变时,会使 n eff 与发生变化,从而引起Bragg 波长得移动。
通过测量Bragg 波长得移动量,即可实现对外部温度或应变量得测量。
1、1、2 光纤光栅温度传感器得封装为满足实际应用得要求,在设计光纤光栅温度传感器得封装方法时,要考虑以下因素:(1)封装后得传感器要具备良好得重复性与线性度;(2)必须给光纤光栅提供足够得保护,确保封装结构要有足够得强度;(3)封装结构必须具备良好得稳定性,以满足长期使用得要求。
为了能够有效起到增敏作用一般采用合金、钢、铜、铝等热膨胀系数大得材料对光纤光栅进行封装。
对光纤传输实验报告

一、实验目的1. 熟悉光纤传输的基本原理和过程;2. 了解光纤传输系统的组成和主要器件;3. 掌握光纤传输实验的操作步骤和方法;4. 通过实验验证光纤传输的性能指标。
二、实验原理光纤传输是一种利用光纤作为传输媒介,将光信号从发送端传输到接收端的通信方式。
实验中,我们将使用LED作为光源,通过光纤传输光信号,然后利用硅光电二极管接收光信号,并转换为电信号,最终在示波器上观察到电信号的波形。
三、实验仪器与设备1. LED光源;2. 光纤;3. 硅光电二极管;4. 信号发生器;5. 示波器;6. 连接线。
四、实验步骤1. 将LED光源、光纤、硅光电二极管和信号发生器连接好;2. 设置信号发生器,输出一个频率为1kHz的正弦波信号;3. 将信号发生器的输出端连接到LED光源的输入端;4. 将LED光源输出端连接到光纤的一端;5. 将光纤的另一端连接到硅光电二极管的输入端;6. 将硅光电二极管的输出端连接到示波器的输入端;7. 打开实验设备,观察示波器上的波形,记录实验数据。
五、实验结果与分析1. 在实验过程中,观察到示波器上出现了与信号发生器输出信号一致的波形,说明光信号已经成功传输;2. 通过调整信号发生器的输出幅度和频率,可以观察到示波器上波形的变化,进一步验证了光纤传输的性能;3. 通过实验,了解了光纤传输系统的组成和主要器件,掌握了光纤传输实验的操作步骤和方法。
六、实验总结通过本次实验,我们成功实现了光信号的传输,了解了光纤传输的基本原理和过程。
在实验过程中,我们掌握了光纤传输实验的操作步骤和方法,为今后在实际工作中应用光纤传输技术打下了基础。
同时,本次实验也让我们认识到,在实际操作过程中,要严格按照实验步骤进行,以确保实验结果的准确性。
光纤传输实验报告(共8篇)

光纤传输实验报告(共8篇)
1. 实验目的
通过本次实验,我们的目的是了解光纤传输的基本原理、结构和特点,并熟悉光纤通信系统的构成,掌握光纤传输实验的基本操作和注意事项。
2. 实验器材和材料
主要器材有:激光器、偏振器、光纤发射机、光纤接收机、光功率计、光纤、电缆等。
主要材料有:测试记录表格、实验手册等。
3. 实验原理
光纤传输是指利用光纤作为信号传输中介的通信方式。
光纤是一种用玻璃、塑料、石英等物质制成的细长、柔韧可弯曲的导光体,通过对光的全内反射来实现信号的传输。
在光纤传输中,激光作为载荷被发射机转换成光信号,经过光纤的传播和干扰、衰减和扩散、噪声和失真等影响后,到达接收机进行解码并转换为电信号输出。
4. 实验步骤
(1)接通设备并拟定实验计划:先接通激光器、光纤发射机和光纤接收机等设备,确定实验计划和实验要求。
(2)调整偏振器和测试光功率:首先需要调整偏振器并测量测试光功率,确保光信号的输出和传输。
(3)连接光纤并测试网络质量:将光纤连接到发射机或接收机并测试网络质量,计算信号的传输速度和误码率等参数。
(4)记录数据并分析结果:将实验过程中的数据记录下来,并进行数据分析和统计,得出结论并进行总结。
5. 实验注意事项
(1)实验操作时需严格遵守操作规程和安全规范,避免任何不必要的事故和安全隐患。
(2)实验时需认真检查设备连接,确保连接正确和稳定,以免出现信号的传输失败和误差。
(3)实验过程中需注意环境干扰和噪声干扰,以免影响实验结果和数据测量的准确性。
(4)实验结束后需及时关闭设备并整理实验器材、材料、记录表格等,保持实验室的整洁和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤传感实验报告
1、基础理论
1.1光纤光栅温度传感器原理
1.1.1光纤光栅温度传感原理
光纤光栅的反射或者透射峰的波长与光栅的折射率调制周期以及纤芯折射率有关,而外界温度的变化会影响光纤光栅的折射率调制周期和纤芯折射率,从而引起光纤光栅的反射或透射峰波长的变化,这是光纤光栅温度传感器的基本工作原理。
光纤Bragg光栅传感是通过对在光纤内部写入的光栅反射或透射Bragg波长光谱的检测,实现被测结构的应变和温度的绝对测量。
由耦合模理论可知,光纤光栅的Bragg中心波长为
式中Λ为光栅的周期;neff为纤芯的有效折射率。
外界温度对Bragg波长的影响是由热膨胀效应和热光效应引起的。
由公式(1)可知,Bragg波长是随和而改变的。
当光栅所处的外界环境发生变化时,可能导致光纤光栅本身的温度发生变化。
由于光纤材料的热光效应,光栅的折射率会发生变化;由于热胀冷缩效应,光栅的周期也会发生变化,从而引起和的变化,最终导致Bragg 光栅波长的漂移。
只考虑温度对Bragg波长的影响,在忽略波导效应的条件下,光纤光栅的温度灵敏度为
式中F为折射率温度系数;α为光纤的线性热膨胀系数;p11和p12为光弹常数。
由式(2)可知光纤光栅受到应变作用或当周围温度改变时,会使n eff和 发生变化,从而引起Bragg波长的移动。
通过测量Bragg波长的移动量,即可实现对外部温度或应变量的测量。
1.1.2光纤光栅温度传感器的封装
为满足实际应用的要求,在设计光纤光栅温度传感器的封装方法时,要考虑以下因素:(1)封装后的传感器要具备良好的重复性和线性度;(2)必须给光纤光栅提供足够的保护,确保封装结构要有足够的强度;(3)封装结构必须具备良好的稳定性,以满足长期使用的要求。
为了能够有效起到增敏作用一般采用合金、钢、铜、铝等热膨胀系数大的材料对光纤光栅进行封装。
1.1.
2.1蝶形片封装
1.1蝶形片封装
光纤预拉后两头用环氧树脂固定在蝶形片上,中间光栅工作区悬在槽内,测量时将蝶形片固定在待测物体上。
1.1.
2.2套管封装
套管分装一类是在套管内填充环氧树脂进行温度补偿式分装,另一类是套管封装。
1.2钢管内腔充满环氧树脂封装
1.3管式封装
1.1.
2.3其他封装方式
考虑到待测物及增敏敏效果等其他因素,还有其他一些特殊封装方式。
2、光纤光栅温度传感器的具体实验
2.1实验目的
(1)掌握光纤光栅温度传感器的基础理论知识
(2)验证光纤光栅温度传感器相关理论
(3)对比光纤光栅温度传感器在不同封装情况下传感效果
(4)学会各类仪器的造作和使用
(5)学会相关数据处理方法
2.2实验器材
温控箱、波长解调仪、两只支光纤光栅传感器(一支经过增敏镀膜处理)、相关软件2.2实验过程
2.1实验系统组成结构图
(1)将各类器件按结构图连接好,将Bragg光栅温度传感器放入温控箱内,检查温控箱气密性。
(2)打开数据采集软件、解调仪,检查传感器联通情况。
(3)打开温控箱电源进行升温实验,温度从30°到80°每次10°递增。
(5)达到80摄氏度后,进行降温实验,温度从80°到30°每次10°递减。
(6)温控箱温度恒定时记录数据采集软件相关数据。
(7)数据处理与分析
2.3采集数据
(一)升温
30℃40℃50℃60℃70℃80℃
λ1 1319.7852 1319.8801 1319.975 1320.0745 1320.19 1320.3411 λ
∆ 1 0 0.0949 0.1898 0.2893 0.4048 0.5559 λ2 1320.5314 1320.6398 1320.745 1320.857 1320.975 1321.1019 λ
∆ 2 0 0.1084 0.2136 0.3256 0.4436 0.5705 (二)降温
80℃70℃60℃50℃40℃30℃
λ1 1320.3411 1320.19 1320.0745 1319.975 1319.8801 1319.7852 λ
∆ 1 0.5559 0.4048 0.2893 0.1898 0.0949 0
λ2 1321.1019 1320.975 1320.857 1320.745 1320.6398 1320.5314 λ
∆ 2 0.5705 0.4436 0.3256 0.2136 0.1084 0
温度:℃波长:nm
温度:℃波长:nm
2.3 两种封装光纤光栅降温波长输出对比
2.4实验数据分析
传感器的静态特性是表示传感器在被测输入量的各个值处于稳定状态时的输入一输出关系。
衡量传感器静态特性的主要技术指标是:线性度、灵敏度、迟滞和重复性。
2.4.1线性度
线性度又称非线性,是表征传感器输出一输入校准曲线与所选定的拟合直线之间吻合程度的指标。
通常用相对误差来表示线性度,即
%100max
⨯∆±
=FS
L y e 式中,△max 为输出平均值与拟合直线间的最大偏差; FS y 为理论满量程输出。
本次实验采用最小二乘法直线法。
2.4 正常封装传感器升温波长
2.4 正常封装传感器升温波长增量图
从图中可以看出,正常封装传感器的灵敏度是S==∆∆x /y 0.01089,线性度L e =99.748%。
2.5增敏封装传感器升温波长变化量图
从图中可以看出,增敏封装传感器的灵敏度是S==∆∆x /y 0.01126,线性度L e =99.693%。
2.6 正常封装传感器降温波长变化量图
从图中可以看出,增敏封装传感器的灵敏度是S==∆∆x /y 0.01066,线性度L e =98.906%。
2.7 增敏封装传感器降温波长变化量图
从图中可以看出,增敏封装传感器的灵敏度是S==∆∆x /y 0.01134,线性度L e =99.852%
测量数据处理汇总表
升温普通
升温增敏 灵敏度提高 降温普通 降温增敏
灵敏度提高
灵敏度 0.01089 0.01126 3.398% 0.01066 0.01134 6.379% 线性度
99.75% 99.69%
98.91% 99.85%
3、实验结论
1、光纤光栅温度传感器有较好的温度灵敏度;
2、升温时与降温时灵敏度数据有差别;
3、通过实验发现不同封装和加工工艺对光纤光栅温度传感器对温度的灵敏度有很大影响,增敏封装后的光纤传感器灵敏度提高比较明显。