物理学11章习题解答
大学物理答案第11章

第十一章恒定磁场11-1两根长度相同的细导线分别多层密绕在半径为R和r的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R=2r,螺线管通过的电流相同为I,螺线管中的磁感强度大小满足()(A)(B)(C)(D)分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C).11-2一个半径为r的半球面如图放在均匀磁场中,通过半球面的磁通量为()(A)(B)(C)(D)题11-2 图分析与解作半径为r的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量;.因而正确答案为(D).11-3下列说法正确的是()(A)闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).11-4在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则()(A),(B),(C),(D),题11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C).11-5半径为R的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为()(A)(B)(C)(D)分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B).11-6北京正负电子对撞机的储存环是周长为240 m的近似圆形轨道,当环中电子流强度为8 mA时,在整个环中有多少电子在运行?已知电子的速率接近光速.分析一个电子绕存储环近似以光速运动时,对电流的贡献为,因而由,可解出环中的电子数.解通过分析结果可得环中的电子数11-7已知铜的摩尔质量M =63.75g·mol-1,密度ρ=8.9 g· cm-3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度,求此时铜线内电子的漂移速率v d;(2)在室温下电子热运动的平均速率是电子漂移速率v d的多少倍?分析一个铜原子的质量,其中N A为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度根据假设,每个铜原子贡献出一个自由电子,其电荷为e,电流密度.从而可解得电子的漂移速率v d.将电子气视为理想气体,根据气体动理论,电子热运动的平均速率其中k为玻耳兹曼常量,m e为电子质量.从而可解得电子的平均速率与漂移速率的关系.解(1)铜导线单位体积的原子数为电流密度为j m时铜线内电子的漂移速率(2)室温下(T=300 K)电子热运动的平均速率与电子漂移速率之比为室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8有两个同轴导体圆柱面,它们的长度均为20 m,内圆柱面的半径为3.0 mm,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA电流沿径向流过,求通过半径为6.0 mm的圆柱面上的电流密度.题11-8 图分析如图所示是同轴柱面的横截面,电流密度j对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r的同轴圆柱面上流过的电流I 都相等,因此可得解由分析可知,在半径r=6.0 mm的圆柱面上的电流密度11-9如图所示,已知地球北极地磁场磁感强度B的大小为6.0×10-5T.如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?解设赤道电流为I,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度因此赤道上的等效圆电流为由于在地球地磁场的N极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10如图所示,有两根导线沿半径方向接触铁环的a、b两点,并与很远处的电源相接.求环心O的磁感强度.题11-10 图分析根据叠加原理,点O的磁感强度可视作由ef、b e、fa三段直线以及ac b、a d b两段圆弧电流共同激发.由于电源距环较远,.而b e、fa两段直线的延长线通过点O,由于,由毕奥-萨伐尔定律知.流过圆弧的电流I1、I2的方向如图所示,两圆弧在点O激发的磁场分别为,其中l1、l2分别是圆弧ac b、a d b的弧长,由于导线电阻R与弧长l成正比,而圆弧ac b、a d b 又构成并联电路,故有将叠加可得点O的磁感强度B.解由上述分析可知,点O的合磁感强度11-11如图所示,几种载流导线在平面内分布,电流均为I,它们在点O的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O处所激发的磁感强度较容易求得,则总的磁感强度.解(a)长直电流对点O而言,有,因此它在点O产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有B0的方向垂直纸面向外.(b)将载流导线看作圆电流和长直电流,由叠加原理可得B0的方向垂直纸面向里.(c)将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得B0的方向垂直纸面向外.11-12载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O的磁感强度B.题11-12 图分析由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O激发的磁感强度,磁感强度的方向依照右手定则确定.点O的磁感强度可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O的叠加.解根据磁场的叠加在图(a)中,在图(b)中,在图(c)中,11-13如图(a)所示,载流长直导线的电流为I,试求通过矩形面积的磁通量.题11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS.为此,可在矩形平面上取一矩形面元d S=l d x,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量11-14已知10 mm2裸铜线允许通过50 A电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题11-14 图分析可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解围绕轴线取同心圆为环路L,取其绕向与电流成右手螺旋关系,根据安培环路定理,有在导线内r<R,,因而在导线外r>R,,因而磁感强度分布曲线如图所示.11-15有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3.画出B-r图线.题11-15 图分析同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r的同心圆为积分路径,,利用安培环路定理,可解得各区域的磁感强度.解由上述分析得r<R1R1<r<R2R2<r<R3r>R3磁感强度B(r)的分布曲线如图(b).11-16如图所示,N匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I后,环内外磁场的分布.题11-16 图分析根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r的圆周为积分环路,由于磁感强度在每一环路上为常量,因而依照安培环路定理,可以解得螺线管内磁感强度的分布.解依照上述分析,有r<R1R2>r>R1r>R2在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若和R2,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径,则环内的磁感强度近似为11-17电流I均匀地流过半径为R的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题11-17 图分析由题11-14 可得导线内部距轴线为r处的磁感强度在剖面上磁感强度分布不均匀,因此,需从磁通量的定义来求解.沿轴线方向在剖面上取面元dS=ldr,考虑到面元上各点B相同,故穿过面元的磁通量dΦ=BdS,通过积分,可得单位长度导线内的磁通量解由分析可得单位长度导线内的磁通量11-18已知地面上空某处地磁场的磁感强度,方向向北.若宇宙射线中有一速率的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2)洛伦兹力的大小,并与该质子受到的万有引力相比较.题11-18 图解(1)依照可知洛伦兹力的方向为的方向,如图所示.(2)因,质子所受的洛伦兹力在地球表面质子所受的万有引力因而,有,即质子所受的洛伦兹力远大于重力.11-19霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d=2.0 mm,磁场为B=0.080 T,毫伏表测出血管上下两端的电压为U H=0.10 mV,血流的流速为多大?题11-19 图分析血流稳定时,有由上式可以解得血流的速度.解依照分析11-20带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5cm的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解根据带电粒子回转半径与粒子运动速率的关系有11-21从太阳射来的速度为0.80×108m/s的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大?若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径地磁北极附近的回转半径11-22如图(a)所示,一根长直导线载有电流I1=30 A,矩形回路载有电流I2=20 A.试计算作用在回路上的合力.已知d=1.0 cm,b=8.0 cm,l=0.12 m.题11-22图分析矩形上、下两段导线受安培力F1和F2的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F3和F4大小不同,且方向相反,因此线框所受的力为这两个力的合力.解由分析可知,线框所受总的安培力F为左、右两边安培力F3和F4之矢量和,如图(b)所示,它们的大小分别为故合力的大小为合力的方向朝左,指向直导线.11-23一直流变电站将电压为500k V的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m-1,若导线间的静电力与安培力正好抵消.求:(1)通过输电线的电流;(2)输送的功率.分析当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d,一导线在另一导线位置激发的磁感强度,导线单位长度所受安培力的大小.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C和电压U 已知,则单位长度导线所带电荷λ=CU,一导线在另一导线位置所激发的电场强度,两导线间单位长度所受的静电吸引力.依照题意,导线间的静电力和安培力正好抵消,即从中可解得输电线中的电流.解(1)由分析知单位长度导线所受的安培力和静电力分别为由可得解得(2)输出功率11-24在氢原子中,设电子以轨道角动量绕质子作圆周运动,其半径为.求质子所在处的磁感强度.h 为普朗克常量,其值为分析根据电子绕核运动的角动量可求得电子绕核运动的速率v.如认为电子绕核作圆周运动,其等效圆电流在圆心处,即质子所在处的磁感强度为解由分析可得,电子绕核运动的速率其等效圆电流该圆电流在圆心处产生的磁感强度11-25如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr(μr<1),导体的磁化可以忽略不计.沿轴向有恒定电流I通过电缆,内、外导体上电流的方向相反.求:(1)空间各区域内的磁感强度和磁化强度;*(2)磁介质表面的磁化电流.题11-25 图分析电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有,利用安培环路定理求出环路内的传导电流,并由,,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解(1)取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有对r<R1得忽略导体的磁化(即导体相对磁导率μr =1),有,对R2>r>R1得填充的磁介质相对磁导率为μr,有,对R3>r>R2得同样忽略导体的磁化,有,对r>R3得,,(2)由,磁介质内、外表面磁化电流的大小为对抗磁质(),在磁介质内表面(r=R1),磁化电流与内导体传导电流方向相反;在磁介质外表面(r=R2),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H(r)和B(r)分布曲线分别如图(b)和(c)所示.。
大学物理习题答案第十一章

[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
大学物理第十一章气体动理论习题详细答案

第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
大学物理第11章习题答案(供参考)

因此
即
又
表明 中电动势方向为 .
所以半圆环内电动势 方向沿 方向,
大小为
点电势高于 点电势,即
例2如图所示,长直导线通以电流 =5A,在其右方放一长方形线圈,两者共面.线圈长 =0.06m,宽 =0.04m,线圈以速度 =0.03m·s-1垂直于直线平移远离.求: =0.05m时线圈中感应电动势的大小和方向.
.
解: 设给两导线中通一电流 ,左侧导线中电流向上,右侧导线中电流向下.
在两导线所在的平面内取垂直于导线的坐标轴 ,并设其原点在左导线的中心,如图所示,由此可以计算通过两导线间长度为 的面积的磁通量.
两导线间的磁感强度大小为
取面积元 ,通过面积元的磁通量为
则穿过两导线间长度为 的矩形面积的磁通量为
故
2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场 :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电
场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数 :
第11章 电磁感应
11.1 基本要求
1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。
赵近芳大学物理学第五版第十一章课后习题答案

习题1111.1选择题(1)一圆形线圈在均匀磁场中作下列运动时,哪些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直;(C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场()(A )静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m=()(A )只适用于无限长密绕线管;(B )只适用于一个匝数很多,且密绕的螺线环;(C )只适用于单匝圆线圈;(D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力;(B )涡旋电场由变化的磁场产生;(C )涡旋场由电荷激发;(D )涡旋电场的电力线闭合的。
[答案:C]11.2填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到。
[答案:磁力](2)产生动生电动势的非静电场力是,产生感生电动势的非静电场力是,激发感生电场的场源是。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在,这个导线上的电动势最大,数值为;如果转轴的位置在,整个导线上的电动势最小,数值为。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率trd d =80cm/s 收缩时,求回路中感应电动势的大小.解:回路磁通2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m ΦεV 11.4一对互相垂直的相等的半圆形导线构成回路,半径R =5cm,如题11.4图所示.均匀磁场B =80×10-3T,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms内均匀降为零时,求回路中的感应电动势的大小及方向.解:取半圆形cba 法向为i,题11.4图则αΦcos 2π21B R m=同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵B 与i 夹角和B 与j夹角相等,∴︒=45α则αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图11.5如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解:作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴0=MeNM ε即MNMeN εε=又∵⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2dcos 0πμπε所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμM 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量;(2)线圈中的感应电动势.解:以向外磁通为正则(1)]ln [ln π2d π2d π2000da db a b Il r l r I r l r I ab b a d d m +-+=-=⎰⎰++μμμΦ(2)tI b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解:)cos(2π02ϕωΦ+=⋅=t r B S B m∴Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴RBf r R I m 22π==ε11.8如题11.8图所示,长直导线通以电流I =5A,在其右方放一长方形线圈,两者共面.线圈长b =0.06m,宽a =0.04m,线圈以速度v =0.03m/s垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题11.8图解:AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a I vbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.111(π2-⨯=+-=+=ad d Ibv μεεεV 方向沿顺时针.11.9长度为l 的金属杆ab 以速率v在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解:⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴klvt tm-=-=d d Φε即沿abcd 方向顺时针方向.题11.9图11.10一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解:如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε;题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε;出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示.题11.11图11.11导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求:(1)ab 两端的电势差;(2)b a ,两端哪一点电势高?解:(1)在Ob 上取dr r r +→一小段则⎰==320292d l Ob l B r rB ωωε同理⎰==302181d l Oa l B r rB ωωε∴2261)92181(l B l B Ob aO ab ωωεεε=+-=+=(2)∵0>ab ε即0<-b a U U ∴b 点电势高.题11.12图11.12如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则ba b a Iv r r a r Iv l B v b a b a B A AB -+-=-+-=⋅⨯=⎰⎰+-lnd 211(2d )(00πμπμε ∵<AB ε∴实际上感应电动势方向从A B →,即从图中从右向左,∴ba ba Iv U AB -+=ln 0πμ题11.13图11.13磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解:∵bcab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴tB R acd d ]12π43[22+=ε∵0d d >tB∴0>ac ε即ε从ca →11.14半径为R的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题11.14图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量436π(22R R B S B m -=⋅= Φ∴tBR R i d d )436π(22--=ε∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解:由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理,0d >⋅=⎰l E cddc旋ε∴0<-c d U U 即dc U U >题11.16图11.16一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解:设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar r Ia μμΦ∴2ln π2012aI M μΦ==11.17两线圈顺串联后总自感为1.0H,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H.试求:它们之间的互感.解:∵顺串时M L L L 221++=反串联时M L L L 221-+='∴M L L 4='-15.04='-=L L M H题11.18图11.18一矩形截面的螺绕环如题11.18图所示,共有N匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少?解:如题11.18图示(1)通过横截面的磁通为⎰==baabNIh r h r NI ln π2d π200μμΦ磁链abIh N N lnπ220μΦψ==∴ab h N I L lnπ220μψ==(2)∵221LI W m =∴ab h I N W m lnπ4220μ=11.19一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时20π2R I B r μ=∴4222002π82R r I B w m μμ==取r r V d π2d =(∵导线长1=l )则⎰⎰===RR m I R r r I r r w W 00204320π16π4d d 2μμπ。
大学物理课答案11章

习题1111-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。
已知太阳、北极星和天狼星的m λ分别为60.5010m -⨯,60.4310m -⨯和60.2910m -⨯,试计算它们的表面温度。
解:由维恩定律:m T b λ=,其中:310898.2-⨯=b ,那么:太阳:362.8981057960.510m bT K λ--⨯===⨯; 北极星:362.8981067400.4310m bT K λ--⨯===⨯;天狼星:362.8981099930.2910m bT K λ--⨯===⨯。
11-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。
解:(1)由m T b λ=,有342.898109.66103m b m T λ--⨯===⨯; (2)由4M T σ=,有:424P T R σπ=⨯地,那么:328494(637010) 5.67103 2.3410P W π-=⨯⨯⨯⨯⨯=⨯。
11-3.在加热黑体过程中,其单色辐出度对应的峰值波长由0.69μm 变化到0.50μm ,求总辐出度改变为原来的多少倍?解:由 b T m =λ 和 4T M σ=可得,63.3)5.069.0()()(440400====m m T T M M λλ11-4.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。
设灯泡的钨丝面积为2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。
解:∵4P T S σ=⋅黑体,消耗的功率等于钨丝的幅出度,所以,44840.2591010 5.67102000235P S T W ησ--==⨯⨯⨯⨯⨯=。
11-5.天文学中常用热辐射定律估算恒星的半径。
现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。
大学物理第十一章波动光学习题答案

第十一章 波动光学习题11-1 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m ,若第2级明条纹离屏中心的距离为6.0 mm ,试求:(1)入射光的波长;(2)相邻两明条纹间的距离。
解:(1)由λk d D x =明知, λ22.01010.63⨯⨯= 30.610m m 600n m λ-=⨯= (2)3106.02.010133=⨯⨯⨯==∆-λd D x mm 11-2 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置。
若入射光的波长为550 nm ,求此云母片的厚度。
解:设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ 按题意 λδ7= ∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 11-3 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的最小厚度应取何值?解:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A令0=k ,得膜的最薄厚度为996o A 。
11-4 白光垂直照射在空气中厚度为0.4μm 的玻璃片上,玻璃的折射率为1.50。
试问在可见光范围内(λ= 400~700nm ),哪些波长的光在反射中增强?哪些波长的光在透射中增强?解:(1)222n d j λδλ=+= 24 3,480n m 21n d j j λλ===- (2)22(21) 22n d j λλδ=+=+ 22n d j λ= 2,600n m j λ==;3,400nm j λ== 11-5 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解:由反射干涉相长公式有42221ne ne k k λδλλ=+==-, ),2,1(⋅⋅⋅=k 得4 1.3338002674nm 2214 1.3338003404nm 231k k λλ⨯⨯===⨯-⨯⨯===⨯-,红色,紫色所以肥皂膜正面呈现紫红色。
物理学第三版(刘克哲)11章习题解答

(b)还可以看到,b*与竖直轴线op的夹角为α,所以载流导线ab在点p产 生的磁感应强度沿该竖直轴的分量为
. 由于对称性,载流导线bc和ca在点p产生的磁感应强度沿竖直轴的分
量,与上式相同。同样由于对称性,三段载流导线在点p产生的磁感应 强度垂直于竖直轴的分量彼此抵消。所以点p的实际磁感应强度的大小 为
, 方向沿竖直轴po向下。 11-10 两个半径相同、电流强度相同的圆电流,圆心重合,圆面正
交,如图11-10所示。如果半径为r,电流为i,求圆心处的磁感应强度 b。
解 两个正交的圆电流,一个处于xy平面内, 产生的磁感应强度b1,沿z轴正方向,另一个处于 xz平面内,产生的磁感应强度b2,沿y轴正方向。 这两个磁感应强度的大小相等,均为
动,速度v的大小应满足
, 所以速度的大小应为
. 11-29 半径为r的磁介质球被均匀磁化,磁化强度为m,求: (1) 由磁化电流在球心产生的磁感应强度和磁场强度; (2)由磁化电流产生的磁矩。 解 (1)取球心o为坐标原点、z轴水平向右建立如 图11-14所示的坐标系。根据
解 放电管中的电流是由电子和质子共同提供的,所以
. 电流的流向与质子运动的方向相同。 11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端
施加的电势差为u。问: (1)通过两导体的电流是否相同? (2)两导体内的电流密度是否相同? (3)两导体内的电场强度是否相同? (4)如果两导体的长度相同,两导体的电阻之比等于什么? (5)如果两导体横截面积之比为1: 9,求以上四个问题中各 量的比例关系,以及两导体有相同电阻时的长度之比。 解 (1)通过两导体的电流相同,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[物理学11章习题解答]11-1如果导线中的电流强度为 a,问在15 s内有多少电子通过导线的横截面解设在t秒内通过导线横截面的电子数为n,则电流可以表示为,所以.11-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。
当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。
在一个氢气放电管中,如果在3 s 内有1018 个电子和1018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。
解放电管中的电流是由电子和质子共同提供的,所以.电流的流向与质子运动的方向相同。
11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端施加的电势差为u。
问:(1)通过两导体的电流是否相同(2)两导体内的电流密度是否相同(3)两导体内的电场强度是否相同(4)如果两导体的长度相同,两导体的电阻之比等于什么(5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。
解(1)通过两导体的电流相同,。
(2)两导体的电流密度不相同,因为,图11-7又因为,所以.这表示截面积较小的导体电流密度较大。
(3)根据电导率的定义,在两种导体内的电场强度之比为.上面已经得到,故有.这表示截面积较小的导体中电场强度较大。
(4)根据公式,可以得到,这表示,两导体的电阻与它们的横截面积成反比。
(5)已知,容易得到其他各量的比例关系,,,.若,则两导体的长度之比为.11-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为的材料。
已知是随电场而变化的,且可以表示为 = ke,其中k为常量。
现在两球壳之间维持电压u,求两球壳间的电流。
解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为i,则.又因为,所以.于是两球壳之间的电势差为.从上式解出电流i,得.11-5一个电阻接在电势差为180 v电路的两点之间,发出的热功率为250w。
现将这个电阻接在电势差为300 v的电路上,问其热功率为多大解根据焦耳定律,热功率可以表示为,该电阻可以求得,为.当将该电阻接在电压为u2= 300 v的电路上时其热功率为.11-7当对某个蓄电池充电时,充电电流为 a,测得蓄电池两极间的电势差为 v;当该蓄电池放电时,放电电流为 a,测得蓄电池两极间的电势差为 v。
求该蓄电池的电动势和内阻。
解设蓄电池的电动势、为内阻为r。
充电时,电流为i1 = a,两端的电压为u1 = v,所以. (1)放电时,电流为i2= a,两端的电压为u2= v,所以. (2)以上两式联立,解得,.11-8 将阻值为的电阻与电动势为 v的电源相联接,电路中的电流为 a,求电源的内阻。
解在这种情况下,电路的电流可以表示为.由此解得电源的内阻为.11-9 沿边长为a 的等边三角形导线流过电流为I ,求: (1)等边三角形中心的磁感应强度;(2)以此三角形为底的正四面体顶角的磁感应强度。
解(1)由载流导线ab 在三角形中心o (见图11-8)产生的磁感应强度b 1的大小为,式中,.于是.由三条边共同在点o 产生的磁感应强度的大小为,方向垂直于纸面向里。
(2)图11-9 (a)表示该四面体,点p 就是四面体的顶点。
载流导线ab 在点p 产生的磁感应强度的大小为,式中b 是点p 到ab 的距离,显然.1=pad = 60 ,2=pbd = 120,于是,b *处于平面pcd 之内、并与pd 相垂直,如图11-9 (b)所示。
由图11-9 (b)还可以看到,b *与竖直轴线op 的夹角为,所以载流导线ab 在点p 产生的磁感应强度沿该竖直轴的分量为图11-8 图11-9.由于对称性,载流导线bc 和ca 在点p 产生的磁感应强度沿竖直轴的分量,与上式相同。
同样由于对称性,三段载流导线在点p 产生的磁感应强度垂直于竖直轴的分量彼此抵消。
所以点p 的实际磁感应强度的大小为,方向沿竖直轴po 向下。
11-10 两个半径相同、电流强度相同的圆电流,圆心重合,圆面正交,如图11-10所示。
如果半径为r ,电流为i ,求圆心处的磁感应强度b 。
解 两个正交的圆电流,一个处于xy 平面内,产生的磁感应强度b 1,沿z 轴正方向,另一个处于xz 平面内,产生的磁感应强度b 2,沿y 轴正方向。
这两个磁感应强度的大小相等,均为.圆心o 处的磁感应强度b 等于以上两者的合成,b 的大小为,方向处于yz 平面内并与轴y 的夹角为45。
11-11 两长直导线互相平行并相距d ,它们分别通以同方向的电流i 1 和i 2。
a 点到两导线的距离分别为r 1 和r 2,如图11-11所示。
如果d = cm , i 1 = 12 a ,i 2= 10 a ,r 1 = cm ,r 2= cm ,求a 点的磁感应强度。
解 由电流i 1和i 2在点a 产生的磁感应强度的大小分别为和,它们的方向表示在图11-11中。
r 1和r 2之间的夹角,在图中画作任意角,而实际上这是一个直角,原因是,所以b 1与b 2必定互相垂直。
它们合成的磁感应强度b 的大小为图11-10图11-11.设b 1与b 2的夹角为,则,.11-14 一长直圆柱状导体,半径为r ,其中通有电流i ,并且在其横截面上电流密度均匀分布。
求导体内、外磁感应强度的分布。
解 电流的分布具有轴对称性,可以运用安培环路定理求解。
以轴线上一点为圆心、在垂直于轴线的平面内作半径为r 的圆形环路,如图11-12所示,在该环路上运用安培环路定理:在圆柱体内部,由上式解得(当时).在圆柱体外部,由上式解得(当 时) .11-15 一长直空心圆柱状导体,电流沿圆周方向流动,并且电流密度各处均匀。
若导体的内、外半径分别为r 1和r 2,单位长度上的电流为i ,求空心处、导体内部和导体以外磁感应强度的分布。
解 电流的这种分布方式,满足运用安培环路定理求解所要求的对称性。
必须使所取环路的平面与电流相垂直,图11-13中画的三个环路就是这样选取的。
在管外空间:取环路1,并运用安培环路定理,得, .在管内空间:取环路2,并运用安培环路定理,得,即图11-12图11-13, .b 2的方向可用右手定则确定,在图11-13中用箭头表示了b 2方向。
在导体内部,取环路3,ab 边处于导体内部,并与轴线相距r 。
在环路3上运用安培环路定理,得,整理后,得,于是可以解得,方向向左与轴线平行。
12-16 有一长为l = 102m 的直导线,通有i = 15 a的电流,此直导线被放置在磁感应强度大小为b = t 的匀强磁场中,与磁场方向成= 30角。
求导线所受的磁场力。
解 导线和磁场方向的相对状况如图12-15所示。
根据安培定律,导线所受磁场力的大小为,力的方向垂直于纸面向里。
11-17 有一长度为 m 的金属棒,质量为 kg ,用两根细线缚其两端并悬挂于磁感应强度大小为 t 的匀强磁场中,磁场的方向与棒垂直,如图11-16所示。
若金属棒通以电流时正好抵消了细线原先所受的张力,求电流的大小和流向。
解 设金属棒所通电流为i 。
根据题意,载流金属棒在磁场中所受安培力与其重力相平衡,即,所以.电流的流向为自右向左。
图12-15图11-1611-18 在同一平面内有一长直导线和一矩形单匝线圈,矩形线圈的长边与长直导线平行,如图11-17所示。
若直导线中的电流为i 1 = 20 a ,矩形线圈中的电流为i 2= 10 a ,求矩形线圈所受的磁场力。
解 根据题意,矩形线圈的短边bc 和da (见图11-18)所受磁场力的大小相等、方向相反,互相抵消。
所以矩形线圈所受磁场力就是其长边ab 和cd 所受磁场力的合力。
ab 边所受磁场力的大小为,方向向左。
cd 边所受磁场力的大小为,方向向右。
矩形线圈所受磁场力的合力的大小为 ,方向沿水平向左,与图11-18中f 1的方向相同。
11-19 在半径为r 的圆形单匝线圈中通以电流i 1 ,另在一无限长直导线中通以电流i 2,此无限长直导线通过圆线圈的中心并与圆线圈处于同一平面内,如图11-19所示。
求圆线圈所受的磁场力。
解 建立如图所示的坐标系。
根据对称性,整个圆线圈所受磁场力的y 分量为零,只考虑其x 分量就够了。
在圆线圈上取电流元i 1 d l ,它所处位置的方位与x 轴的夹角为,如图所示。
电流元离开y 轴的距离为x ,长直电流在此处产生的磁场为.电流元所受的磁场力的大小为.这个力的方向沿径向并指向圆心(坐标原点)。
将、代入上式,得.其x 分量为,整个圆线圈所受磁场力的大小为,图11-18图11-17图11-19负号表示f x沿x轴的负方向。
11-20 有一10匝的矩形线圈,长为 m,宽为 m,放置在磁感应强度大小为10 3 t 的匀强磁场中。
若线圈中每匝的电流为10 a,求它所受的最大力矩。
解该矩形线圈的磁矩的大小为,磁矩的方向由电流的流向根据右手定则确定。
当线圈平面与磁场方向平行,也就是线圈平面的法向与磁场方向相垂直时,线圈所受力矩为最大,即.11-21 当一直径为 m的10匝圆形线圈通以 a电流时,其磁矩为多大若将这个线圈放于磁感应强度大小为 t的匀强磁场中,所受到的最大力矩为多大解线圈磁矩的大小为.所受最大力矩为.11-22 由细导线绕制成的边长为a的n匝正方形线圈,可绕通过其相对两边中点的铅直轴旋转,在线圈中通以电流i,并将线圈放于水平取向的磁感应强度为b的匀强磁场中。
求当线圈在其平衡位置附近作微小振动时的周期t。
设线圈的转动惯量为j,并忽略电磁感应的影响。
解设线圈平面法线与磁感应强度b成一微小夹角,线圈所受力矩为. (1)根据转动定理,有,式中负号表示l的方向与角加速度的方向相反。
将式(1)代入上式,得,或写为. (2)令,(3)将式(3)代入式(2),得(4)因为是常量,所以上式是标准的简谐振动方程,立即可以得到线圈的振动周期,为.11-23 假如把电子从图11-20中的o点沿y 方向以107m s 1 的速率射出,使它沿图中的半圆周由点o到达点a,求所施加的外磁场的磁感应强度b的大小和方向,以及电子到达点a的时间。
图11-20解要使电子沿图中所示的轨道运动,施加的外磁场的方向必须垂直于纸面向里。
磁场的磁感应强度的大小可如下求得,.电子到达点a的时间为.11-24 电子在匀强磁场中作圆周运动,周期为t = 108 s。
(1)求磁感应强度的大小;(2)如果电子在进入磁场时所具有的能量为103 ev,求圆周的半径。
解(1)洛伦兹力为电子作圆周运动提供了向心力,故有,由此解出b,得.(2)电子在磁场中作圆周运动的轨道半径可以表示为,将代入上式,得.11-25 电子在磁感应强度大小为b =103t 的匀强磁场中,沿半径为r = cm的螺旋线运动,螺距为h = cm 。