计算机断层扫描成像(CT)

合集下载

ct成像原理

ct成像原理

ct成像原理
CT成像原理
计算机断层扫描(Computed Tomography,CT)通过旋转X
射线源和探测器来获取人体或物体的断层结构图像。

CT成像
原理基于被测物体对X射线的吸收以及X射线通过物体后形
成的投影图像。

在CT扫描过程中,患者被放置在一个环形的X射线机架中。

X射线机架包含了射线源和探测器,它们相对于患者会进行旋转。

射线源发射X射线通过患者的身体,而探测器记录下射
线通过的强度。

在旋转过程中,射线源和探测器会进行多次测量,以获得不同角度下的投影图像。

这些投影图像会传输到计算机中进行处理。

计算机会使用数学算法将不同角度下的投影图像重新构建成横断面的图像,即CT图像。

这样,医生或放射学技师就能够准
确地观察人体或物体的内部结构。

CT成像原理的关键之处在于射线通过物体的吸收量。

不同组
织和器官对X射线的吸收强度不同,这就导致了投影图像的
变化。

计算机根据不同的吸收强度来区分不同的组织和器官。

通过CT成像,医生可以观察到人体内部的异常情况,如肿瘤、骨折和出血等。

这为疾病的诊断和治疗提供了重要的依据。

此外,CT成像还可以用于工业领域,用于检测和分析物体的结
构和缺陷。

总结起来,CT成像原理利用X射线的吸收和投影图像的重新构建来实现对人体或物体内部结构的准确观察。

这种成像技术在医学和工业领域都具有重要应用。

磁共振成像与计算机断层扫描的比较研究

磁共振成像与计算机断层扫描的比较研究

磁共振成像与计算机断层扫描的比较研究近年来,磁共振成像(MRI)和计算机断层扫描(CT)这两种医学影像检查技术逐渐成为临床医学中重要的诊断工具。

它们在不同的场景下具有独特的优势与应用价值。

本文将比较磁共振成像与计算机断层扫描的特点和适用范围,帮助读者更好地了解这两种技术的具体应用。

一、磁共振成像和计算机断层扫描的原理磁共振成像利用磁场和无线电波来获取人体内部的高分辨率影像。

它通过对人体内部水分子磁共振信号的探测和分析,得到包括脑部、胸腹部、骨骼等部位的横断面、矢状面或冠状面影像。

而计算机断层扫描则是通过将X射线成像技术与计算机图像重建技术相结合,实现对人体各个部位的断层观察。

通过旋转扫描X射线源和探测器,计算机断层扫描可以以不同角度获取多个切片,从而形成层面信息。

二、磁共振成像与计算机断层扫描的优势与劣势1. 磁共振成像的优势:- 能够提供更准确的解剖结构信息,对软组织和血管病变的影像表现更佳。

相比之下,计算机断层扫描在软组织分辨率方面稍逊一筹。

- 不使用X射线,避免了辐射对人体的潜在危害。

这使得磁共振成像更适用于儿童、孕妇等特殊人群的检查。

- 可以获得多平面重建图像,从而更好地观察和分析异常病灶的位置、大小和形态。

2. 计算机断层扫描的优势:- 检查速度快,扫描时间较短,尤其适用于检查急诊患者或需要进行动态观察的情况。

- 对于骨骼和钙化结构等高密度组织,计算机断层扫描具有更高的分辨率和显示效果。

- 成像准确性高,对于诊断某些疾病如肺癌、肝癌等有较高的敏感性。

三、磁共振成像和计算机断层扫描的应用领域1. 磁共振成像的应用领域:- 脑部疾病的检查,如脑卒中、脑肿瘤等。

- 胸腹部器官的检查,如心脏、肺部、肝胆胰、肾脏等。

- 骨骼与关节疾病的诊断,如骨折、滑膜肿瘤等。

2. 计算机断层扫描的应用领域:- 肺部疾病的检查,如肺结节、肺炎等。

- 骨骼与关节疾病的诊断,如骨折、关节积液等。

- 心血管疾病的评估,如冠状动脉疾病、主动脉夹层等。

放射治疗中的医学影像的成像系统

放射治疗中的医学影像的成像系统

放射治疗中的医学影像的成像系统在放射治疗中,医学影像的成像系统起着至关重要的作用。

它们能够帮助医生准确诊断病情,确定治疗方案,并对治疗过程中的效果进行监测。

本文将介绍放射治疗中常用的医学影像成像系统,包括X射线、计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET-CT)。

(正文内容开始)1. X射线成像系统X射线成像系统是放射治疗中最常见的成像工具之一。

通过使用X射线的物理特性,医生可以获取患者内部结构的影像。

在放射治疗中,X射线成像系统主要用于确定治疗区域的准确位置,并帮助医生规划放疗的具体方案。

通过X射线成像系统,医生可以直观地观察肿瘤的大小、位置以及与周围组织的关系,从而制定最佳的放射治疗计划。

2. 计算机断层扫描(CT)成像系统计算机断层扫描(CT)成像系统是一种通过旋转式X射线源和感应器进行扫描的成像系统。

它能够提供更详细的横断面图像,帮助医生更精确地评估肿瘤的形态和大小。

在放射治疗中,CT成像系统可用于定位放疗治疗计划中的激光标记,以确保放疗的定位精度。

此外,CT成像还可以帮助医生评估放疗计划中的剂量分布,以确保给予肿瘤足够的辐射剂量,同时最大限度地减少对正常组织的伤害。

3. 磁共振成像(MRI)系统磁共振成像(MRI)是一种基于磁场和无线电波的成像技术,它可以产生高分辨率的人体内部结构图像。

在放射治疗中,MRI成像系统可以提供更为清晰的肿瘤结构图像,帮助医生确定肿瘤的边界和浸润范围。

此外,MRI成像还可以检测肿瘤的血供情况,辅助医生评估肿瘤的恶性程度。

放射治疗前后的MRI扫描可以用于监测治疗的效果,及时调整治疗计划。

4. 正电子发射断层扫描(PET-CT)系统正电子发射断层扫描(PET)和计算机断层扫描(CT)的结合(PET-CT)成像系统在放射治疗中也被广泛应用。

PET-CT系统通过注射含有放射性示踪剂的药物来检测肿瘤的代谢活性,从而帮助医生评估肿瘤的生物学特性。

反投影重建算法

反投影重建算法

反投影重建算法
反投影重建算法(FBP)是一种计算机断层扫描成像(CT)重建图像
的方法。

该算法基于通过旋转体与X射线束的物理原理,将多个方向
的X射线透射数据进行积分,并使用反投影算法将数据重构成一张图像。

FBP算法分为两个基本部分:投影操作和反投影操作。

投影操作是一
种从图像中提取片段的技术,而反投影操作则是将这些片段重构成图像。

FBP重建算法的本质是一种频域过滤操作,其通过滤波技术提取
图像中的高频信息,并使用反投影技术将其还原为一张二维图像。

反投影重建算法的主要优点是其速度和适应性。

这种算法能够轻松地
生成高质量的图像,并且对于许多不同的应用程序都可以使用不同的
滤波模式。

目前,FBP算法被广泛应用于医学成像、工业检测和材料
科学等领域。

需要注意的是,FBP算法并不是完美的。

由于其基于体积的积分,因
此它可能受到一个“锐角偏差”问题的影响。

锐角偏差问题是指,当
图像中存在锐利的边缘或角落时,算法可能会出现伪影或失真的问题。

为了应对这个问题,一些改进算法被提出,例如金刚簇算法(来自中
国科技大学),基于块的迭代顺序最小化算法和模糊模式匹配算法等。

总之,反投影重建算法是一种实用的成像算法,对于许多不同的领域都具有广泛的适用性。

虽然这种算法具有其局限性,但是通过改进算法可以进一步提高它的可靠性和精度。

ct与核磁共振成像原理

ct与核磁共振成像原理

CT(Computed Tomography,计算机断层扫描)和核磁共振成像(Magnetic Resonance Imaging,MRI)是医学影像学中常用的两种成像技术,它们的原理有所不同。

CT成像原理:
CT利用X射线通过人体组织的不同吸收特性来获取图像。

具体原理如下:
1. 患者被放置在一个旋转的X射线源和探测器环之间。

2. X射线源和探测器环一起绕患者旋转,通过多个角度获取X射线的吸收数据。

3. 探测器测量通过患者的X射线的强度,形成一个二维的X 射线吸收剖面。

4. 通过计算机对多个角度的吸收数据进行处理,重建出患者体内的三维图像。

MRI成像原理:
MRI利用人体组织中的原子核在强磁场和射频脉冲的作用下发生共振来获取图像。

具体原理如下:
1. 患者被放置在一个强磁场中,通常是超导磁体产生的强静态磁场。

2. 通过向患者体内发送射频脉冲,使得患者体内的原子核发生共振。

3. 当射频脉冲停止后,原子核会重新放出能量,这些能量被探测器捕捉到。

4. 探测器测量原子核放出的能量,并通过计算机处理,生成图像。

CT和MRI的主要区别在于成像原理和图像特点。

CT成像速度快,对骨骼和钙化病变显示较好;MRI成像过程较慢,对软组织显示较好,可以提供更多的解剖信息。

医生会根据具体情况选择合适的成像技术来进行诊断和治疗。

X射线与计算机断层扫描技术

X射线与计算机断层扫描技术

X射线与计算机断层扫描技术现代医学领域中,X射线与计算机断层扫描技术(CT)是一种常用的影像诊断手段。

本文将着重探讨X射线与计算机断层扫描技术的原理与应用。

通过对其工作原理、优点和局限性的介绍,以及在不同领域中的应用案例展示,旨在为读者提供对该技术的深入了解。

一、X射线技术的原理X射线技术的应用已有一个世纪的历史,其原理基于射线在物体中的吸收和散射特性。

X射线源通过物体后,被接收器接收并转化为数字信号,经计算机处理并重建成图像。

这些图像可以提供关于被扫描物体的内部结构和异常情况的详细信息。

二、计算机断层扫描技术的原理计算机断层扫描技术是基于X射线技术发展而来的。

它通过连续旋转射线源和接收器,以及计算机的重建算法,可以获取横截面图像。

相较于传统X射线技术,CT技术能够提供更加清晰和详细的图像。

三、X射线与计算机断层扫描技术的优点1. 非侵入性:X射线和CT技术在诊断时对患者无需进行任何手术或切口,通过射线扫描即可获得目标物体的图像信息。

2. 高灵敏度:X射线和CT技术能够检测到人体内部微小的异常变化,提供高分辨率的图像,帮助医生进行精确的诊断。

3. 多功能性:X射线和CT技术不仅在医学中具有广泛应用,还可用于工业探测、材料分析等领域。

四、X射线与计算机断层扫描技术的应用案例1. 医学领域a. 诊断疾病:CT技术广泛用于检测癌症、骨折、肺部疾病等,帮助医生做出准确的诊断。

b. 导航手术:通过CT技术生成的3D图像,可用于导航手术,减少手术风险和创伤。

c. 放射治疗:利用CT技术生成的图像,医生可以确定最佳放射治疗计划,确保肿瘤得到最大程度的破坏。

2. 工业领域a. 非破坏性检测:X射线和CT技术被广泛应用于工业领域,如航空、汽车和电子等,用于检测产品的完整性、缺陷和材料属性。

b. 质量控制:通过CT技术,可以检测产品的结构、尺寸和材料组成,确保产品符合质量要求。

五、X射线与计算机断层扫描技术的局限性1. 辐射风险:X射线和CT技术使用射线,长时间或频繁接受检查会增加辐射风险,特别是对于孕妇和儿童。

X射线计算机断层扫描(CT)

X射线计算机断层扫描(CT)

X射线计算机断层扫描(CT)Willi A Kalender摘要X射线计算机断层扫描(CT)、1972引入临床实践,是第一种现代片成像方式。

图像重建数学从实测数据和显示和归档数字形式是一个新颖的方式,但是今天已经很常见。

CT呈现稳步上升的趋势,在上世纪80年代,基于技术、性能及临床使用独立的预测和专家评估等各方面的预测,它将完全取代磁共振。

CT不仅幸存了下来,但在真正的文艺复兴由于螺旋扫描是由切片成像片真实体积成像过渡的介绍。

辅以年代阵列探测器技术的引入,使得成像CT今天整个器官或整个身体在5到20的亚毫米的各向同性分辨率。

本综述CT将按时间顺序重点技术,图像质量和临床应用。

在最后的部分,它也将简要提及CT如双源CT的新用途,C臂平板探测器CT和显微CT。

目前CT可能表现出了比以往更高的创新率。

结果局部和最近的事态发展将受到最大的关注。

1、简短的历史介绍早在1960年代,随着计算机技术的发展,CT已经可投入使用了,但是基于它的一些想法可以追溯到第上半个世纪。

1917年,波西米亚数学家氡基本重要性的研究论文证明材料或材料属性的分布在一个对象层,如果可以计算出经过沿任意数量的行的积分值都能穿过同一层。

这一理论的应用被Bracewell (1956)发展到了射电天文学领域,但是他们产生了很微弱的反响且不用于医疗目的。

第一个实验的这种重建成像在医学中的应用是由物理学家M Cormack开展,致力于提高在格鲁特索尔医院放疗计划,开普敦,南非。

1957和1963之间,并没有以前的研究知识,他发展了一种计算基于传输测量人体辐射吸收分布的方法(Cormack1963)。

他假设的影像应用程序必须能够显示即使是最微小的吸收差异,即不同的软组织结构。

然而,他从未有机会将他的理论付诸实践,只是学到了氡的工作太晚了,他感到遗憾的一个事实,他说,早期获得这方面的知识会拯救了他很多工作。

而熟悉氡,氡科马克发现自己已经知道的更早的工作主题由荷兰物理学家H洛伦兹,已经在1905(Cormack1992)。

CT计算机断层扫描课件

CT计算机断层扫描课件
*
What are some common uses of the procedure?
CT
胸部
头部
血管造影
腹部和盆腔
心脏
其他
back
CT计算机断层扫描
*
头部CT
脑出血脑梗塞 动脉瘤,血管畸形 各种肿瘤 外伤,出血,骨折,先天畸形等
CT计算机断层扫描
*
头部CT
多发腔隙性梗塞伴脑萎缩
back
CT计算机断层扫描
CT (Computed Tomography)
对CT的大概印象 CT 是什么样 的? CT图像有哪些特点? CT可以做哪些检查? 我们需要做哪些准备? CT优势和风险? CT的局限
CT
CT计算机断层扫描
*
对CT的大概印象
吸收率不同
X射线
非侵入性

切片
不开刀,无痛苦
断层扫描,全方位
back
CT计算机断层扫描
正常阑尾
阑尾炎
CT计算机断层扫描
*
Abdominal and pelvic
正常胰腺
肝癌
CT计算机断层扫描
*
盆腔CT
CT计算机断层扫描
*
盆腔CT
back
膀胱
CT计算机断层扫描
*
其他
骨折,外伤 骨质增生 椎间盘病变 椎管狭窄 肿瘤,结核等
back
CT计算机断层扫描
*
我们应该做好哪些准备?
衣服:
食物:
装饰物:
过敏:
病史:
How should we prepare?
宽松,舒适
珠宝,首饰,眼镜,助听器,发卡
啥都别吃了
碘,海鲜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1引言
自七十年代初第一台电子计算机断层扫描装置问世以来,成像技术发展异常迅速,设备不断更新。

以医学成像为例,已实现了三大飞跃,即脏器清晰图像的获得,把生化病理研究推向分子结构的水平和直接提供有关成像组织的化学成分的信息,步入了断层显像的新时代。

计算机断层扫描和图像重建技术,是在不破坏物体情况下,将物体每一个断层面上的结构和组份的分布情况显示出来的一种实验方法,都是利用计算机图像重建的方法来得到物体内部的信息。

人们对射线成像的最早认识是从x 光机开始的。

医用x 光机成像技术的发展和应用已有近百年的历史,它是利用x 射线的物理性能和生物效应,来对人体器官组织进行检查。

由于普通x 光机只能把人体内部形态投影在二维平面上,因此会引起成像器官和骨骼等的前后重叠,造成影像模糊。

为了克服这一缺点,英国ENI 公司的工程师豪恩斯菲尔德(G.N.Hounsfield)运用了美国物理学家科马克(Cormack)于1963年发表的图像重建数学模型,推出了第一台x 射线计算机断层图像重建技术(X-CT )装置,并1977年9月在英国Ackinson Morleg 医院投入运行。

1979年该技术的发明者Hounsfield 和Cormack 为此获得了诺贝尔医学奖。

X-CT 的出现是X 射线成像技术的一个重大突破。

经过多代的发展,X-CT 已获得广泛的应用。

在医学上,目前已可用来诊断脊柱和头部损伤,颅内肿病,脑中血凝块,及肌体软组织损伤,胃肠疾病,腰部和骨盆恶性病变等等。

目前X-CT 除了广泛应用于临床诊断、生命科学和材料科学以外,还在工业和交通等方面也有重要的应用,例如,在线实时无损检测工业CT 等。

2CT 成像实验原理
2.1概述
数学上可以证明,通过对物体进行多次投影就可得到该物体的几何形状。

CT 的基本思想是:让一束γ射线投射在物体上,通过物体对γ射线的吸收(多次投影)便可获得物体内部的物质分布信息。

当强度为0I 的一个窄束γ射线穿过吸收系数为μ的物体时,其强度满足指数衰减关系
0ut I I e -=
(1)
式中t 为射线所穿过物质层厚度。

在实际情况中,所研究的物体往往不是由单一成分组成的,当物体由若干个不同成分组成时,物体内部各处的μ也将可能不同。

在这样的物质中,束穿过整个物件后的强度为
0()()L I L I Exp u dt ⎛⎫
=- ⎪⎝⎭
⎰r
(2)
式中()u r 为r 处的吸收率。

CT 系统通过改变一组射线路径L ,记录下对应出射强度()I L 的变化来分析物体内部()u r 的分布。

在实际操作中,总是假定物体中的吸收系数()u r 是一个连续函数,通过射线测量方法和图像处理技术,将数学物理方程通过计算机解出函数()u r 。

在计算机屏幕上,可用颜色或灰度来表示()u r 的大小,从而被扫描的物体的切面图像即可显示出来。

实际的扫描装置通常是由排列成一定角度的多组探测器构成的,这样在每一个位置就可以获得多组数据,从而节省了测量时间,提高了工作效率。

共有三种信息收集方式:透射式CT (TCT )、放射式CT(ECT)、反射式CT 。

我们主要考虑前两种CT 的成像原理。

2.2投影定理
Figure 1 坐标转换及射线位置示意图。

图中虚线代表射线经过的路线;黑点代表我们感兴趣的一个点。

我们需要求那里的吸收系数。

投影定理或中心切片定理是图像重建算法的基础。

设在角度φ,位置r x 上的射线吸收
大小为()r p x φ,即
()0()ln ()r L
I p x u dt I L φ⎛⎫
≡= ⎪⎝⎭⎰r
(3)
其中L 表示延Figure 1所示的虚线积分。

再设物体的一个二维平面内吸收率分布为(),f x y 。

那么投影定理在非衍射源情况下,其内容为:
()r p x φ按照r x 的一维傅立叶变换(),P ρφ是(),f x y 的二维傅立叶变换
()()12,,F F
ωωρφ= 的一个(过原点的)切片。


()(),,P F
ρφρφ= (4)
该定理的具体证明可以参见参考文献[1],或者参考沈激老师的核技术的笔记。

那么,作为一个实际的CT 系统而言,首要算法问题是如何从实验上只能测得的()r p x φ,算出我们所需的(),f x y 。

CT 的算法很多,常见的有:反投影重建算法(累加法)、滤波(卷积)反投影重建算法、直接傅立叶变换重建算法、迭代重建算法等。

本节将介绍其中较为流行的卷积反投影重建算法。

为了清楚起见,我们重新声明一下推导中将使用的变量。

首先,在样品的一个断面上(如Figure 1所示),我们现在可以测得任意投影值()r p x φ(理想情况下为二维函数),如式(3)所示。

我们把它们用视角φ和视线(Figure 1中虚线)距离原点的距离r x 唯一标记。

我们需要求的是该断面上,任意一点(),x y (或者用极坐标(),r θ标记)上的吸收系数(),f x y 。

(),f x y 的二维傅立叶变换为()()12,,F F ωωρφ= 。

(),ρφ是空间频率点()12,ωω在极坐标系中的坐标。

由投影定理可知:
()()()()()1212121
2
12,,,,r f x y F F P p x φωωρφρφ----=⎡⎤⎣⎦
⎡⎤=⎣⎦=⎡⎤⎣⎦
⎡⎤⎡⎤=⎣⎦⎣⎦
F F F F F (5)
其中[]12-∙F 表示二维傅立叶反变换,[]∙F
表示一维傅立叶变换。

但是以上的傅立叶变换
并不适合计算机运算。

于是我们需要对它们进行进一步的化简:
()()()()()
1212121
2
12
2
,,,1,4i x y f r f x y F F e
d d ωωθωωωωωωπ-+∞
==⎡⎤⎣⎦
=
⎰⎰F
(6)
因为
()
()()()
12cos cos sin sin x r y r ωρφθωρφθ==⎧⎧⎪⎪⎨⎨
==⎪⎪⎩⎩ (7)
所以
()
()12122,,4d d d d d d ωωωωρφ
ρφπρρφ
∂=
∂=
(8)
把(7)和(8)代入(6)得
()()()()
()()()()
2cos 02cos 0
,,,,g cos ,i r i r f r f x y F
e d d d P e d d r ππρθφπ
πρθφπ
θρφρρφ
φρφρρ
φθφφ∞
--∞

--∞
===≡-⎰
⎰⎰⎰⎰
(9)
其中函数()()
g cos ,r θφφ-被定义为第二个积分。

它也是在该截面上定义的一个函数,且可以由()r p x φ算出。

我们需要的(),f r θ只是它关于角度的积分。

我们继续化简g 。

忽略掉固定的系数,g 是两个函数乘积的傅立叶反变换,即可以表示为这两个函数分别的反变换的卷积。

定义
()cos r r θφ'≡-
(10)
那么以上表述为
()()()()
()()
21
1g ,,,h i r r P e d P p r r p r πρφφφρφρρρρφρ∞
'-∞
--'≡
∝⎡⎤⎣⎦'=⎡⎤*⎣⎦''≡*⎰
F F
(11)
其中
()1
h r ρ-'≡⎡⎤⎣⎦F
(12)
与()r p x φ卷积,也是一次对()r p x φ的滤波。

滤波函数是ρ。

总之,为了求解(),f x y ,我们需要把()r p x φ与h 卷积,得到二维函数g 。

然后把g 在反投影、延φ方向上累加即可。

相关文档
最新文档