计算机断层扫描
磁共振成像与计算机断层扫描的比较研究

磁共振成像与计算机断层扫描的比较研究近年来,磁共振成像(MRI)和计算机断层扫描(CT)这两种医学影像检查技术逐渐成为临床医学中重要的诊断工具。
它们在不同的场景下具有独特的优势与应用价值。
本文将比较磁共振成像与计算机断层扫描的特点和适用范围,帮助读者更好地了解这两种技术的具体应用。
一、磁共振成像和计算机断层扫描的原理磁共振成像利用磁场和无线电波来获取人体内部的高分辨率影像。
它通过对人体内部水分子磁共振信号的探测和分析,得到包括脑部、胸腹部、骨骼等部位的横断面、矢状面或冠状面影像。
而计算机断层扫描则是通过将X射线成像技术与计算机图像重建技术相结合,实现对人体各个部位的断层观察。
通过旋转扫描X射线源和探测器,计算机断层扫描可以以不同角度获取多个切片,从而形成层面信息。
二、磁共振成像与计算机断层扫描的优势与劣势1. 磁共振成像的优势:- 能够提供更准确的解剖结构信息,对软组织和血管病变的影像表现更佳。
相比之下,计算机断层扫描在软组织分辨率方面稍逊一筹。
- 不使用X射线,避免了辐射对人体的潜在危害。
这使得磁共振成像更适用于儿童、孕妇等特殊人群的检查。
- 可以获得多平面重建图像,从而更好地观察和分析异常病灶的位置、大小和形态。
2. 计算机断层扫描的优势:- 检查速度快,扫描时间较短,尤其适用于检查急诊患者或需要进行动态观察的情况。
- 对于骨骼和钙化结构等高密度组织,计算机断层扫描具有更高的分辨率和显示效果。
- 成像准确性高,对于诊断某些疾病如肺癌、肝癌等有较高的敏感性。
三、磁共振成像和计算机断层扫描的应用领域1. 磁共振成像的应用领域:- 脑部疾病的检查,如脑卒中、脑肿瘤等。
- 胸腹部器官的检查,如心脏、肺部、肝胆胰、肾脏等。
- 骨骼与关节疾病的诊断,如骨折、滑膜肿瘤等。
2. 计算机断层扫描的应用领域:- 肺部疾病的检查,如肺结节、肺炎等。
- 骨骼与关节疾病的诊断,如骨折、关节积液等。
- 心血管疾病的评估,如冠状动脉疾病、主动脉夹层等。
正电子发射计算机断层扫描

(3)全身显像。PET一次性全身显像检查便可获得全身各个区域的图像。
(4)安全性好。PET检查需要的核素有一定的放射性,但所用核素量很少,而且半衰期很短(短的在12分 钟左右,长的在120分钟左右),经过物理衰减和生物代谢两方面作用,在受检者体内存留时间很短。一次PET全 身检查的放射线照射剂量远远小于一个部位的常规CT检查,因而安全可靠。
适用人群
适用人群
(1)肿瘤病人。目前PET检查85%是用于肿瘤的检查 ,因为绝大部分恶性肿瘤葡萄糖代谢高,FDG作为与葡 萄糖结构相似的化合物,静脉注射后会在恶性肿瘤细胞内积聚起来,所以PET能够鉴别恶性肿瘤与良性肿瘤及正 常组织,同时也可对复发的肿瘤与周围坏死及瘢痕组织加以区分,现
多用于肺癌、乳腺癌、大肠癌、卵巢癌、淋巴瘤,黑色素瘤等的检查,其诊断准确率在90%以上。这种检查 对于恶性肿瘤病是否发生了转移,以及转移的部位一目了然,这对肿瘤诊断的分期,是否需要手术和手术切除的 范围起到重要的指导作用。据国外资料显示,肿瘤病人术前做PET检查后,有近三分之一需要更改原订手术方案。 在肿瘤化疗、放疗的早期,PET检查即可发现肿瘤治疗是否已经起效,并为确定下一步治疗方案提供帮助。有资 料表明,PET在肿瘤化疗、放疗后最早可在24小时发现肿瘤细胞的代谢变化。
正常范围PET特别适用于在没有形态学改变之前,早期诊断疾病,发现亚临床病变以及评价治疗效果。PET在 肿瘤、冠心病和脑部疾病这三大类疾病的诊疗中尤其显示出重要的价值。
名称含义
名称含义
全称为:正电子发射型计算机断层显像(Positron Emission Computed Tomography) ,是核医学领域 比较先进的临床检查影像技术。
微小病变检测的医学影像方法研究

微小病变检测的医学影像方法研究近年来,微小病变检测的医学影像方法成为了医学界的热门话题。
微小病变对于人体健康的影响很大,尤其是在癌症早期诊断方面,微小病变的检测具有重要意义。
本篇文章将介绍目前常用的微小病变检测的医学影像方法及其研究成果。
一、计算机断层扫描计算机断层扫描(Computed Tomography,简称CT)是通过对人体不同部位进行多个方向和角度的X射线扫描,然后利用计算机对其进行处理和重建,最终形成图像。
CT扫描可以精准地检测出肿瘤等微小病变,特别是对于被骨骼阻挡的部位,如脊柱和肋骨等,CT扫描可以更好地展现细小的病变。
同时,CT扫描具有快速、不需要特殊准备、成像清晰等优点,但其辐射剂量相对较高,需要对患者进行辐射防护。
二、核磁共振成像核磁共振成像(Magnetic Resonance Imaging,简称MRI)是利用人体自身的磁场和射频脉冲来产生影像的一种非侵入性检查方法。
MRI在检测微小病变方面相对CT扫描更为敏感,因为它可以在没有放射性剂的情况下提供更高的解剖学细节。
MRI在检测脑、骨关节、颈部与腰椎等器官和部位时效果尤为显著。
同时,MRI成像不受患者年龄和体重等因素的影响,故较为普遍应用,但其缺点是成像速度较慢,需要相对较长的时间进行检查。
三、正电子发射断层扫描正电子发射断层扫描(Positron Emission Tomography,简称PET)是一种核医学检查方法,通过注射放射性药物,然后利用放射性药物的衰变产生的光子成像来显示体内病变部位的代谢活动情况,以此来检测微小病变。
PET具有高灵敏度、高空间分辨率和非侵入性等优点。
其应用范围广,包括癌症、心脏疾病、脑血管疾病等。
但是,PET成像的分辨率较低,需要进行重建来提高图像的精度。
以上三种医学影像方法在微小病变检测方面各有优缺点。
为了获得更准确、有力的疾病检测结果,近年来也出现了多种以上三种影像方法的结合应用,比如CT与MRI的联合应用,或与PET成像的联合应用等。
计算机断层扫描

正常组织的CT值
CT值(Hu) 0±10 3~8 13~32 64~84 50~65或略低 类别 水 脑脊液 血液 出血 脾脏 CT值(Hu) 50~70 -20~-80 80~300 -600~-800 400以上 类别 肝脏 脂肪 钙化 肺组织 骨 皮质
3;1000共2000个分度,而 人眼不能分辨这样微小灰度的差别,仅能分辨16个灰阶。为 了提高组织结构细节的显示,能分辨CT值差别小的两种组织, 操作员根据诊断需要调节图像的对比度和亮度,这种调节技术 称为窗技术--窗宽、窗位的选择。 窗宽是指显示图像时所选用的CT值范围。窗宽的宽窄直接 影响图像的对比度;窄窗宽显示的CT值范围小,可分辨密度 较接近的组织或结构,如脑组织;反之,窗宽加宽的CT值幅 度大,对比度差,适用于分辨密度差别大的结构如肺、骨质。 窗位是指窗宽上、下限CT值的平均数。窗位的高低影响图 像的亮度;窗位低图像亮度高呈白色;窗位高图像亮度低呈黑 色。
CT的检查过程
• 病人准备(胃肠道准备,对比剂过敏试验,呼吸训练,心理准备等) • 定位(选择适当的扫描体位) • 扫描定位像 • 进行断面扫描 • 进行图像的传输,存储和打印 • 在图像处理工作站上进行图像高级后处理(2D, 3D, Perfusion, Cardiac IQ)
一般检查可在5-10分钟内完成
CT常用高级后处理方法
• 随着螺旋CT的迅速发展,CT可进行连续的大范围
薄层容积数据采集,从而能够进行多角度、多方 位的显示,增加有效的诊断和定位信息。目前常 用的CT高级后处理方法有: MPVR, MIP, Curve, SSD, Navigator 等
MPR(多层面重建 )
• 计算机将横断面图像上的二维体素重组后获得冠 状位、矢状位、斜位和曲面重建图像。用于显示 病变形态及与周围组织、器官的 解剖关系
医学影像学的计算机断层扫描

医学影像学的计算机断层扫描随着科技的不断进步和医学领域的发展,计算机断层扫描(Computerized Tomography,CT)在医学影像学中扮演着至关重要的角色。
本文将介绍计算机断层扫描的原理和应用领域,并讨论其在疾病诊断和治疗过程中的作用。
一、计算机断层扫描的原理计算机断层扫描借助于X射线的影像学原理,通过将物体进行多个角度的扫描,然后通过计算机的处理,重建得到横向切片图像。
其原理基于射线通过物体时的吸收情况不同,从而形成不同的影像。
二、计算机断层扫描的应用领域计算机断层扫描广泛应用于医学影像学的各个领域,包括但不限于以下几个方面:1. 疾病诊断:计算机断层扫描可用于检测和诊断各种疾病,如肿瘤、心脑血管病变、骨骼疾病等。
其高分辨率和三维重建功能使得医生能够更准确地观察和评估病变的位置和程度。
2. 拟定治疗方案:计算机断层扫描可以提供详细的解剖图像,帮助医生确定最佳的治疗方案。
例如,在手术前,医生可以利用CT扫描结果量身定制手术计划,并预测手术风险和效果。
3. 治疗过程监测:计算机断层扫描可用于观察治疗过程中的动态变化。
它可以帮助医生评估治疗的疗效,并及时调整治疗方案。
此外,CT扫描还可以用于放射治疗计划的制定和监测。
4. 科研和教学:计算机断层扫描为科研提供了重要的工具。
研究人员可以利用其三维图像和重建功能开展各种医学研究,并提高对疾病的认识。
此外,CT扫描还广泛应用于医学教学中,帮助医学生更好地学习和理解解剖结构。
三、计算机断层扫描的优势和局限性计算机断层扫描作为一种先进的医学影像技术,具有以下几个优势:1. 高分辨率:计算机断层扫描能够提供高清晰度的图像,使医生能够更准确地观察病变和解剖结构。
2. 三维重建:通过计算机的处理,计算机断层扫描可以将多个切片图像重建为三维图像,有助于医生更好地理解解剖结构和疾病发展。
然而,计算机断层扫描也存在一些局限性:1. 辐射剂量:计算机断层扫描使用X射线进行成像,因此会对患者产生一定的辐射剂量。
神经系统疾病的影像学诊断技术进展

神经系统疾病的影像学诊断技术进展随着现代医学技术的不断发展,神经系统疾病的影像学诊断技术也取得了长足的进步。
这些技术包括计算机断层扫描(CT)、磁共振成像(MRI)、正电子发射断层扫描(PET)以及单光子发射计算机断层扫描(SPECT)等。
本文将对这些影像学诊断技术的进展进行综述,并讨论其在神经系统疾病诊断中的应用。
一、计算机断层扫描(CT)计算机断层扫描是一种通过连续多个层面的X射线图像来获取人体器官结构的方法。
它广泛应用于神经系统疾病的诊断,特别是颅脑损伤和出血灶的检测。
近年来,随着CT设备的改进和计算机断层扫描成像技术的发展,CT在神经系统疾病诊断方面的应用迈出了重要的一步。
二、磁共振成像(MRI)相比于CT,磁共振成像具有更高的空间分辨率和对软组织的更好分辨能力。
通过磁场和无线电脉冲的作用,MRI可以生成高质量的图像,用于神经系统疾病的诊断。
MRI在神经系统各种疾病的早期诊断、定性诊断和病情监测中发挥了重要作用。
而随着MRI技术的不断发展,磁共振波谱成像(MRSI)和功能性磁共振成像(fMRI)等衍生技术也逐渐应用于神经系统疾病的研究中。
三、正电子发射断层扫描(PET)正电子发射断层扫描是一种通过注入放射性同位素来追踪代谢活性、脑血流以及神经受体等信息的影像学技术。
它可用于研究脑功能活动和代谢变化,并在神经系统疾病的诊断和治疗监测中发挥重要作用。
然而,由于其存在辐射剂量较大的局限,在临床应用中受到了一定的限制。
四、单光子发射计算机断层扫描(SPECT)单光子发射计算机断层扫描是一种利用放射性同位素对人体进行成像的技术。
与PET相比,SPECT具有更广泛的临床应用,如脑血流灌注、脑功能评估和脑受体显像等。
近年来,随着SPECT 的技术改进,其图像质量和空间分辨率得到了明显提高,进一步推动了其在神经系统疾病诊断中的应用。
综上所述,随着科学技术的不断进步,神经系统疾病影像学诊断技术也在不断发展与完善。
tomography法

tomography法【最新版】目录1.计算机断层扫描 (tomography) 法的概述2.计算机断层扫描 (tomography) 法的工作原理3.计算机断层扫描 (tomography) 法的应用领域4.计算机断层扫描 (tomography) 法的优缺点5.计算机断层扫描 (tomography) 法的未来发展趋势正文一、计算机断层扫描 (tomography) 法的概述计算机断层扫描 (tomography) 法,简称 CT,是一种通过旋转 X 射线源和探测器来收集数据,然后利用计算机重建技术生成横断面图像的医学影像学技术。
它最早由英国科学家戈登·摩尔在 1972 年发明,现已成为医学影像学领域的重要手段之一。
二、计算机断层扫描 (tomography) 法的工作原理CT 扫描的过程主要包括数据采集和图像重建两个步骤。
在数据采集阶段,X 射线源和探测器围绕病人旋转,同时对不同角度的投影数据进行采集。
在图像重建阶段,计算机根据投影数据,运用数学算法对原始数据进行重建,最终生成横断面图像。
三、计算机断层扫描 (tomography) 法的应用领域CT 技术广泛应用于医学影像学领域,尤其在以下几个方面具有重要价值:1.肿瘤诊断:CT 扫描可以清晰地显示软组织结构,对于早期肿瘤的发现有很高的敏感性。
2.血管造影:CT 血管造影 (CTA) 可以清晰地显示血管结构,对于血管疾病的诊断和治疗具有重要意义。
3.骨折诊断:CT 扫描可以清晰地显示骨折部位和程度,对于骨折的诊断和治疗具有重要价值。
4.内科疾病诊断:CT 扫描在内科疾病诊断中也发挥着重要作用,如肺炎、肝胆疾病等。
四、计算机断层扫描 (tomography) 法的优缺点CT 扫描的优点包括:1.高分辨率:CT 扫描可以提供高清晰度的横断面图像,对软组织结构和病变的显示非常清晰。
2.安全性:CT 扫描的辐射剂量相对较低,对患者的影响较小。
CT检查参数知识点

CT检查参数知识点CT(计算机断层扫描)是一种影像学技术,用于生成身体内部的详细图像。
在进行CT检查时,掌握一些基本参数和知识点是非常重要的。
本文将介绍CT检查的几个主要参数,包括扫描方式、层厚、峰值伏特数、螺旋扫描、重建方式和对比剂。
1. 扫描方式:CT检查可以使用两种主要的扫描方式:连续扫描和螺旋扫描。
连续扫描是一种通过连续扫描患者身体部位来获取图像的方法。
而螺旋扫描是一种通过将X射线管和探测器同时旋转以连续扫描身体部位的方法。
螺旋扫描速度更快,对于动态病灶的观察效果更好。
2. 层厚:层厚是指CT扫描中每个层面的厚度。
一般来说,层厚越薄,图像越清晰,但扫描时间也会相应增加。
层厚的选择取决于患者病情、检查目的和扫描器性能等因素。
3. 峰值伏特数:峰值伏特数是指CT扫描中所使用的X射线的电压大小。
峰值伏特数越高,图像对比度越高,但辐射剂量也会增加。
常用的峰值伏特数一般为100kV或120kV。
4. 螺旋扫描:螺旋扫描是一种通过移动X射线管和探测器的方式,连续获取图像的方法。
与传统的连续扫描相比,螺旋扫描可以更快地获取图像,并能够观察到动态病变的变化。
5. 重建方式:CT图像的重建方式有两种:传统重建和重建间隔。
传统重建是指将扫描获得的原始数据直接生成图像。
而重建间隔是指在连续扫描过程中,将采集到的数据间隔一定距离进行重建,从而减少图像数量。
选择重建方式取决于具体的病情和检查目的。
6. 对比剂:对比剂是一种用于增强CT图像对比度的物质。
常用的对比剂包括碘剂和钡剂,它们可以在某些病灶中突出显示出来。
在进行CT检查时,医生会根据需要使用适当的对比剂。
7. 剂量管理:CT扫描中的辐射剂量是一个重要的关注点。
医生和技师们需要确保以最低的辐射剂量获得足够的图像质量。
因此,合理的剂量管理对于保护患者的健康非常重要。
总结:掌握CT检查的参数知识点是理解和解读CT图像的基础。
在选择合适的扫描方式、层厚、峰值伏特数、重建方式和对比剂等参数时,需要综合考虑患者情况和检查目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CT机的基本组成包括:x线球管和高压发生器、探测器 和数据采集系统、扫描架、扫描床及控制台
CT的成像过程
高压发生器 DAS
高电压 球管
X-ray
计算机
显示 照相
人体
探测器
X线球管
X线球管
球管基本结构
高速电子流轰击产生99分热
球管的评价指标
正常组织的CT值
CT值(Hu) 0±10 3~8 13~32 64~84 50~65或略低 类别 水 脑脊液 血液 出血 脾脏 CT值(Hu) 50~70 -20~-80 80~300 -600~-800 400以上 类别 肝脏 脂肪 钙化 肺组织 骨 皮质
窗宽、窗位
人体组织CT值的范围为-1000到+1000共2000个分度,而 人眼不能分辨这样微小灰度的差别,仅能分辨16个灰阶。为 了提高组织结构细节的显示,能分辨CT值差别小的两种组织, 操作员根据诊断需要调节图像的对比度和亮度,这种调节技术 称为窗技术--窗宽、窗位的选择。 窗宽是指显示图像时所选用的CT值范围。窗宽的宽窄直接 影响图像的对比度;窄窗宽显示的CT值范围小,可分辨密度 较接近的组织或结构,如脑组织;反之,窗宽加宽的CT值幅 度大,对比度差,适用于分辨密度差别大的结构如肺、骨质。 窗位是指窗宽上、下限CT值的平均数。窗位的高低影响图 像的亮度;窗位低图像亮度高呈白色;窗位高图像亮度低呈黑 色。
螺旋CT
横断位扫描
CT值
CT的特点是能够分辨人体组织密度的轻微差别, 所采用的标准是根据各种组织对X线的线性吸收系 数来决定的。为了计算与论述方便,将线性衰减系 数划分为2000个单位,称为CT值。以水为0值,最 上界骨的CT值为1000;最下界空气的CT值为-1000。 实际上,CT值是CT图像中各组织与X线衰减系 数相当的对应值。 CT值不是绝对不变的数值,它不仅与人体内在 因素如呼吸、血流等有关,而且与X线管电压、CT 装置、室内温度等外界因素有关,所以应经常校正, 否则将导致误诊。
• 1.球管焦点(mm x mm)
• 2.阳极热容量(MHu)
• 3.阳极散热率(khu/min)
• 4.衡量球管能力的金标准:
连续螺旋扫描时间(秒) 双排CT:90秒,16排:120秒;
球管的焦点
GE球管小焦点 0.6mm*0.7mm
大 焦 点 的 成 像
小 焦 点 的 成 像
图像清晰
较大的模糊区域
• Ⅳ、电影扫描 (Cine)
Ⅰ、定位像扫描(Scout)
球管位置固定,扫描床移动
Ⅱ、轴位扫描 (Axial)
扫描床位置固定,球管旋转曝光
Ⅲ、螺旋扫描 (Helical)
球管旋转曝光,扫描床连续移动
Ⅳ、电影扫描 (Cine)
Cine
扫描床位置固定,球管持续曝光
谢谢观看
Computer计 算 机 Tomograph 断 层 扫 描
CT基础知识—软件 成像原理及图像处理
CT 的基本原理
计算机断层扫描(computed tomograhy,简称CT), 是计算机与X线检查技术相结合的产物。当高度准直的X线 束环绕人体某一部位作断面扫描(通常是横断面)时,部 分光子被吸收,X线强度因而衰减,未被吸收的光子穿透人 体后,被检测器(detector)接收,然后经放大并转化为电 子流,作为模拟信号输入电子计算机进行处理运算,重建 成图像,由阴极线管显示出图像来,供诊断用。 检测器接收射线信号的强弱,取决于人体截面内组织的 密度,密度高的组织如骨吸收X线较多,检测器测得的信号 信号弱;反之,如脂肪、含气的脏器吸收X线少,测得的信 号强。这就是CT利用X线穿透人体后的衰减特征作为诊断 病变的依据。 计算机将检测器接受到的射线信号的强弱利用数学处理 方法重组图像,显示到荧光屏上,就形成受检面的CT图。
气态:
• 1. 固态: • 2. • 3. • 4. 钨酸镉 (Cadmium Tungstate) 高闪烁晶体 (GOS) 稀土陶瓷 (HiLight) 高压氙气 (Xenon Gas)
CT扫描方式
• Ⅰ、定位像扫描(Scout)
• Ⅱ、轴位扫描 (Axial)
• Ⅲ、螺旋扫描 (Helical)
MPVR(多平面容积重建)
• 在三维的基础上应用MPR技术,可采用平均 (Average)、最大(MIP)、最小(MinIP)三 种密度投影法来显示图像
Average
MIP
MinIP
同一部位MPVR图像,分别用不同方法显示,其效果不同
MIP(最大密度投影)
• 显示不同层面垂直方向的最大密度值,用于具有 相对高密度的组织和结构,如强化的血管、骨骼、 明显强化的软组织占位
螺旋成像
与普通CT机相比螺旋CT的优点是:
• • • • ①提高病变发现率 ②提高扫描速度 ③提高病变密度测定 ④可能减少造影剂用量 ⑤在造影剂最高时成像 ⑥可变的重建扫描层面 ⑦可建重叠扫描层面 ⑧可行多层面及三维重建
CT 机 房 示 意 图
CT机的基本组成
X线球管
高压发生器
扫 描 床
探测器和数据 收集系统
CT的增强扫描
经静脉给予水溶性碘造影剂使病变组织X线吸收率增高, 加大了正常与病变组织间灰阶的差别,从而提高了病变的显 示率。这种方法称之为造影增强检查。 病变组织的强化是由于其含碘量增加而使局部密度增高, 其机理主要:1.局部血流量增加(异常血管增生)或血液内 碘含量增高;2.血脑屏障遭到破坏,造影剂漏出血管外等因 素有关;3.病变组织内造影剂的代谢与正常组织代谢不同, 造成病变组织与正常组织间灰阶差别。 常用造影剂有: ①离子型造影剂,如泛影葡胺; ②非离子型造影剂,如欧乃派克。 造影剂的给药方法 ①一次性注射或集团注射法 ②静滴法 ③蛛网膜下腔给药 作椎管或脑室
影响CT图像的因素
1、窗宽、窗位 如果要获得较清晰且能满足诊断要求的CT图像,必须选 用合适的窗宽、窗位,否则不仅图像不清楚,还难以达到诊 断要求,降低了CT扫描的诊断效能。 2、噪声和伪影 噪声:分扫描噪声和光子噪声。 伪影有: 患者在扫描中移动、呼吸、肠蠕动等可造成移动伪影; 人体内、外金属异物,术后银夹、枕骨粗窿,鸡冠等过 高密度影产生放射状告密度条状影; 机器本身发生故障。 3、部分容积效应和周围间隙现象。 4、CT的分辨率 分空间分辨率和密度分辨率
Curve(曲线)
• 按一条设定的曲线进行重建,将原本弯曲的结构 展现在平面上
通过曲面重建可全程显示扩张的胰管
SSD
• 按表面数学模式进行计算处理,将符合预设CT阈 值的相邻象素连接起来形成立体图像。特点是: 立体感强, 解剖关系清晰。
Navigator
• 应用三线内插法和透视投影技术,重建出管腔表 面图象
CT基础知识—硬件 设备结构
CT装置的基本结构
由扫描装置、计算机系统、图像显示、 记录、储存等部分组成。 扫描装置包括X线球管、探测器与信号转 换系统。
CT
传统X光片
螺旋CT
通常的CT机X线球管做往返圆周运动。 每次扫描都经过启动、加速、匀速采集数据、 减数、停止几个过程,使扫描速度难以大幅 度提高。且仅能获得二维(2D)信息。 螺旋CT应用滑环技术,使得X线球管做 单方向连续旋转运动,同时患者检查床以均 匀速度平移前进或后退中,连续采集体积数 据进行图像重建。能够获得三维(3D)信息。
CT常用高级后处理方法
• 随着螺旋CT的迅速发展,CT可进行连续的大范围
薄层容积数据采集,从而能够进行多角度、多方 位的显示,增加有效的诊断和定位信息。目前常 用的CT高级后处理方法有: MPVR, MIP, Curve, SSD, Navigator 等
MPR(多层面重建 )
• 计算机将横断面图像上的二维体素重组后获得冠 状位、矢状位、斜位和曲面重建图像。用于显示 病变形态及与周围组织、器官的 解剖关系
焦 点 越 小, 图 像 越 清 晰
多排螺旋CT
X-ray Tube
1.25 mm Z axis
1.25 mm
扫描层厚 1.25 mm 4 x 1.25 mm 4 x 2.5 mm 4 x 3.75 mm 4 x 5 mm
覆盖范围/ 圈 5 mm 10 mm 15 mm 20 mm
1.25 mm
探测器的分类
CT的检查过程
• 病人准备(胃肠道准备,对比剂过敏试验,呼吸训练,心理准备等) • 定位(选择适当的扫描体位) • 扫描定位像 • 进行断面扫描 • 进行图像的传输,存储和打印 • 在图像处理工作站上进行图像高级后处理(2D, 3D, Perfusion, Cardiac IQ)
一般检查可在5-10分钟内完成