人工智能技术应用介绍PPT
人工智能ppt课件免费

随着算法、算力和数据的发展,人工 智能将在各个领域发挥更大的作用, 如自动驾驶、医疗诊断、智能制造等 。
对观众的寄语和期望
寄语
希望观众能够深入了解人工智能的发展和应用,把握未来的机遇和挑战。
期望
期待观众能够积极探索人工智能在各个领域的应用,为未来的发展做出贡献。
感谢您的观看
THANKS
人工智能 PPT 课件
目录
CONTENTS
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的未来展望 • 如何学习和应用人工智能 • 结语
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机 器能够模拟人类的智能行为,实 现人机交互和自主决策。
人工智能的核心
自动驾驶汽车能够提高交通效率和安 全性,减少交通事故和拥堵现象。
医疗诊断
人工智能在医疗领域的应用, 可以帮助医生提高诊断准确性 和效率。
人工智能可以通过分析大量的 医疗数据和病例,辅助医生进 行疾病诊断和治疗方案制定。
人工智能还可以用于医学影像 分析,自动识别病变和异常情 况,提高医学影像诊断的准确 性和效率。
模拟人类的感知、认知、学习和 推理等智能行为,实现机器的自 主决策和智能控制。
人工智能的历史与发展
早期阶段
当前阶段
20世纪50年代,人工智能概念开始出 现,主要研究领域包括专家系统和自 然语言处理。
21世纪初至今,人工智能技术广泛应 用于各个领域,包括自动驾驶、智能 家居、医疗诊断等。
发展阶段
20世纪80年代末至90年代,随着计算 机技术和大数据的发展,人工智能技 术逐渐成熟,机器学习、深度学习等 领域取得重要突破。
第六章 人工智能及其应用 课件(共16张PPT).ppt

人工智能 Artificial Intelligence
人工智能是计算机科学的一个分支, 是研究计算机模拟人的某些感知能力、 思维过程和智能行为的学科。人工智能 是引领未来的战略性技术,将深刻改变 人类生产生活方式。人们要保持对人工 智能的控制能力,防范人工智能失控的 风险和对人类社会未来发展的潜在威胁。
揭阳市揭东区第二中学 许家乐 原创课件
《数据与计算》
初识人工智能
第六章导学课
6.1
认识人工智能
6.2
人工智能的应用
揭阳市揭东区第二中学 许家乐 原创课件
PEPORT ON WORK
01
人工智能
什么是人工智能? 人工智能的诞生和发展历程是怎样的?
揭阳市揭东区第二中学 许家乐 原创课件
揭阳市揭东区第二中学 许家乐 原创课件
1997年“深蓝”战胜卡斯帕罗夫 2006年深度学习的开始研究 2010年大数据时代到来 2016年3月AlphaGo以4比1战胜 世界围棋冠军李世石
揭阳市揭东区第二中学 许家乐 原创课件
人工智能的研究领域
图像识别
看
人脸识别
做 机器人 自动驾驶
语音识别 听
机器学习 学习
理解
机器翻译
思考
人机对弈
专家系统
在教育领域,人工智能成
为教师和学生的得力助手。
比如智能导师:主要通过 自然语言处理和语音识别技术,
Hi
由计算机模拟教师教学的经验
和方法,对学生实施一对一的
教学,并向具有不同需求和特
征的学习者传递知识。
揭阳市揭东区第二中学 许家乐 原创课件
4、智能交通 智能交通系统是通信、信息和控
制技术在交通系统中集成应用的产物, 它借助现代科技手段和设备,将各核 心交通元素联通,实现信息互通与共 享,建立安全、高效、便捷和低碳的 交通运输管理系统。
人工智能与应用PPT课件

2024/1/30
25
语音识别基本原理和方法
声学模型
将声音转化为可识别的特征参数,如梅尔频率倒谱系数(MFCC )等。
语言模型
利用统计语言模型来描述语音的上下文关系,提高识别准确率。
2024/1/30
解码器
将声学模型和语言模型结合,搜索最可能的文字序列作为识别结果 。
26
2024/1/30
问答系统
通过自然语言处理技术理 解用户提出的问题,并从 知识库中检索相关信息, 生成简洁、准确的答案。
机器翻译
利用自然语言处理技术实 现不同语言之间的自动翻 译,促进国际交流和合作 。
19
自然语言生成技术探讨
2024/1/30
自然语言生成技术
01
研究如何将非结构化的数据或信息转化为人类可读的自然语言
人工智能与应用 PPT课件
2024/1/30
1
contents
目录
2024/1/30
• 人工智能概述 • 机器学习原理与实践 • 自然语言处理技术与应用 • 计算机视觉技术与应用 • 语音识别与合成技术及应用 • 智能推荐系统原理与实践 • 人工智能伦理、法律和社会影响
2
01
人工智能概述
2024/1/30
6
02
机器学习原理与实践
2024/1/30
7
监督学习算法介绍
2024/1/30
原理
通过最小化预测值与真实值之间 的均方误差,学习得到最优的线 性模型参数。
应用
预测连续型数值,如房价、股票 价格等。
8
监督学习算法介绍
2024/1/30
原理
在特征空间中寻找最大间隔超平面, 使得不同类别的样本能够被正确分类 。
(完整版)人工智能介绍PPT课件全

• 人工智能是计算机科学的一个分支,
它企图了解智能的实质,并生产出一 种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括 机器人、语言识别、图像识别、自然 语言处理和专家系统等。
Machine learning
Computer vision
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2024/9/24 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
2024/9/24
Part 4 人工智能的未来
2024/9/24
4
人工智能的未来
健全人工智能发展标准和监管制度
任何一门新技术的诞生、发展和使用都离不开一套完整 的发展标准和科学的管理制度,这是保证科学技术“以 人为本”的根本,面对人类日益强大的科研能力,人工 智能的发展必将会在未来出现突破性的进展,强人工智 能技术也将完整的出现在人类面前。鉴于人工智能技术 的特殊性,我们不难发现,它给人类生存带来的威胁不 亚于核武器,这就要求我们必须有严格的标准来要求人 工智能的发展,并且要科学谨慎的监管其生产和使用过 程的每个细节。
人工智能技术介绍PPT完整版(人工智能概述、围棋、象棋、人工智能3.0等)

乐观思潮
人工智能
孕育期
电子计算机 机
器翻译与NLP 图灵测试 计算 机下棋 早期神
1956
1974
1980
1987
1993
2006
2016
所有的AI程序 都只是“玩具” 运算能力 计算复杂性 常识与推理
未达预期
大数据 计算能力
削减投入
应用增多
经网络
人工智能核心技术
知识和数据智能处理
知识处理时通常使用专家
来悄
临悄
• 交通工具(即无人机、无人驾驶等) • VR(虚拟现实)
终正
结在
工业1.0 创造了机器工厂的 “蒸汽时代”
工业2.0 将人类带入分工明 确、大批量生产的 流水线模式和“电 气时代”
工业3.0 应用电子信息技术, 进一步提高生产自 动化水平
工业4.0 开始应用信息物理 融合系统(CPS)
复 杂 度
有关学科 教学、科学和 工程辅助
图论
博弈
AI的几大门派
模拟人的心智 模拟脑的结构 模拟人的行为
进化学派 类推学派 贝叶斯学派 符号学派 联结学派 行为学派
感知
知识表示 神经网络 机器人
深度学习
聪明的AI
有学识的AI
识别 判断
思考 语言 推理
知识图谱
AI生态逐步形成:基础资源+技术+应用
人工智能产业生态的三层基本架构
信息物联系统 蒸汽机
电力广泛应用
自动化、信息化
18世纪末
20世纪初
1970年代初
今天
时间
AI将催生“无用阶层”吗?
• 人工/脑力劳动:翻译、记者...
• 人工/体力劳动:保安、保姆...
《人工智能介绍》PPT课件

2023REPORTING 《人工智能介绍》PPT课件•人工智能概述•机器学习技术•自然语言处理技术•计算机视觉技术•语音识别与合成技术•人工智能伦理、法律与社会影响目录20232023REPORTINGPART01人工智能概述定义第一次浪潮(20世纪60年代-7…第二次浪潮(20世纪80年代-9…第三次浪潮(21世纪初至今)萌芽期(20世纪50年代-60年…发展历程人工智能(AI )是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能的发展大致经历了以下几个阶段人工智能的概念被提出,并出现了一些早期的理论和方法。
基于符号逻辑的专家系统得到广泛应用,但由于技术限制和理论缺陷,人工智能进入低谷期。
机器学习算法的兴起,尤其是神经网络技术的快速发展,为人工智能的复苏奠定了基础。
深度学习技术的突破,以及大数据、云计算等技术的支持,使得人工智能在各个领域取得了显著成果。
定义与发展历程技术原理及核心思想技术原理人工智能的技术原理主要包括感知、认知和行动三个层面。
感知层面通过传感器等设备获取外部环境信息;认知层面通过算法对获取的信息进行处理和分析,实现知识的表示、学习和推理;行动层面则根据认知结果做出相应的决策或行为。
核心思想人工智能的核心思想在于模拟人类的智能行为,包括学习、推理、决策等。
通过不断地学习和优化算法,提高机器的智能化水平,使其能够自主地完成复杂的任务。
应用领域人工智能已经渗透到各个领域,如自然语言处理、计算机视觉、智能机器人、智能制造、智慧城市等。
其中,自然语言处理使得机器能够理解和生成人类语言;计算机视觉使得机器能够识别和理解图像和视频;智能机器人则能够自主完成各种复杂任务。
前景展望随着技术的不断发展和应用场景的不断拓展,人工智能将在未来发挥更加重要的作用。
例如,在医疗领域,人工智能可以协助医生进行疾病诊断和治疗方案制定;在交通领域,自动驾驶技术将改变人们的出行方式;在金融领域,智能投顾和风险管理将提高金融服务的效率和质量。
人工智能介绍ppt课件

2. 人才培养与教育
AI技术的快速发展对人才的需求也日益增强。教育领域需要将AI技术引入到课程内容中,培养学生的创新思维 和实践能力。除了传统的计算机科学课程,还应重视数学、统计、物理等基础学科的教育。此外,实践环节也 非常重要,如提供实习机会、举办AI竞赛等,让学生在实践中提升技能。还可以尝试AI+教育的创新教学模式, 如通过虚拟现实、增强现实等技术,让学生更好地理解AI概念和应用。
保人工智能技术为人类带来积极的影响。
4. 未来展望与发展趋势
2. 机器视觉
将在自动驾驶、安防监 控等领域发挥更大作用。
1. 自然语言处理
将更加精确,实现与人 类更自然的交流。
3. 人工智能伦理
需更加重视,制定相应法律 法规,以保障人类利益。
0
3
0
2
0
4
0
1
0
5
4. 量子计算
助力AI发展,将实现更 高效的学习和决策。
5. AI芯片
更强大的性能和更低的 能耗,推动AI计算普及。
总结与建议
1. 关注人工智能技术与应用
1. 深度学习
是AI领域的核心技 术,已应用于图像识 别、自然语言处理、
语音识别等领域。
4. 医疗诊断
AI辅助诊断系统能 快速筛查疾病,提
高诊断准确性。
2. 自动驾驶
深度学习算法驱动下 的自动驾驶技术实现 了复杂路况下的安全
人工智能技术
1. 机器学习
深度学习与神经网络
深度学习是一种神经网络, 通过模拟人脑的神经网络结 构,实现对大量数据的高效
(完整版)人工智能介绍PPT课件

智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别, 虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信 息感应与辨证处理。
谢谢
主条目:GOFAI
基于逻辑不像艾伦 纽厄尔和赫伯特 西蒙,JOHN MCCARTHY认为机器不需要模拟 人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的 算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表 示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他 地方开发编程语言PROLOG和逻辑编程科学。“反逻辑”斯坦福大学的研究者 (如 马文 闵斯基和西摩尔 派普特)发现要解决计算机视觉和自然语言处理的困难问题, 需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行 为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" 。常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一 个复杂的概念。
大脑模拟
主条目:控制论和计算神经科学 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控 制论之间的联系。其中还造出一些使用电子网络构造的初步智能, 如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。这 些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协 会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再 次提出这些原理。 符号处理
集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是 那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究 者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可 以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出 一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系 统称为混合智能系统,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号 AI和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的 SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础资源层:主要是计 算平台和数据中心,属于 计算智能; 技术层:通过机器学习 建模,开发面向不同领域 的算法和技术,包含感知 智能和认知智能; 应用层:主要实现人工 智能在不同场景下的应用。
人工智能系统的技术架构
智能终端
智能云平台
第一节
人工智能的新革命
• 人工智能技术简述 • 深度学习算法 • 知识图谱
知识和创新是推动人类发展的动力
基因:人和大猩猩的基因,有98.4%都是完 全一样的,只有1.6%有区别
“符号语言”(口头语言和书面文
字):传递、保存、共享知识
“集体知识”:人类的大脑可以相互
共享信息,交换知识
人类个体比其他动物没有多大优势,掌握 了符号语言,人类社会的结构发生了突变, 有了一个连接在一起的集体大脑。这种物 种之间相互关联、相互作用的方式,才是 我们和其他物种的真正区别
什么是人工智能?
• 人工智能(Artificial Intelligence),英文缩写 为AI。它是研究、开发用于模拟、延伸和扩展人的 智能的理论、方法、技术及应用系统的一门新的技 术科学。 • 它企图了解智能的实质,并生产出一种新的能以人 类智能相似的方式做出反应的智能机器,该领域的 研究包括机器人、语言识别、图像识别、自然语言 处理和专家系统等。 • 人工智能是对人的意识、思维的信息过程的模拟。 人工智能不是人的智能,但能像人那样思考、也可 能超过人的智能。
人工智能有那些类型?
• 弱人工智能,包含基础的、特定场景下角色型的任 务,如Siri等聊天机器人和AlphaGo等下棋机器人;
• 通用人工智能,包含人类水平的任务,涉及机器的 持续学习; • 强人工智能,指比人类更聪明的机器;
人工智能发展历程
AI的诞生
1956达特矛斯 会议,“人工智 能”正式诞生 搜索式推理 聊天机器人 专家系统 知识工程 五代机 神经网络重生 摩尔定律 统计机器学习 AI广泛应用 深度学习
乐观思潮
人工智能
孕育期
电子计算机 机
器翻译与NLP 图灵测试 计算 机下棋 早期神
1956
1974
1980
1987
1993
2006
2016
所有的AI程序 都只是“玩具” 运算能力 计算复杂性 常识与推理
未达预期
大数据 计算能力
削减投入
应用增多
经网络
手机中的AI
AI处于什么阶段?
• 人工智能相关技术刚刚越过曲线高峰(处于狂热期),是推动透明化身临其境体验技术发展的 主要动力
机器学习&深度学习
• 从以“推理”为重点到以“知识”为重点,再 到以“学习”为重点 • 机器可以自动“学习”的算法,即从数据中自 动分析获得规律,并利用规律对未知数据进行 预测的算法。目前,机器学习=“分类” • 人工智能 > 机器学习 > 深度学习
统计学的研究成果经由机器学习 研究,形成有效的学习算法 统计学习登场并占据主流,支 持向量机、核方法为代表性技术 神经网络以深度学 习之名再次崛起 大幅提升感知智能 准确率
脑容量:历史上的“尼安德特人”和我们 的祖先脑容量是一样的。但后来尼安德特 人就没留下来,只有我们这一支留下来了
AI学科结构
计算原理 算法分析 自动程序设计 逻辑 数学 逻辑学 图示学 自动定理证明 运筹学 启发式 搜索 系统程序设计 心理学 图示学 认识论 心理学 机器视觉 知识的模型化 和表示 计算机语言 AI系统 和语言 系统程序设计 信息处理心理学 心理学 基本方法和技术 逻辑 近期主要应用领域 光学 自然语言系统 心理学 符号操作 管理科学 现代控制理论 逻辑 近期主要应用领域 常识性推理演 绎、问题求解 语言学 控 制 理 论 模式识别 声学 语音学 控制理论 空间研究 机器人 工业自动化
1970年代初
今天
时间
AI将催生“无用阶层”吗?
• 人工/脑力劳动:翻译、记者...
• 人工/体力劳动:保安、保姆...
什么是人工智能(AI)?
人工智能:国家战略(2017年政府工作报告)
• 全面实施战略性新兴产业发展规划,加快人工智能 等技术的研发和转化,做大做强产业集群 • 把发展智能制造作为主攻方向,推进国家智能制造 示范区、制造业创新中心建设
终正
结在
工业1.0 创造了机器工厂的 “蒸汽时代”
工业2.0 将人类带入分工明 确、大批量生产的 流水线模式和“电 气时代”
工业3.0 应用电子信息技术, 进一步提高生产自 动化水平
工业4.0 开始应用信息物理 融合系统(CPS)
复 杂 度
信息物联系统 蒸汽机
电力广泛应用
自动化、信息化
18世纪末
20世纪初
有关学科 教学、科学和 工程辅助
图论
博弈
AI的几大门派
模拟人的心智 模拟脑的结构 模拟人的行为
进化学派 类推学派 贝叶斯学派 符号学派 联结学派 行为学派
感知
知识表示 神经网络 机器人
深度学习
聪明的AI
有学识的AI
识别 判断
思考 语言 推理
知识图谱
AI生态逐步形成:基础资源+技术+应用
人工智能产业生态的三层基本架构
• 涉及透明化身临其境体验的人本技术(如智能工作空间、互联家庭、增强现实、虚拟现实、脑 机接口)是拉动另外两大趋势的前沿技术 • 数字平台在曲线上处于快速上升期,其中的量子计算和区块链将在今后5—10年带来变革性的 影响
AI Roadmap
国人为什么要关注AI?
为什么人类能成为地球的主宰?
《时间地图:大历史导论》
工智能技术应用介绍PPT
目录 content
第一节
第二节 第三节 人工智能技术概述 深度学习与智能围棋 人工智能3.0
第一节
人工智能的新革命
• 人工智能技术简述 • 深度学习算法 • 知识图谱
人工智能将引领人类第四次工业革命 – 智能化
互联网时代
• 人工智能 • 机器人
来悄
临悄
• 交通工具(即无人机、无人驾驶等) • VR(虚拟现实)
提出支持向量、VC维等概念 神经网络 第一个高潮期 联结学派对大脑进行逆向分析 灵感来自于神经科学和物理学 产生的是“黑箱”模型 神经 网络可归置此类
符号学派将学习看作逆向演绎 并从哲 学、心理学、逻辑学中寻求洞见 代表 包括决策树和基于逻辑的学习 基于符号知识表示 通过 获取和利用领域知识 建 立专家系统
神经网络第二个高潮 NP(non-deterministic polynomial-time)难题 中获重大进展 助力大 量现实问题