小学数学典型应用题合集之还原问题
小学数学应用题专项练习——还原问题

还原问题1.牛老师带着37名同学到野外春游.休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数。
”小朋友们,你知道牛老师今年多少岁吗?2.有一位叔叔,他的年龄乘2,减去6后,再除以2加上8,结果恰好是38岁.这位叔叔的年龄是多少岁。
3.小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案是多少?4.在横线上填入合适的数:5.甲、乙两个车站共停了90辆汽车,如果从甲站开到乙站38辆汽车后,乙站开到甲站14辆,这时两站停的汽车辆数相等。
两站原来各停了多少辆汽车?6.有一筐苹果,甲取出一半又1个,乙取出余下的一半又1个,丙取出再余下的一半又1个,这时筐里只剩下1个苹果.这筐苹果共值66元,问每个苹果平均值多少钱?7.货场原有煤若干吨。
第一次运出原有煤的一半,第二次运进450吨,第三次又运出现有煤的一半又50吨,结果剩余煤的2倍是1200吨。
货场原有煤多少吨?8.一群小神仙玩扔沙袋游戏,他们分为甲、乙两个组,共有140只沙袋。
如果甲组先给乙组5只,乙组又给甲组8只,这时两组沙袋数相等。
两个组原来各有沙袋多少只?9.小明付1元钱进入第一家商店,又在店里花了剩余的钱的一半,走出商店时又付了1元钱,之后他又付了1元钱进入第二家商店,在店里花了剩余的钱的一半,走出商店时又付了1元钱,接着他又用同样的方式进入第三家商店,当他走出第三家商店以后,身上只剩下1元钱。
他进入第一家商店之前身上有多少元钱。
10.三棵树上共有27只鸟,从第一棵飞到第二棵2只,从第二棵飞到第三棵3只,从第三棵飞到第一棵4只,这时,三棵树上的鸟同样多.原来第一棵、第二棵、第三棵树上依次有多少只鸟11.货场原有煤若干吨.第一次运出原有煤的一半,第二次运进150吨,第三次运出50吨,结果还剩300吨,货场原有煤多少吨。
还原问题应用题50道

还原问题应用题50道一、基础篇(较简单的数字还原)1. 小明有一些弹珠,他给了小红10颗后,自己还剩下20颗。
那么小明原来有多少颗弹珠呢?2. 一个数减去5等于15,这个数原来是多少呀?3. 树上有一群鸟,飞走了8只后,还剩下12只。
树上原来有多少只鸟呢?4. 小莉的零花钱花了6元后还剩9元,她原来有多少零花钱呢?5. 有一个数加上3等于10,这个数原本是多少呢?6. 盒子里的糖果被吃掉了12颗后,还剩8颗。
盒子里原来有多少颗糖果?7. 爸爸给了小辉15元钱,小辉现在有23元,那小辉原来有多少钱呢?8. 一本书看了20页后,还剩下30页没看,这本书原来有多少页?9. 一个数除以2等于5,这个数原来是多少呢?10. 池塘里的鸭子游走了10只后,还剩15只,池塘里原来有多少只鸭子?二、进阶篇(涉及多步运算的还原)11. 小红有一些贴纸,她先给了小明5张,又给了小刚3张后,自己还剩下12张。
小红原来有多少张贴纸呢?12. 一个数先加上4,再减去7等于8,这个数原来是多少呢?13. 篮子里的苹果,先被拿走了6个,又被放进去4个后,现在有10个。
篮子里原来有多少个苹果?14. 小阳的分数先扣了8分,然后又加了12分后是20分,他原来的分数是多少?15. 有一个数先乘以3,再除以6等于3,这个数原来是多少呢?16. 小猫钓的鱼,先送给小狗5条,自己又吃了3条后还剩10条。
小猫原来钓了多少条鱼?17. 一个数先减去10,再加上15,然后除以5等于3,这个数原来是多少呢?18. 小丽的钱先花了一半买文具,然后又花了3元买零食后还剩5元。
小丽原来有多少钱?19. 一堆棋子,先拿走一半,再拿走3颗后还剩7颗。
这堆棋子原来有多少颗?20. 一个数先加上8,这个和再乘以2,然后减去10等于18,这个数原来是多少呢?三、综合篇(与生活场景结合,稍复杂)21. 妈妈买了一些苹果,第一天吃了3个,第二天吃了4个后,还剩下一半的苹果。
典型应用题.还原问题

典型应用题—还原问题例题:一根绳子,第一次剪去 13 又2分米,第二次剪去余下的 13又2分米,最后剩下6分米。
这根绳子原来有多长?分析:这类问题可以从“最后余下多少”这个问题出发,到回头来想想,如果上一次没有剪去这时应该余下多少,再想想如果上上一次没有剪去,余下的应该又是多少、、、、、、。
这样一直想下去直到还原这根绳子没有剪。
例如这道题,我们就可以从“第二次剪去余下的 13又2分米,最后剩下6分米。
”出发去想,先求出如果这次没有剪,该余下多少?可以这样想,假设2分米没有剪,那么第二次剪去余下的 13后,剩下(2+6)分米,正好就是余下的 (1-13 ),.这样用(2+6)÷(1-13)=12(米),就求出了如果这次没有剪,该余下12米。
这样就还原到“一根绳子,第一次剪去 13 又2分米后余下12米。
”同样用(12+2)÷(1-13)=21(米),就求得这根绳子原来的长度。
练习:1、一筐苹果,第一次吃去一半零3个,第二次吃去余下的一半零2个,第三次吃去余下的一半零4个,最后还有12个苹果,求原来共有多少个苹果?2、篮子中有一些桔子,如果将其中的一半又一个给第一个人,将余下的一半给又2个给第二个人,然后将剩下的一半又3个给第三个人,蓝中刚好一个也不剩。
蓝中原有多少个桔子?3、大娘院子里有群鸡,鸡的只数加上七,乘以七,减去七,除以七,再减去七,其结果等于七,大娘院子里有多少只鸡?4、姐姐买了一些桃子,第一天吃了这些桃子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。
那么姐姐买了多少个桃子?5、王老师拿着一批书送给30位学生,每到一位学生家里,王老师就将所有书的一半给他,每位学生也都还他一本,最后王老师还剩2本书。
那么王老师原来拿了几本书?6、一堆煤,先运走31又1吨,再运走余下的52又1吨,这时还剩下2吨。
原来这堆煤有多少吨?7、一根绳子第一次剪去全长的一半差1米,第二次剪去余下的一半差1米,第三次又剪去剩下的一半差1米,最后还剩下3米。
四年级奥数题《还原问题》数学小升初常考例题讲解+练习

例题1:把刘老师的年龄,乘4以后减去45再把所得的差除以3,然后加上5,最后得30。
刘老师今年几岁?1.还原时运算顺序和运算符号都会发生变化。
2.加变减,减变加;乘变除,除变乘。
30-5=2525×3=7575+45=120120÷4=30答:刘老师今年30岁。
练习1.一个数乘7除以3,然后加上5,最后再减3所得的结果是16。
那么这个数是多少?2.慢羊羊在黑板上写了一个数,喜洋洋将这个数乘7后,抹掉了末尾的数字0,美羊羊将喜洋洋所得的结果乘6以后,又抹掉了末尾的0,这时黑板上的数字是42。
原来的数是多少?例题2:(1)某商场卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉剩余的一半多3个,此时还剩3个。
那么商场原来有菠萝多少个?(3+3)×2=12(个)(12+2)×2=28(个)答:商场共有菠萝28个。
例题2:(2)某水果店卖苹果,第一天卖出所有苹果的一半少50千克,第二天卖出第一天剩下的一半少20千克,最后还剩下100千克。
这个水果店原来有苹果多少千克?(100-20)×2=160(千克)(160-50)×2=220(千克)答:这个水果店原来有苹果220千克。
练习1.(1)某超市的西红柿做活动,上午卖出所有西红柿的一半多20千克,下午又卖出剩下的一半多30千克,此时还剩下40千克。
超市原来有西红柿多少千克?(2)龙龙有一些巧克力,上午吃了所有巧克力的一半少5块,下午又吃了剩下的一半少3块,此时还剩下10块。
龙龙原来有巧克力多少块?2.某商场做活动,第一天卖出所有商品的一半少15个,第二天卖出剩下的一半少20个,第三天又卖出第二天剩下的一半,此时还剩37个。
这个商场原来有商品多少个?例题3:某水果店上午卖出西瓜总数的一半多2个,下午又卖出剩余的一半少8个,此时还剩28个。
水果店原来有西瓜多少个?(28-8)×2=40(个)(40+2)×2=84(个)答:水果店原来有西瓜84个。
(完整版)小学三年级-还原问题题型大集合

还原问题1、三个同学分本子,甲得到的本数比总数的一半少1本,乙得到的本数比其余的一半多一本,丙得到8本,共有本子多少本?2、有甲、乙、丙三个书架,共有图书450本,如果从甲架拿出60本放入乙架,再从乙架中拿出120本放入丙架,再从丙架中拿出50本放入甲架,则三架书册数一样多,原来三个书架各有图书多少册?3、有甲、乙丙三个油桶,各盛油若干千克,先将甲桶的油倒入乙丙两桶,使乙丙两桶油各增加原有油的一倍,再将乙桶油倒入丙甲两桶,使它们现有的油各增加一倍,最后同样把丙桶的油倒入乙甲两桶,这样各桶的油皆为16千克,各桶原来盛油多少千克?4、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?5、某数扩大3倍再加上8得23,如果这个数先加上8再扩大3倍是多少?6、一个学生做作业,把一个数除以15错误地按照乘以15计算了,结果得出225,那么这道题正确结果应该是多少?7、盆子中有鸡蛋不知其数,第一次吃了其中的一半又半个,第二次吃了剩下的一半又半个,这时盆子中还剩下1个鸡蛋,盆子中原有鸡蛋多少个?8、甲、乙、丙三个小朋友共有画片120张,如果甲给乙13张,乙给丙23张后,他们每人的张数相等,原来三个人各有画片多少张?9、把180个鸡蛋按每人1个分给甲、乙、丙、丁四个幼儿班的小朋友,刚好分完,如果甲班人数增加2,乙班人数减去2,丙班人数乘以2,丁班人数除以2,四个班人数则相等,这四个班各应分多少个?10、李白买酒:“无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。
”试问壶里原有多少酒?11、把一根电线对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米,这根电线原长多少米?12、三堆橘子共48个,先从第一堆中拿出与第二堆个数相等的橘子放入第二堆,再从第二堆中拿出与第三堆个数相等的橘子放入第三堆,最后又从第三堆中拿出与这时第一堆个数相等的橘子放入第一堆,这时三堆橘子数恰好相等,三堆橘子原来各有多少个?13、做一道整数加法题时,小明把个位上的7看作1,把十位位上的9看作6,结果得出和为136,那么正确答案应该是多少?14、有一个数,除以3,乘以6,减去9,加上12,等于39,这个数是多少?15、书架上有上、中、下三层书,一共分放192本书,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放的书的本数相同,原来书架上层有书多少本?16、一个数经过自加、自减、自乘、自除得到的四个数之和的是100,这个数是多少?17、一个数加上11,减去12,乘以13,除以14,结果是26,这个数是多少?18、某幼儿园的男生是女生的7倍,20个男生升入小学后,又接收29名女生,这样男生还比女生多11人,原来幼儿园有多少学生?19、有三篮苹果只数各不相同,从甲篮里拿出一些苹果放入乙丙两篮,使乙丙两篮的苹果增加一倍,第二次从乙篮里拿出一些苹果,放入甲丙两篮,使甲丙两篮的苹果数增加一倍,第三次从丙篮拿出一些苹果放入甲、乙两篮,使甲、乙两篮的苹果数增加一倍,这时三篮苹果都是48只,原来三篮苹果各有多少只?20、一个人卖桔子,第一个人尝了一个,买了余下的一半,第二个人也先尝一个,也买所余下的一半,第三个人也先尝一个,还是买余下的一半,第四个人又先尝一个,买走15个,还剩8个,原有多少个?21、仓库里有煤若干吨,第一天上午运出总数的一半,下午运出5吨,第二天上午运出剩下的一半,下午运出5吨,第三天上午运出余下煤的一半,下午运出5吨,这时仓库里还有24吨煤,仓库原有煤多少吨?22、某生产队用公积金4500元买拖拉机,卖余粮又收入6000元,又拿出1600元买化肥,并用剩下的资金的一半买汽车,结果还剩9000元,买拖拉机前有资金多少元?23、小明用自己储蓄的钱的一半买练习本后又存0.21元,他又用去比其中的一半少2分钱买课外书,他还有储蓄钱0.36元,买练习本前他的储蓄钱是多少元?24、有玻璃子弹分成三堆,共48颗,第一次从甲堆里拿出与乙堆数量相同的玻璃子弹放入乙堆,第二次再从乙堆里拿出与丙堆数量相同的玻璃子弹放入丙堆,第三次再从丙堆里拿出与这时甲堆相同数量的玻璃子弹放入甲堆,结果三堆玻璃子弹数量相等,甲、乙、丙堆原来各有多少玻璃子弹?25、将24千克酒精分装在三个瓶子里,将甲瓶中的酒精倒入乙、丙瓶一些,使乙丙两瓶中的酒精比原来增加1倍,再把乙瓶中的酒精倒入甲、丙两瓶中一些,使甲丙两瓶中的酒精增加1倍,最后再把丙瓶中的酒精倒入甲、乙两瓶一些,使得甲、乙两瓶中的酒精增加1倍,这时三瓶中的酒精一样多,原来甲、乙、丙各瓶中的酒精各是多少千克?26、王奶奶今年的年龄加上17后,缩小4倍,再减去15之后,扩大10倍,恰巧是100岁,王奶奶今年多少岁?27、在做一道加法试题时,某学生把个位上的5看做9,把十位上的8看做3,结果和得123,正确答案是多少?28、某人去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还多10元,这时还剩125元,他原有存款多少元?29、甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,结果三个组所有图有书刚好相等,甲、乙、丙三个组原来各有图书多少本?30、甲、乙两个车站共停了135辆汽车,如果从甲站开到乙站36辆汽车,而从乙站开到甲站45辆汽车,这时乙站停的汽车量数是甲站的1.5倍,原来甲、乙两站各停放多少辆汽车?31、有一根铁丝,第一次用去它的一半少1米,第二次用去剩下的一半多1米,最后还剩2.5米,这根铁丝原来长多少米?32、修一条公路,第一天修了全长的一半多2千米,第二天修了余下的一半少1千米,还剩下20千米没有修完,这条公路全长多少千米?33、书架分上、中、下三层,一共分放192本书,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层,取出与上层剩下的本数同样多的书放到上层,这时三层所放的书本数相同,这个书架的上、中、下层原来各有多少本书?34、有A、B、C三个油桶,各盛油若干千克,先把A桶的油倒入B、C两桶,使它们各增加原有油的1倍;再把B桶的油倒入A、C两桶,使它们现有的油各增加1倍;最后以同样的方式把C桶的油倒入A、B两桶,这时各桶的油都是16千克。
三年级还原问题应用题

三年级还原问题应用题一、还原问题的概念还原问题是指已知一个数经过某些运算之后得到了一个结果,要求原来的数。
解答这类问题时,我们通常根据题意从后往前进行逆运算。
二、例题及解析1. 例题一个数加上5,再乘以3,然后减去6,最后除以2,结果等于12。
这个数是多少?2. 解析我们从最后的结果12开始,按照运算顺序逐步往前进行逆运算。
因为最后是除以2得到12,所以在除以2之前的数字是:公式。
之前是减去6得到24,那么在减去6之前的数字是:公式。
再往前是乘以3得到30,所以在乘以3之前的数是:公式。
最开始是加上5得到10,那么这个数就是:公式。
3. 另一个例题小明有一些弹珠,他先送给小红一半,又送给小刚剩下的一半多2颗,这时他还剩下5颗弹珠。
小明原来有多少颗弹珠?4. 解析我们从最后剩下的5颗弹珠开始分析。
因为送给小刚剩下的一半多2颗后剩下5颗,那么在送给小刚之前剩下的数量是:公式颗。
这14颗是送给小红一半后剩下的,所以小明原来有的弹珠数量是:公式颗。
三、练习题1. 题目一个数减去8,乘以4,再加上5,最后除以3,结果是13。
这个数是多少?2. 解析从结果13开始逆运算。
因为除以3得到13,所以除以3之前是:公式。
加上5得到39,那么加5之前是:公式。
乘以4得到34,所以乘4之前是:公式。
减去8得到8.5,这个数就是:公式。
2. 题目有一筐苹果,第一天吃了一半多2个,第二天吃了剩下的一半少1个,这时筐里还剩下8个苹果。
这筐苹果原来有多少个?3. 解析从剩下的8个苹果开始。
因为第二天吃了剩下的一半少1个剩下8个,所以第二天没吃之前剩下的数量是:公式个。
第一天吃了一半多2个剩下14个,那么这筐苹果原来的数量是:公式个。
小学数学还原问题,18道例题方法解析,可以收藏的好资料

小学数学还原问题,18道例题方法解析,可以收藏的好资料已知一个数,经过某些运算之后,得到一个新数,求原来的数是多少的应用题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题。
还原问题又叫做逆推运算问题,解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算,在计算过程中采用相反的运算,逐步逆推。
在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反。
例题1. 一个数,加上2,再除以4,最后乘8,结果为16.这个数是()A. 2B. 3C. 4D. 62. 红红在计算□﹣40÷4时,先算减法,后算除法,结果得到20,正确的结果是()A. 80B. 110C. 1203. 解放军某部阻击敌人,因情况发生变化,需要从一营抽调一半的人去支援二营,抽调54人去支援三营,抽调剩下的一半去支援四营.后来团部将4名通讯员调进了一营,这时一营有38人,一营原来有()人.A. 244B. 260C. 280D. 4404. 一个数加上7,乘以3,减去15,得到最大的三位数.则这个数是()A. 133B. 213C. 331D. 3125. 甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工.问:这批零件有多少个?()A. 160B. 130C. 97D. 2006. 甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,那么三个组所有图书的本数刚好相等,乙组原有图书()本.A. 28B. 30C. 327. 有砖30块,兄弟二人争着去挑.弟弟抢在前面,刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥6块,这时哥哥比弟弟多挑2块.则最初弟弟准备挑________ 块砖.8. 陈小明买一支钢笔用去所带钱的一半,买一本笔记本又用去2元,这时还剩18元,陈小明原来带了________ 元.9. 小马在计算600﹣□÷5时不小心先算了减法再算除法,算出的结果是60,实际的正确结果应该是________ .10. 篮子里有一些梨,笑笑取走总数的一半多一个,小明取走了笑笑取走后剩下的一半多一个,这时篮子里还剩3个梨,一共有多少个梨?11. 一辆公共汽车从起点站开出时车上有一些乘客.到了第二站,先下车5人,又上车8人,这时车上共有乘客26人.这辆车从起点站开出时车上有多少人?12. 一盒糖果,第一次取出全部的一半多2个,第二次取出剩下的一半,最后盒子中还剩下10个,这盒糖果原来有多少颗?13. 小芳到商场买了一个福娃流线型书包用去所带钱的一半,买一个福娃文具盒用去36元,这时还剩92元.小芳原来带了多少钱?14. 王老太上集市上卖鸡蛋,第一个人买走了篮子里鸡蛋的一半又一个,第二个人买走了剩下鸡蛋的一半又一个,这时篮子里还剩10个鸡蛋,请问王老太篮子里一共有多少个鸡蛋?15. 一桶油,每次倒掉油的一半,倒了三次后连桶重8千克,已知桶重3千克,原来桶里有油多少千克?16. 有一个数,乘8除以2,再乘5得400,这个数是多少?17. 一个数加上6,再乘以6,然后减去6,再除以6,最后结果为71,求这个数.18.一个数加上8,乘8,减去8,除以8,结果还是8.你知道这个数是多少吗?答案解析1.【答案】 D【解析】【解答】解:16÷8×4﹣2=2×4﹣2=8﹣2=6 答:这个数是6.故选:D.【分析】因为结果是16,往回推算:除以8,是2,再乘4,是8,最后减去2,即可得出原数.2.【答案】B【解析】【解答】解:□﹣40÷4时,先算减法,后算除法,是(□﹣40)÷4=20;那么□﹣40=4×20=80□=40 80=120正确的结果就是:120﹣40÷4=120﹣10=110答:正确的结果是110.故选:B.【分析】□﹣40÷4时,先算减法,后算除法,算式应是(□﹣40)÷4=20,根据乘除法的互逆关系,用4乘上20即可求出□﹣40的值,再根据加减法的互逆关系,求出□的值,再代入□﹣40÷4中,按照先算除法,再算减法的顺序求出正确的结果.3.【答案】A【解析】【解答】解:[(38﹣4)×2 54]×2=(34×254)×2=(68 54)×2=122×2=244(人)答:一营原来有244人.故选:A.【分析】由“后来团部将4名通讯员调进了一营,这时一营有38人”可知在没调进4名通讯员之前是38﹣4=34(人),由“抽调54人去支援三营,抽调剩下的一半去支援四营”以及此时剩下34人,可知在没抽调54人之前是34×2 54=122(人),最后由“需要从一营抽调一半的人去支援二营”,此时剩下122人,可知一营原来有122×2=244(人).4.【答案】C【解析】【解答】解:(999 15)÷3﹣7=1014÷3﹣7=338﹣7=331.答:这个数是331.故选:C.【分析】此题从后向前推算,最大的三位数是999,减去15是999,在没减15之前是999 15=1014;乘以3是1014,在没乘3之前是1014÷3=338;加上7是338,在没加7之前是338﹣7=331.据此解答.5.【答案】A【解析】【解答】解:[(25 10)×2 10]×2,=(35×2 10)×2,=(70 10)×2,=80×2,=160(个);答:这批零件有160个.故选:A.【分析】第二天又加工了剩下的一半又10个,还剩下25个没有加工,也就是25 10=35(个),正好是第一天加工后剩下的一半,那么第一天加工后剩下35×2=70(个);第一天加工了这堆零件的一半又10个,剩下70个,那么70 10=80(个)是这堆零件的一半,那么这堆零件共有80×2=160(个).6.【答案】C【解析】【解答】解:后来各有:90÷3=30(本),乙组原有:30﹣3 5=32(本)答:乙组原有32本.故选:C.【分析】因为三个组现在的图书本数正好相等,所以每个组是90÷3=30本,因为乙组向甲组借来3本后,又送给丙组5本,所以甲组原有30 3=33本,那么乙组就是30﹣3 5=32本,丙的就是30﹣5=25本,据此即可解答问题.7.【答案】20【解析】【解答】解:哥哥最后挑的块数:(30 2)÷2=16(块),弟弟:30﹣16=14(块);哥哥还给弟弟6块,哥哥:16﹣6=10(块),弟弟:14 6=20(块);弟弟把抢走的一半还给哥哥,哥哥:10 10=20(块),弟弟:20﹣10=10(块);哥哥把抢走的一半还给弟弟,弟弟原来是:10 10=20(块).答:最初弟弟准备挑20块砖.故答案为:20.【分析】先看最后兄弟俩各挑几块,哥哥比弟弟多挑2块,这是一个和差问题,哥哥挑的块数:(30 2)÷2=16(块),弟弟:30﹣16=14(块);然后再还原,哥哥还给弟弟6块,哥哥:16﹣6=10(块),弟弟:14 6=20(块);弟弟把抢走的一半还给哥哥,哥哥:10 10=20(块),弟弟:20﹣10=10(块);哥哥把抢走的一半还给弟弟,弟弟原来是10 10=20(块).据此解答.8.【答案】40【解析】【解答】解:(18 2)×2=20×2=40(元);答:陈小明原来带了40元.故答案为:40.【分析】陈小明用自己所带钱的一半买一支钢笔,则剩下的一半即是一本笔记本2元加上最后剩下的18元,所以陈小明原来带的钱数为(18 2)×2=40元.9.【答案】540【解析】【解答】解:□里面的数值应是:600﹣60×5=600﹣300=300正确的结果是:600﹣300÷5=600﹣60=540答:实际的正确结果应该是 540.故答案为:540.【分析】600﹣□÷5先算减法,再算除法,就变成(600﹣□)÷5,先用60乘上5求出600﹣□的结果,再用用600减去求出的积,求出□的值,再按照先算除法,再算减法的计算方法求解.10.【答案】解:小明取时有:(3 1)×2=4×2=8(个)一共有:(8 1)×2=9×2=18(个)答:一共有18个梨.【解析】【分析】从后向前推,小明取走了笑笑取走后剩下的一半多一个,这时篮子里还剩3个梨,那就是说小明在取之前篮子里有8个梨.笑笑取走总数的一半多一个,那就是说8 1=9,就是笑笑取时一半的数量了,所以总共有9×2=18个梨,据此解答.11.【答案】解:26﹣8 5=18 5=23(人)答:这辆车从起点站开出时车上有23人.【解析】【分析】用最后的车上的人数减去又上车的人数,是下车之后的人数,再加先下车的人数,就是这辆车从起点开出时车上的人数.据此解答.12.【答案】解:(10×2 2)×2=(20 2)×2=22×2=44(个)答:这盒糖果原来有44个.【解析】【分析】从最后剩下的10个糖果入手,向前推,再第二次取之前盒中的糖果应是10×2=20个,第一次出全部的一半多2个,则全部的一半就是20 2=22个,据此解答.13.【答案】解:(92 36)×2=128×2=256(元)答:小芳原来带了256元.【解析】【分析】根据小红买一个福娃流线型书包用去所带钱的一半,买一个福娃文具盒又用去36元,这时还剩下92元,所以92 36=128元,128元是所带钱的一半,求原来带了多少钱,用128×2=256元即可.14.【答案】解:第一个人买完后鸡蛋有:(10 1)×2=11×2=22(个)篮子里原来有鸡蛋:(22 1)×2=23×2=46(个)答:王老太篮子里一共有46个鸡蛋.【解析】【分析】运用逆推的方法,用(10 1)可求得第一个人买完后剩下鸡蛋的一半,再乘2就是第一个人买完后剩下鸡蛋的个数,用它加上1就是篮子里鸡蛋的一半,再乘2就是篮子里原来一共有鸡蛋的个数;据此解答.15.【答案】解:(8﹣3)×2×2×2,=5×2×2×2,=40(千克),答:原来桶里有油40千克.【解析】【分析】由题意,倒了三次后连桶重8千克,已知桶重3千克,则油重(8﹣3)千克,每次倒掉油的一半,则第三次没倒前油重(8﹣3)×2,同理第二次没倒前油重(8﹣3)×2×2,第一次没倒前油重(8﹣3)×2×2×2;由此解答即可.16.【答案】解:400÷5=8080×2=160160÷8=20答:这个数是20。
【课后延时】小学数学专项《应用题》经典还原问题基本知识点-1星题(含解析)全国通用版

应用题-经典应用题-还原问题基本知识点-1星题课程目标知识提要还原问题基本知识点•概念还原问题:已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题。
它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法•方法:倒推法口诀:加减互逆,乘除互逆,要求原数,逆推新数在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.关键:从最后结果出发,向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.精选例题还原问题基本知识点1. 王雷是国庆节那天出生的.若他年龄的3倍减去8刚好是他出生那月的总天数,则王雷今年岁.【答案】13【分析】(1)因为王雷是国庆节出生的,他出生那月(也就是10月)的总天数是31天.(2)他年龄的3倍减去8刚好是31,因此他的年龄是:(31+8)÷3=13.2. 有一种特殊的计算器,当输入一个数后,计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是27,那么,最开始输入的是.【答案】26【分析】可采用倒推法.一个数乘以2,颠倒程序,加2得到27,所以这个数为:27减2,25颠倒顺序52除以2为263. 有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是.【答案】1【分析】根据题意,一个数,经过加法、乘法、减法、除法的变化,得到结果为6,应用逆推法,由结果6,根据加、减法与乘、除法互逆运算,倒着往前计算.6×6=36,36+6=42,42÷6=7,7−6=1.4. 小明想将一个数乘以7,却错除以7,接着他又想再加上36,却又错减去36,犯了这些错误后,所得结果为4,如果按顺序进行正确运算,所得的值应为.【答案】1996【分析】根据错误结果可以倒推出小明想的数是(4+36)×7=280,因此按顺序进行正确运算,所得的值应为280×7+36=1996.5. 黑板上写有一个数,男同学从黑板前走过时,把它乘以3减去14,擦去原数,换上答案;女同学从黑板前走过时,把它乘以2减去7,擦去原数,换上答案.全班25名男生和15名女生都走过以后,老师把最后的数乘以5,减去5,结果是30.那么,黑板上最初的数是.【答案】7【分析】全班同学走后,黑板上的数是(30+5)÷5=7;最后一名学生走过之前,黑板上的数是(7+7)÷2=7,总之,最后一名学生(即第40名学生)走过之前,黑板上的数还是7.同理,第39名学生来到之时,黑板上的数还是7⋯⋯由此可知,第1名学生到来之时,黑板上的数还是7,即黑板上最初的数是7.6. 一个数加上37,乘以37,减去37,再除以37,结果等于37,这个数是.【答案】1【分析】倒推考虑,运算都是相反的,因此这个数是(37×37+37)÷37−37=37×(37+1)÷37−37=(37+1)−37=1.7. 一位农民提了一筐鸭蛋去市场卖,她上午卖出篮子里鸭蛋数的一半少10个,下午又卖出剩下的一半多10个,最后还剩下65个没有卖出去,篮子里原来有个鸭蛋.【答案】280【分析】根据最后还剩65个没有卖出去倒推列出综合算式知篮子里原来有[(65+10)×2−10]×2=280(个)鸭蛋.8. 李白酒量大增,有诗为证“李白提壶去买酒,遇店加三倍,见花喝五斗.三遇店和花,喝光壶中酒”.那么壶中原有斗酒.【答案】10564【分析】详解:还原,{[(0+5)÷4+5]÷4+5}÷4=10564.9. 果园里的荔枝获得丰收,第一天摘了全部荔枝的13又10筐,第二天摘了余的25又3筐,这样还剩下63筐荔枝没摘,则共有荔枝筐.【答案】180)=110(筐),所以【分析】本题可采用倒推法.第二天摘之前剩余荔枝有(63+3)÷(1−25)=180(筐).原有荔枝(110+10)÷(1−1310. 王、张、刘三位小朋友共有邮票150枚,现在他们交换邮票:王给刘12枚,刘给张18枚,张给王20枚.这样,三人的邮票枚数相等.请问:王原有邮票枚,刘原有邮票枚,张原有邮票枚.【答案】42;56;52【分析】根据最后三人的邮票枚数相等,列表倒推,王刘张最后邮票数相同505050张给王20枚前305070刘给张18枚前306852王给刘12枚前(原来)42565211. 有一筐西瓜,第一次取出全部的一半又一个,第二次取出剩下的一半又一个,第三次取出剩下的一半又一个,筐里还剩下一个西瓜,这个筐里原有西瓜个.【答案】22【分析】根据最后还剩下1个西瓜,倒推第二次取完后还剩(1+1)×2=4(个),第一次取完后还剩(4+1)×2=10(个),因此这个筐里原有西瓜是(10+1)×2=22(个).12. 粗心的小泉在做加法时,将一个加数千位上的2抄成了7,将十位上的4抄成了1,所得的结果为8533,如果按顺序进行正确运算,所得的值应为.【答案】3563【分析】千位上的2抄成了7,所得结果会比正确结果多5000,将十位上的4抄成了1,所得结果会比正确结果少30,因此正确结果为8533−5000+30=3563.13. 袋子里有若干个球.小明每次拿出其中的一半再放回一个球,一共这样做了4次之后,袋子里还有3个球.请问原来袋子里有多少个球?【答案】18个.【分析】(3−1)×2=4,(4−1)×2=6,(6−1)×2=10,(10−1)×2=18.14. 甲和乙各有若干块糖.甲的糖数比乙少,每次糖多的人给糖少的人一些糖,使其糖数增加1倍;经过2010次这样的操作以后,甲有16块糖,乙有2块糖.求两个人原来的糖数分别是多少?【答案】甲有16块,乙有2块.【分析】第2010次操作前,甲8乙10,或者甲17乙1,但后面这种情况没法还原了.继续倒推,注意避免无法倒推的情况,发现甲的糖数出现16、8、4、2、10、14、16⋯⋯的周期,每6次为一个周期,2010÷6=335没有余数,那么甲开始有16块,乙开始有2块.15. 3个笼子里共养了36只兔子,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的兔子一样多.求3个笼子里原来各养了多少只兔子?【答案】第1个笼子里有20只,第2个笼子里有10只,第3个笼子里有6只.【分析】3个笼子里的兔子不管怎样取,36只的总数始终不变.变化后“3个笼子里的兔子一样多”,可以求出现在每个笼子里的兔子是36÷3=12(只).根据“从第1个笼子里取出8只放到第2个笼子里”,可以知道第1个笼子里原来养了12+8=20(只);再根据“从第2个笼子里取出6只放到第3个笼子里”,所以第3个笼子里原有:12−6=6(只),第2个笼子里原有:36−20−6=10(只).16. 有甲、乙、丙三袋水果糖.先取出甲袋的一半,平均放入乙、丙两袋中;再取出乙袋的一半,平均放入甲、丙两袋中;最后取出丙袋的一半,平均放入甲、乙两袋中,这时三袋糖正好都是32块.请问原来甲、乙、丙三袋中各有多少块水果糖?【答案】甲16块,乙28块,丙52块.【分析】丙袋取出之前,丙袋有64块,甲袋有16块,乙袋有16块;乙袋取出之前,乙袋有32块,甲袋有8块,丙袋有56块;甲袋取出之前,甲袋有16块,乙袋有28块,丙袋有52块.17. 淘淘和奇奇是两只猴子,它们俩结伴去摘桃子,摘了一个下午,一共摘了40个桃子.奇奇不高兴了,把淘淘摘的桃子的一半抢了过来,和自己摘的放在一起;淘淘也不甘示弱,又抢走了奇奇现有桃子的一半;最后奇奇又从淘淘那里抢了7个桃子,这时淘淘和奇奇的桃子一样多.请问开始时奇奇摘了多少个桃子?【答案】12个.【分析】最后淘淘和奇奇各有40÷2=20个桃子;第三次抢桃前,奇奇有20−7=13个桃子,淘淘有20+7=27个桃子;第二次抢桃前,奇奇有13×2=26个桃子,淘淘有27−13=14个桃子;第一次抢桃前,淘淘有14×2=28个桃子,奇奇有26−14=12个桃子.18. 果园里有一棵桃树.有一天,三只猴子来偷吃桃子.第一只猴子吃了一个桃子并摘下了剩下桃子的一半,然后第二只猴子吃了两个桃子并摘下了剩下桃子的一半,最后第三只猴子吃了三个桃子并摘下了剩下桃子的一半.这时树上刚好还有四个桃子,请问原来树上一共有几个桃子?【答案】49个.【分析】第三只猴子吃之前,树上有4×2+3=11个桃子;第二只猴子吃之前,树上有11×2+2=24个桃子;第一只猴子吃之前,树上有24×2+1=49个桃子.19. 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?【答案】1【分析】(6×6+6)÷6−6=120. 阿呆和阿瓜一起吃西瓜,吃完后每人面前都有一堆西瓜皮,一共42块.阿呆把22块西瓜皮扔到阿瓜的那对西瓜皮里,阿瓜生气了,把一半的西瓜皮扔给阿呆,阿呆又把好多西瓜皮扔给阿瓜让阿瓜增加了2倍.最后阿瓜的西瓜皮是阿呆的6倍.请问:最初阿呆有多少块西瓜皮?【答案】40块.【分析】给来给去和不变,最后还是一共42块.最后阿呆有42÷(6+1)=6块,阿呆有36块.阿瓜增加2倍之前,阿瓜有12块,阿呆有30块.阿瓜把一半的西瓜皮扔给阿呆前,阿瓜有24块,阿呆有18块.阿呆把22块给阿瓜钱,阿瓜有2块,阿呆有40块.21. 篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?【答案】22【分析】依题意,画图进行分析.{[(1+1)×2+1]×2+1}×2=22(个)22. 有一个数,把它加上24,再乘以4,减去20,得到的结果用15去除,商是5,余数是5.这个数是多少?【答案】1.【分析】除以15商5余5,原数是15×5+5=80;减20得80,原数是80+20=100;乘以4得100,原数是100÷4=25;加上24得25,原数是25−24=1.23. 甲、乙、丙三人的钱数各不相同.甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了2倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数各增加2倍,结果丙的钱最多;最后丙又拿出一些钱给甲和乙,使甲和乙的钱数各增加2倍,结果三人的钱数一样多.结果他们三人共81元,那么三人原来分别有多少钱?【答案】乙有19元,丙有7元,甲有55元.【分析】最后三人各有81÷3=27元;丙拿出钱之前,甲有27÷3=9元,乙有27÷3=9元,丙有81−9−9=63元;乙拿出钱之前,甲有9÷3=3元,丙有63÷3=21元,乙有81−3−21=57元;甲拿出钱之前,乙有57÷3=19元,丙有21÷3=7元,甲有81−19−7=55元.24. 某数加上2,除以5,加上5,除以2,其结果等于10,那么这个数是多少?【答案】73.【分析】10×2=20,(20−5)=15,15×5=75,75−2=73.25. 甲、乙、丙三个小组共有图书120本,如果乙小组向甲小组借20本后,又借给丙9本,这时甲、乙、丙三个小组的图书本数相同.问甲、乙、丙三个小组原有图书各多少本?【答案】原来甲有书40本,乙有书49本,丙有书31本.【分析】因为这时甲、乙、丙三个小组的图书本数相同,所以现在甲、乙、丙各有的本数为:120÷3=40(本);用列表法,列出下表:变化次数甲的本数乙的本数丙的本数最后404040第二次后4040+9=4940−9=31第一次后40+20=6049−20=293126. 小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案是多少?【答案】169【分析】倒推法,把个位上的5看作9,相当于把正确的和多算了4,求正确的和,应把4减去;把十位上的8看作3,相当于把正确的和少算了50,求正确的和,应把50加上去.所以正确的和是:123+50−4=169.即:123+(80−30)−(9−5)=169.27. 地上有26块砖,兄弟二人争着去挑.弟弟抢在前面,刚挑起一些砖,哥哥赶到了,挑了剩下的砖.哥哥看弟弟挑得太多,就从弟弟那儿抢过一半.弟弟不肯,又从哥哥那儿抢走了一半.哥哥不服,弟弟只好再给哥哥5块,这时哥哥比弟弟多挑2块.请问:最初弟弟准备挑多少块砖?【答案】16块.【分析】最后哥哥准备挑(26+2)÷2=14块砖,弟弟准备挑26−14=12块砖;在弟弟给哥哥5块之前,哥哥有14−5=9块,弟弟有26−9=17块;哥哥减半之前,哥哥有9×2=18块,弟弟有26−18=8块;弟弟减半之前,弟弟有8×2=16块,哥哥有26−16=10块.28. 两个两位数相加,其中一个加数是73,另一个加数不知道,只知道另一个加数的十位数字增加5,个位数字增加1,那么求得的和是172,问另一个加数原来是多少?【答案】48【分析】172−50−1−73=4829. 有甲乙两箱糖果,如果第一次从甲箱拿出和乙箱同样多块糖果放到乙箱里,第二次从乙箱拿出和甲箱剩下的同样多块糖果放入甲箱,这样拿4次后,甲、乙两箱糖果都是16块.甲、乙两箱各有糖果多少块?【答案】甲箱原来有糖果21块,乙箱原来有糖果11块.【分析】根据拿4次后,甲乙两箱糖果都是16块,列表倒推得,甲乙最后1616第四次前824第三次前2012第二次前1022第一次前(开始)2111所以甲箱原来有糖果21块,乙箱原来有糖果11块.30. A、B、C三个油桶若干千克.第一次把A桶的一部分油倒入B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入C、A两桶,使C、A两桶内的油分别增加到第三次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加到第三次倒之前桶内油的2倍,这样,各桶的油都为16千克.问A、B、C三个油桶原来各有油多少千克?【答案】原来A桶有油26千克,B桶有油14千克,C桶有油8千克.【分析】根据最后各桶的油都为16千克,列表倒推,A B C最后161616C分别倒入A和B前8832B分别倒入C和A前42816A分别倒入C和B前(开始)2614831. 甲、乙各有一些糖,一共48块.每次甲给乙一些糖,使得乙的糖数增加一倍.经过四次这样的操作后,甲的糖数是乙的2倍.两个人原来的糖数分别是多少?【答案】甲有47块,乙有1块.【分析】最后时甲有32块,乙有16块,倒推到4次前,那么原来乙有16÷2÷2÷2÷2=1块,而原来甲有48−1=47块.32. 一根金丝用于制作工艺品,第一次用去2米,又用去余下的一半;第二次用去2米,又用去余下的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学典型应用题之还原问题
一、含义
还原问题是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。
二、解题思路和方法
解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。
简言之就是反其道而行之就能算出结果。
三、例题
例题(一):将一个数先加上6,然后乘6,再减去6,最后除以6,结果还是6,那么这个数是多少?
解析:(1)本题考查的是一个量多次变换还原,关键是从最后的结果出发,根据加减乘除的逆运算进行解答。
(2)由最后的结果出发,除以6商是6,那么之前就是6×6=36。
(3)减去6是36,那么之前是36+6=42。
(4)乘6是42,那么之前是42÷6=7。
(5)加上6是7,那么之前数7-6=1。
例题(二):修路队修一条路,第一天修了全长的一半多20米,第二天修了余下的一半少15米,第三天修了50米,还剩30米没有修,这条路全长多少米?
解析:(1)本题考查的是一半与整体关系还原,关键是抓住最后的数量,
从后往前推理。
(2)根据题意,如果第二天正好修了余下的一半,则剩下(30+50-15)=65(米),用65×2=130(米)就是第一天修完余下的长度。
(3)又因为第一天修了全长的一半多20米,如果第一天正好修了全长的一半时,则剩下的是130+20=150(米)。
(4)这样得出剩下的长度的2倍就是全长,即150×2=300(米)。
例题(三):甲、乙、丙三人各有连环画若干本,如果甲给乙、丙各5本,乙给甲、丙各10本,丙给甲、乙各15本后,那么三人所拥有的连环画一样多,都是35本,原来甲、乙、丙各有连环画多少本?
解析:(1)本题考查的是多个量之间的还原关系,我们通常采用列表的方式倒推解决此类问题。
(2)根据题意我们可以列表如下:
(3)最后每人都有35本,因为丙给甲、乙各15本,所以丙给甲、乙前,丙有35+15×2=65(本),甲、乙各有35-15=20(本)。
(4)因为乙给甲、丙各10本,所以乙给甲、丙前,乙有20+10×2=40(本),甲有20-10=10(本),丙有65-10=55(本)。
(5)因为甲给乙、丙各5本,所以甲给乙、丙前,甲有10+5×2=20(本),乙有40-5=35(本),丙有55-5=50(本)。