平面向量经典习题_提高篇
高中数学必修4平面向量典型例题及提高题

精品文档平面向量【任何时候写向量时都要带箭头】【根本概念与公式】aAB 1.向量:既有大小又有方向的量。
记作:。
或||AB||a或。
2.向量的模:向量的大小〔或长度〕,记作:e1 |e| 是单位向量,那么。
3.单位向量:长度为 1 的向量。
假设00 。
【0的向量。
记作:方向是任意的,且与任意向量平行】 4. 零向量:长度为:方向相同或相反的向量。
5. 平行向量〔共线向量〕:长度和方向都相同的向量。
6. 相等向量BA AB:长度相等,方向相反的向量。
7. 相反向量三角形法那么:8.CB AEABAC BC ACAB BC CD DEAB〔指向被减数〕;;9.平行四边形法那么:ba ba b,a ,以为临边的平行四边形的两条对角线分别为。
b/ a/b a00baa与b与反向。
当 10. 共线定理:时,时,同向;当11.基底:任意不共线的两个向量称为一组基底。
2 2222)a b|a b| (),ya x( yx a|| |a |a ,,那么,12.向量的模:假设b a cosb| |a| |a b cos13.数量积与夹角公式:;|b|a| |b xy xya b a b 0 xx a//ba yy 0 14.平行与垂直:;22121112题型 1. 根本概念判断正误:。
,那么 1〕假设与共线,〔与 2 共线,那么与〕假设共线。
〔ma naababnm ma mba bcabbca都不是零向量。
与,那么与不共线,那么。
〔 4〕假设〔 3〕假设。
〕假设 6,那么〕假设5〔,那么a//ba b||| a bba| b|||ba a |〔题型 2. 向量的加减运算精品文档.精品文档AC 为 AB 与 ADAC a,BD bAB AD,的和向量,且 4.,那么。
3AC BCBCABAC AB 。
5.点 C 在线段 AB 上,且, ,那么53. 题型向量的数乘运算13,8)( (1, 4),b ab 3a。
高三数学提高题专题复习平面向量多选题专项训练练习题及答案

高三数学提高题专题复习平面向量多选题专项训练练习题及答案一、平面向量多选题1.题目文件丢失!2.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=-答案:BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b +=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型. 3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅C .若非零向量a 、b 满足222a b a b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 答案:CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a ba b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a b a b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题. 4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫ ⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)答案:ABC先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确.选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题. 5.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°D .()//2a a b +答案:AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】 由向量,, 则,故A 正确; ,故B 错误;【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222b =+=,故B 错误;21cos ,1a b a b a b⋅⨯<>===⋅+ 又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.6.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .32OA OB OC ++=D .ED 在BC 方向上的投影为76答案:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),(3E A B C D -, 设123(0,),3),(1,),(,3O y y BO y DO y ∈==-,BO ∥DO , 所以2313y y =-,解得:3y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(3ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算. 7.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形答案:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对:因为,又,故可得, 故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=. 故a 在b 上的投影向量为12a b b b b ⎛⎫⋅⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -,则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形. 故D 选项正确;综上所述,正确的有:ABD . 故选:ABD . 【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题. 8.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB ACC .2ACAB BDD .2BDBA BD BC BD答案:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形解析:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2cos AB AB AC AB AC A AB ACAB AC,故A 正确;对于B ,2cos cos CB CB AC CB AC C CB AC C CB ACCB AC,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BDBDAB,故C 错误; 对于D ,2cos BD BA BDBA BD ABD BA BD BD BA,2cos BD BC BD BC BD CBD BC BDBD BC,故D 正确.故选:AD. 【点睛】本题考查三角形中的向量的数量积问题,属于基础题. 9.设向量a ,b 满足1a b ==,且25b a -=,则以下结论正确的是( )A .a b ⊥B .2a b +=C .2a b -=D .,60a b =︒答案:AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】,且,平方得,即,可得,故A 正确; ,可得,故B 错误; ,可得,故C 正确; 由可得,故D 错误; 故选:AC 【点睛】解析:AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】1a b ==,且25b a -=,平方得22445b a a b +-⋅=,即0a b ⋅=,可得a b ⊥,故A正确;()22222a ba b a b +=++⋅=,可得2a b +=,故B 错误; ()22222a b a b a b -=+-⋅=,可得2a b -=,故C 正确;由0a b ⋅=可得,90a b =︒,故D 错误; 故选:AC 【点睛】本题考查向量数量积的性质以及向量的模的求法,属于基础题. 10.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=答案:ABD 【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB正确,当不是单位向量时,不正确,,所以D正确.故选:ABD解析:ABD【分析】首先理解aa表示与向量a同方向的单位向量,然后分别判断选项.【详解】aa表示与向量a同方向的单位向量,所以1aa=正确,//aaa正确,所以AB正确,当a不是单位向量时,aaa=不正确,cos0aa aa a a aa a a⋅==⨯=,所以D正确.故选:ABD【点睛】本题重点考查向量aa的理解,和简单计算,应用,属于基础题型,本题的关键是理解aa表示与向量a同方向的单位向量.11.有下列说法,其中错误的说法为().A.若a∥b,b∥c,则a∥cB.若PA PB PB PC PC PA⋅=⋅=⋅,则P是三角形ABC的垂心C.两个非零向量a,b,若a b a b-=+,则a与b共线且反向D.若a∥b,则存在唯一实数λ使得a bλ=答案:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A,当时,与不一定共线,故A错误;对于选项B,由,得,所以,,同理,,故是三角形的垂心,所以B正确;对于选项C ,两个非零向量解析:AD 【分析】分别对所给选项进行逐一判断即可. 【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确;对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD 【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.12.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形答案:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确;对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 13.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ=B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=-答案:AB 【分析】若,则反向,从而; 若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立. 【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选解析:AB 【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=; 若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养. 14.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同答案:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据解析:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==答案:AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】由平面向量基本定理可知,A 、D 是正确的. 对于B,由平面向量基本解析:AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确. 【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.二、平面向量及其应用选择题16.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( ) A .1233AB AC -+ B .2133AB AC - C .1233AB AC - D .2133AB AC -+ 解析:A 【分析】作出图形,利用AB 、AC 表示AO ,然后利用平面向量减法的三角形法则可得出OC AC AO =-可得出结果. 【详解】如下图所示:D 为BC 的中点,则()1122AD AB BD AB BC AB AC AB =+=+=+-1122AB AC =+, 2AO OD =,211333AO AD AB AC ∴==+, 11123333OC AC AO AC AB AC AB AC ⎛⎫∴=-=-+=-+ ⎪⎝⎭,故选:A. 【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.17.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( )A .(-∞ B .)+∞C .(-∞D .)+∞解析:A 【分析】不等式a c b d T -+-≥恒成立,即求a c b d -+-最小值,利用三角不等式放缩+=+()a c b d a c b d a b c d -+-≥---+,转化即求+()a b c d -+最小值,再转化为等边三角形OAB 的边AB 的中点M 和一条直线上动点N 的距离最小值. 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值得解. 【详解】1a b ==,12a b ⋅=,易得,3a b π<>= 设,,,OA a OB b OC c OD d ====,AB 中点为M ,CD 中点为N 则,A B 在单位圆上运动,且三角形OAB 是等边三角形,(.1),(,1)1CDC m mD n n k ,CD 所在直线方程为10x y +-=因为a c b d T -+-≥恒成立,+=+()a c b d a c b d a b c d -+-≥---+,(当且仅当a c -与b d -共线同向,即a b +与c d +共线反向时等号成立)即求+()a b c d -+最小值.+()=()()a b c d OA OB OC OD -++-+=22=2OM ON NM -三角形OAB 是等边三角形,,A B 在单位圆上运动,M 是AB 中点,∴ M 的轨迹是以原点为圆心,半径为2的一个圆.又N 在直线方程为10x y +-=上运动,∴ 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值此时M 到直线10x y +-=的距离322MN232T NM故选:A 【点睛】本题考查平面向量与几何综合问题解决向量三角不等式恒成立.平面向量与几何综合问题的求解坐标法:把问题转化为几何图形的研究,再把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.18.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .4解析:B 【解析】 【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数. 【详解】逐一考查所给的命题:①由向量的减法法则可知:AB AC CB -=,题中的说法错误; ②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确; ③因为()(2)0OB OC OB OC OA -⋅+-=, 即()0CB AB AC ⋅+=; 又因为AB AC CB -=, 所以()()0AB AC AB AC -⋅+=, 即||||AB AC =,所以△ABC 是等腰三角形.题中的说法正确;④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误. 综上可得,正确的命题个数为2. 故选:B . 【点睛】本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力.19.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .5解析:A 【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 20.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12- B .12C .-2D .2解析:A 【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解. 【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点, 根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OC OCOC⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-. 故选:A. 【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力.21.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .102B .106C .103D .10解析:B 【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高. 【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=33x ,AC=33x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CDBDC CBD=可得,BC=10sin 453102sin 30x ==.则6所以塔AB 的高是6 故选B . 【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.22.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( ) A .35 B .107C .57D .5214解析:C 【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出. 【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A ,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=-=.sin C ∴==由正弦定理可得:sin sin b cB C=,∴1sin 5sin 7c B b C ===. 故选:C . 【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.23.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG = D .0GA GB GC ++=解析:C 【分析】由三角形的重心定理和平面向量的共线定理可得答案. 【详解】ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++= 故选:C 【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题.24.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S = A .310 B .38C .25D .421 解析:A 【解析】∵2350OA OB OC ++=,∴()()23OA OC OB OC +=-+. 设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且32OM ON=, ∴36132255410OACOMCCMNABC ABC SSSS S ⎛⎫==⨯=⨯= ⎪⎝⎭,即12310S S =.选A . 25.a,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒解析:C 【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=,即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=,所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒, 故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目.26.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b c A B B===,则ABC ∆的面积为( )A .2B .4CD .解析:A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】 由正弦定理可知2sin sin sin a b c r A B C ===已知sin cos sin a b c A B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC所以122ABC S =⨯. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型.27.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( )A .重心B .垂心C .外心D .内心 解析:B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平.28.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lgsin a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( ) A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形 解析:C【分析】化简条件可得sin a B c ==,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】lg lg lgsin a c B -==-sin 2a B c ∴==.0,2B π⎛⎫∈ ⎪⎝⎭, 4B π∴=.由正弦定理,得sin sin 2a A c C ==,3sin 422C A C C C π⎫⎛⎫∴==-=+⎪ ⎪⎪⎝⎭⎭, 化简得cos 0C =.()0,C π∈,2C π∴=, 则4A B C ππ=--=, ∴ABC 是等腰直角三角形.故选:C.【点睛】本题主要考查了正弦定理,三角恒等变换,属于中档题.29.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( )A .23πB .43πC .6πD .3π 解析:A【分析】根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B cC ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B C a b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C ==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin a R A ===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A.【点睛】 本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题.30.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥- 解析:D【分析】 由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈. 对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误;对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题.。
高中数学专项训练(平面向量提升版)(含答案)

高中数学专项训练(平面向量提升版)(含详细解答)1. 若向量a ⃗=(−2,0),b ⃗⃗=(2,1),c ⃗=(x,1)满足条件3a ⃗⃗+b⃗⃗与c ⃗⃗共线,则x 的值为( ) A. −2 B. −4 C. 2 D. 42. 正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μBN ⃗⃗⃗⃗⃗⃗⃗,则λ+μ=( )A. 2B. 83C. 65D. 853. 如图,在平行四边形ABCD 中,M 、N 分别为AB 、AD上的点,且AM ⃗⃗⃗⃗⃗⃗⃗=45AB ⃗⃗⃗⃗⃗⃗,AN ⃗⃗⃗⃗⃗⃗⃗=23AD ⃗⃗⃗⃗⃗⃗,连接AC 、MN 交于P 点,若AP ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗,则λ的值为( )A. 35B. 37C. 411D. 4134. 如图,已知△OAB ,若点C 满足,则1λ+1μ=( )A. 13B. 23C. 29D. 925. 已知平面向量a ⃗,b ⃗⃗是非零向量,|a ⃗|=2,a ⃗⊥(a ⃗+2b ⃗⃗),则向量b ⃗⃗在向量a⃗⃗方向上的投影为( ) A. 1 B. −1 C. 2 D. −26. 若向量a ⃗⃗=(1,0),b ⃗⃗=(2,1),c ⃗⃗=(x,1)满足条件3a ⃗⃗−b ⃗⃗与c ⃗⃗共线,则x 的值( ) A. 1 B. −3 C. −2 D. −17. 已知向量BA⃗⃗⃗⃗⃗⃗=(1,−3),向量BC ⃗⃗⃗⃗⃗⃗=(4,−2),则△ABC 的形状为( ) A. 等腰直角三角形 B. 等边三角形 C. 直角非等腰三角形 D. 等腰非直角三角形 8. 设D 为△ABC 所在平面内一点,AD ⃗⃗⃗⃗⃗⃗=−13AB ⃗⃗⃗⃗⃗⃗+43AC ⃗⃗⃗⃗⃗⃗,若BC ⃗⃗⃗⃗⃗⃗=λDC ⃗⃗⃗⃗⃗⃗(λ∈R),则λ=( ) A. 2 B. 3 C. -2 D. −39. 已知边长为2的正方形ABCD 中,E 为AD 中点,连BE ,则BE ⃗⃗⃗⃗⃗⃗⋅EA⃗⃗⃗⃗⃗⃗=( ) A. −2 B. −1 C. 1 D. 210. 已知单位向量a ⃗⃗,b ⃗⃗满足|a ⃗+3b ⃗⃗|=√13,则a ⃗⃗与b ⃗⃗的夹角为( )A. π6B. π4C. π3D. π211. 设向量a ⃗=(2,1),b ⃗⃗=(0,−2).则与a ⃗+2b⃗⃗垂直的向量可以是( ) A. (3,2) B. (3,−2) C. (4,6) D. (4,−6)A. 25B. −25 C. 35D. −3513. 已知向量m⃗⃗⃗⃗=(1,2),n ⃗⃗=(2,3),则m ⃗⃗⃗⃗在n ⃗⃗方向上的投影为( ) A. √13B. 8C. 8√55D. 8√131314. 已知平面向量a ⃗=(−2,x),b ⃗⃗=(1,√3),且(a ⃗⃗−b⃗⃗)⊥b ⃗⃗,则实数x 的值为( ) A. −2√3 B. 2√3 C. 4√3 D. 6√315. 已知向量a ⃗⃗,b ⃗⃗满足a ⃗⋅b ⃗⃗=1,|a ⃗⃗|=2,|b ⃗⃗|=3,则|a ⃗−b⃗⃗|=( ) A. √13 B. 6 C. √11 D. 516. 向量a ⃗⃗=(2,−1),b ⃗⃗=(−1,2),则(2a ⃗+b ⃗⃗)⋅a ⃗=( )A. 6B. 5C. 1D. −617. 已知向量a ⃗=(−√3,1),b⃗⃗=(√3,λ).若a ⃗⃗与b ⃗⃗共线,则实数λ=( ) A. −1 B. 1 C. −3 D. 318. 已知OA ⃗⃗⃗⃗⃗⃗=(cos15°,sin15°),OB ⃗⃗⃗⃗⃗⃗=(cos75°,sin75°),则|AB ⃗⃗⃗⃗⃗⃗|=( ) A. 2 B. √3 C. √2 D. 1 19. 已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=1,|b ⃗⃗|=2√3,a ⃗⃗与b ⃗⃗的夹角的余弦值为sin17π3,则b ⃗⃗⋅(2a ⃗−b ⃗⃗)等于( ) A. 2 B. −1 C. −6 D. −1820. 已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗⋅b ⃗⃗=1,那么向量a ⃗⃗,b ⃗⃗的夹角为( )A. 30°B. 60°C. 120°D. 150°21. 已知向量a →,b →满足|a ⃗⃗|=1,|b ⃗⃗|=2,|a ⃗⃗−2b ⃗⃗|=√13,则a ⃗⃗与b ⃗⃗的夹角为______.22. 已知向量a ⃗=(cos θ,sin θ),b ⃗⃗=(√3,−1),则|2a ⃗−b ⇀|的最大值为________. 23. 已知a ⃗=(1,2sinθ),b ⃗⃗=(cosθ,−1),且a ⃗⃗⊥b ⃗⃗,则tanθ=______. 24. 设x ∈R ,向量a⃗⃗=(x,1),,且a ⃗⃗⊥b ⃗⃗,则______ .25. 已知向量a ⃗=(sinθ,1),b ⃗⃗=(−sinθ,0),c ⃗=(cosθ,−1),且(2a ⃗⃗−b ⃗⃗)//c ⃗⃗,则sin2θ等于______ . 26. 已知单位向量e 1⃗⃗⃗⃗,e 2⃗⃗⃗⃗的夹角为θ,且cosθ=14,若向量a ⃗=e 1⃗⃗⃗⃗+2e 2⃗⃗⃗⃗,则|a ⃗|=______. 27. 已知向量a ⃗⃗与b ⃗⃗的夹角为2π3,|a ⃗⃗|=√2,则a ⃗⃗在b ⃗⃗方向上的投影为______. 28. 设θ∈(0,π2),向量a ⃗=(cosθ,2),b ⃗⃗=(−1,sinθ),若a ⃗⃗⊥b ⃗⃗,则tanθ=______. 29. 在△ABC 中,已知∠ACB =90°,CA =3,CB =4,点E 是边AB 的中点,则CE⃗⃗⃗⃗⃗⃗⋅AB ⃗⃗⃗⃗⃗⃗= ______ .30. 平行四边形ABCD 中,M 为BC 的中点,若AB ⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μDB ⃗⃗⃗⃗⃗⃗⃗,则λμ= ______ .31.已知a⃗=(√3sinx,cosx+sinx),b⃗⃗=(2cosx,sinx−cosx),f(x)=a⃗⋅b⃗⃗.(1)求函数f(x)的单调区间;(2)当x∈[5π24,5π12]时,对任意的t∈R,不等式mt2+mt+3≥f(x)恒成立,求实数m的取值范围.32.已知向量a⃗=(sinx,34),b⃗⃗=(cosx,−1).(1)当a⃗//b⃗⃗时,求cos2x−sin2x的值;(2)设函数f(x)=2(a⃗+b⃗⃗)⋅b⃗⃗,已知f(α2)=34,α∈(π2,π),求sinα的值.33.已知a⃗=(sinx,−cosx),b⃗⃗=(√3cosx,−cosx),f(x)=2a⃗⋅b⃗⃗.(1)求f(x)的解析式;(2)在△ABC中,a,b,c分别是内角A,B,C的对边,若f(A)=2,b=1,△ABC的面积为√32,求a的值.34.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A2=2√55,AB⃗⃗⃗⃗⃗⃗⋅AC⃗⃗⃗⃗⃗⃗=3.(1)求△ABC的面积;(2)若b+c=6,求a的值.35.已知向量a⃗=(3,−1),|b⃗⃗|=√5,a⃗⋅b⃗⃗=−5,c⃗=xa⃗+(1−x)b⃗⃗.(Ⅰ)若a⃗⊥c⃗,求实数x的值;(Ⅱ)当|c⃗|取最小值时,求b⃗⃗与c⃗⃗的夹角的余弦值.答案和解析1.【答案】B【解析】【分析】本题考查了平面向量的坐标运算和平面向量共线的条件,属于基础题. 先利用平面向量运算法则求出3a ⃗⃗+b ⃗⃗,再由向量共线的条件能求出x . 【解答】解:∵向量a ⃗=(−2,0),b ⃗⃗=(2,1),c ⃗=(x,1),∴3a ⃗+b⃗⃗=(−6,0)+(2,1)=(−4,1), ∵3a ⃗⃗+b ⃗⃗与c⃗⃗共线, ∴x −1×(−4)=0,解得x =−4. 故选B . 2.【答案】D【解析】【分析】本题考查了平面向量的基本定理,坐标运算和几何应用,属于中档题. 建立平面直角坐标系,使用坐标进行计算,列方程组解出λ,μ. 【解答】解:以AB ,AD 为坐标轴建立平面直角坐标系,如图:设正方形边长为1,则A(0,0),B(1,0),C(1,1),M(1,12),N(12,1),所以AM ⃗⃗⃗⃗⃗⃗⃗=(1,12), BN⃗⃗⃗⃗⃗⃗⃗=(−12,1),AC ⃗⃗⃗⃗⃗⃗=(1,1). ∵AC⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μBN ⃗⃗⃗⃗⃗⃗⃗, ∴{λ−12μ=112λ+μ=1,解得{λ=65μ=25.∴λ+μ=85,故选D . 3.【答案】C【解析】【分析】本题考查了平面向量的线性运算,共线定理,及三点共线的充要条件,属于中档题. 根据向量加减的运算法则和向量共线的充要条件及三点共线的充要条件即可求出答案.解:∵AM ⃗⃗⃗⃗⃗⃗⃗=45AB ⃗⃗⃗⃗⃗⃗,AN ⃗⃗⃗⃗⃗⃗⃗=23AD ⃗⃗⃗⃗⃗⃗, ∴AP ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗=λ(AB ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗)=λ(54AM ⃗⃗⃗⃗⃗⃗⃗+32AN⃗⃗⃗⃗⃗⃗⃗) =54λAM ⃗⃗⃗⃗⃗⃗⃗+32λAN ⃗⃗⃗⃗⃗⃗⃗, ∵M 、N 、P 三点共线. ∴54λ+32λ=1, ∴λ=411,故选C . 4.【答案】D【解析】【分析】本题考查向量的运算以及平面向量基本定理,属于基础题.根据向量的三角形法则和向量的数乘运算用向量OA ⃗⃗⃗⃗⃗⃗、OB ⃗⃗⃗⃗⃗⃗⃗表示出向量OC ⃗⃗⃗⃗⃗⃗,从而求出λ=13,μ=23,再代值计算即可.【解答】解:∵OC⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+23AB ⃗⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗⃗+23(OB ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗) =13OA ⃗⃗⃗⃗⃗⃗+23OB ⃗⃗⃗⃗⃗⃗, ∴λ=13,μ=23, ∴1λ+1μ=3+32=92.故选D . 5.【答案】B【解析】【分析】本题主要考查向量投影的定义及求解的方法,属基础题.先根据向量垂直,得到a ⃗⋅b⃗⃗=−2,再根据投影公式即可求出. 【解答】解:∵平面向量a ⃗⃗,b ⃗⃗是非零向量,|a ⃗⃗|=2,a ⃗⊥(a ⃗+2b⃗⃗), ∴a ⃗⃗⋅(a ⃗⃗+2b ⃗⃗)=0,即a ⃗2+2a ⃗⋅b ⃗⃗=0,即a ⃗⋅b ⃗⃗=−2, ∴向量b ⃗⃗在向量a ⃗⃗方向上的投影为a⃗⃗·b ⃗⃗|a ⃗⃗|=−22=−1.故选B .【解析】【分析】本题考查了平面向量的坐标表示与共线定理的应用问题,是基础题目. 根据平面向量的坐标运算与共线定理,列出方程即可求出x 的值. 【解答】解:∵向量a⃗=(1,0),b ⃗⃗=(2,1),c ⃗=(x,1), ∴3a ⃗−b ⃗⃗=(1,−1), 又3a ⃗−b⃗⃗与c ⃗⃗共线, ∴x ×(−1)−1×1=0, 解得x =−1. 故选D . 7.【答案】A【解析】【分析】本题考查平面向量的数量积运算,考查向量垂直与数量积的关系,属基础题.由已知向量的坐标求得AC ⃗⃗⃗⃗⃗⃗的坐标,可得|BA ⃗⃗⃗⃗⃗⃗|=|AC ⃗⃗⃗⃗⃗⃗|,结合BA ⃗⃗⃗⃗⃗⃗⋅AC⃗⃗⃗⃗⃗⃗=0得答案. 【解答】 解:∵BA ⃗⃗⃗⃗⃗⃗=(1,−3),BC ⃗⃗⃗⃗⃗⃗=(4,−2), ∴AC ⃗⃗⃗⃗⃗⃗=BC ⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗=(3,1), ∴|BA⃗⃗⃗⃗⃗⃗|=|AC ⃗⃗⃗⃗⃗⃗|=√10. 又BA ⃗⃗⃗⃗⃗⃗⋅AC⃗⃗⃗⃗⃗⃗=1×3−3×1=0. ∴△ABC 的形状为等腰直角三角形. 故选A . 8.【答案】D【解析】【分析】本题考查了向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于中档题.若BC ⃗⃗⃗⃗⃗⃗=λDC ⃗⃗⃗⃗⃗⃗(λ∈R),可得AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗−λAD ⃗⃗⃗⃗⃗⃗,化简与AD ⃗⃗⃗⃗⃗⃗=−13AB ⃗⃗⃗⃗⃗⃗+43AC ⃗⃗⃗⃗⃗⃗比较,即可得出.【解答】解:若BC⃗⃗⃗⃗⃗⃗=λDC ⃗⃗⃗⃗⃗⃗(λ∈R),∴AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗−λAD ⃗⃗⃗⃗⃗⃗, 化为:AD ⃗⃗⃗⃗⃗⃗=1λAB ⃗⃗⃗⃗⃗⃗+λ−1λAC ⃗⃗⃗⃗⃗⃗, 与AD ⃗⃗⃗⃗⃗⃗=−13AB ⃗⃗⃗⃗⃗⃗+43AC ⃗⃗⃗⃗⃗⃗比较,可得:1λ=−13,λ−1λ=43,解得λ=−3. 则λ=−3.故选D . 9.【答案】B【解析】【分析】考查向量加法的几何意义,相反向量的概念,以及数量积的运算及计算公式.可画出图形,据图可得出BE ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗,从而便得到BE ⃗⃗⃗⃗⃗⃗⋅EA ⃗⃗⃗⃗⃗⃗=(BA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗)⋅EA⃗⃗⃗⃗⃗⃗,这样进行数量积的运算即可. 【解答】 解:如图,BE ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗+AE ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗−EA⃗⃗⃗⃗⃗⃗; ∴BE ⃗⃗⃗⃗⃗⃗⋅EA ⃗⃗⃗⃗⃗⃗=(BA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗)⋅EA⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗⃗⋅EA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗2=0−1=−1.故选B .10.【答案】C【解析】【分析】本题考查平面向量的模和夹角,属于基础题.可知|a ⃗⃗|=|b ⃗⃗|=1,这样对|a ⃗⃗+3b ⃗⃗|=√13两边平方即可求出a ⃗⃗⋅b ⃗⃗的值,进而求出cos <a ⃗⃗,b⃗⃗>的值,从而得出a ⃗⃗与b ⃗⃗的夹角. 【解答】 解:(a ⃗⃗+3b ⃗⃗)2=a ⃗2+6a ⃗⋅b ⃗⃗+9b ⃗⃗2 =1+6a ⃗⋅b ⃗⃗+9 =13, ∴a ⃗·b⃗⃗=12, ,∴a ⃗⃗,b ⃗⃗的夹角为π3. 故选C .11.【答案】A【解析】解:∵向量a⃗=(2,1),b ⃗⃗=(0,−2). ∴a ⃗+2b⃗⃗=(2,−3), ∵(2,−3)⋅(3,2)=6−6=0,∴与a ⃗+2b⃗⃗垂直的向量可以是(3,2). 故选:A .求出a ⃗+2b ⃗⃗=(2,−3),由此利用向量垂直的性质能求出与a ⃗+2b⃗⃗垂直的向量的可能结果. 本题考查向量的坐标运算、向量垂直等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题. 12.【答案】B【解析】【分析】本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.解:a⃗+λb⃗⃗=(2−λ,4+λ),∵a⃗+λb⃗⃗与c⃗⃗共线,∴3(2−λ)−2(4+λ)=0,解得λ=−25.故选B.13.【答案】D【解析】【分析】本题主要考查了向量的投影的定义,属于基础题.m⃗⃗⃗⃗在n⃗⃗方向上的投影为m⃗⃗⃗⃗⋅n⃗⃗⃗|n⃗⃗⃗|,代值计算即可.【解答】解:m⃗⃗⃗⃗=(1,2),n⃗⃗=(2,3),则m⃗⃗⃗⋅n⃗⃗=1×2+2×3=8,|n⃗⃗|=√22+32=√13,则m⃗⃗⃗⃗在n⃗⃗方向上的投影为m⃗⃗⃗⃗⋅n⃗⃗|n⃗⃗|=√13=8√1313.故选D.14.【答案】B【解析】【分析】本题考查向量数量积的坐标计算,关键是掌握向量数量积的坐标计算公式,属于基础题.根据题意,由向量坐标计算公式可得a⃗−b⃗⃗的坐标,由向量垂直与向量数量积的关系,分析可得(a⃗−b⃗⃗)·b⃗⃗=(−3)×1+(x−√3)×√3=0,解可得x的值,即可得答案.【解答】解:根据题意,向量a⃗=(−2,x),b⃗⃗=(1,√3),则a⃗−b⃗⃗=(−3,x−√3),又由(a⃗⃗−b⃗⃗)⊥b⃗⃗,则(a⃗−b⃗⃗)·b⃗⃗=(−3)×1+(x−√3)×√3=0,解可得x=2√3.故选B.15.【答案】C【解析】【分析】本题考查了平面向量数量积与模长公式的应用问题,是基础题.根据平面向量数量积的定义与模长公式,求模长|a⃗−b⃗⃗|即可.【解答】解:向量a⃗⃗,b⃗⃗满足a⃗⋅b⃗⃗=1,|a⃗⃗|=2,|b⃗⃗|=3,∴(a⃗−b⃗⃗)2=a⃗2−2a⃗⋅b⃗⃗+b⃗⃗2=22−2×1+32=11,∴|a⃗−b⃗⃗|=√11.故选C.16.【答案】A【解析】【分析】本题考查向量的数量积的运算,属于基础题.解:向量a⃗⃗=(2,−1),b ⃗⃗=(−1,2), 2a ⃗+b⃗⃗=(3,0), 则(2a ⃗+b ⃗⃗)⋅a ⃗=6, 故选A .17.【答案】A【解析】解:∵a ⃗⃗//b ⃗⃗,∴−√3λ−√3=0,解得λ=−1. 故答案为A .利用向量共线定理即可得出−√3λ−√3=0,解出即可. 熟练掌握向量共线定理是解题的关键. 18.【答案】D【解析】【分析】本题考查平面向量坐标减法运算,考查向量模的求法,是基础题. 由已知向量的坐标求得AB ⃗⃗⃗⃗⃗⃗的坐标,代入向量模的计算公式求解. 【解答】解:∵OA ⃗⃗⃗⃗⃗⃗=(cos15°,sin15°),OB ⃗⃗⃗⃗⃗⃗=(cos75°,sin75°), ∴AB ⃗⃗⃗⃗⃗⃗=OB ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗=(cos75°−cos15°,sin75°−sin15°), 则.故选D .19.【答案】D【解析】【分析】本题主要考查诱导公式的应用,两个向量的数量积的定义,求向量的模的方法,由题意利用两个向量的数量积的定义求得a ⃗⃗⋅b ⃗⃗ 的值,可得b ⃗⃗(2a ⃗−b⃗⃗)的值.属于基础题. 【解答】解:∵向量a⃗⃗,b ⃗⃗满足|a ⃗⃗|=1,|b ⃗⃗|=2√3, a ⃗⃗与b ⃗⃗的夹角的余弦值为sin 17π3=sin (−π3)=−√32,∴a ⃗⋅b ⃗⃗=1×2√3×(−√32)=−3, ∴b ⃗⃗⋅(2a ⃗−b ⃗⃗)=2a ⃗⋅b ⃗⃗−b ⃗⃗2=2⋅(−3)−12=−18, 故选D .20.【答案】B【解析】【分析】本题考查向量数量积的计算公式,关键是掌握向量夹角的计算公式. 【解答】解:根据题意,设向量a ⃗⃗,b ⃗⃗的夹角为θ,又由|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗⋅b ⃗⃗=1,又由0°≤θ≤180°,则θ=60°;故选B.21.【答案】60°【解析】【分析】本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量的数量积的定义,属于基础题.将|a⃗⃗−2b⃗⃗|=√13的等号两边平方,带入|a⃗⃗|=1,|b⃗⃗|=2,解出a⃗⃗与b⃗⃗的夹角的余弦值,从而得到夹角.【解答】解:设a⃗⃗与b⃗⃗的夹角为θ,∵|a⃗|=1,|b⃗⃗|=2,|a⃗⃗−2b⃗⃗|=√13,∴a⃗2−4a⃗⋅b⃗⃗+4b⃗⃗2=13,即1−4×1×2⋅cosθ+4×4=13,∴cosθ=1,∴θ=60°,2故答案为60°.22.【答案】4【解析】【分析】本题主要考查向量的线性运算和模的运算以及三角函数公式的应用,三角函数与向量的综合题是高考考查的重点,要强化复习.先根据向量的线性运算得到2a⃗−b⃗⃗的表达式,再由向量模的求法表示出|2a⃗−b⇀|,再结合正弦和余弦函数的公式进行化简,最后根据正弦函数的最值可得到答案.【解答】解:∵2a⃗−b⇀=(2cosθ−√3,2sinθ+1),)≤4.∴|2a⃗−b⃗⃗|=√(2cosθ−√3)2+(2sinθ+1)2=√8+8sin(θ−π3∴|2a⃗−b⃗⃗|的最大值为4.故答案为:4.23.【答案】12【解析】【分析】本题考查三角函数值的求解,涉及向量的垂直和数量积的关系,属于基础题.由题意可得1×cosθ+2sinθ×(−1)=0,化简后,由同角三角函数的关系可得答案.【解答】解:由题意可知:a⃗=(1,2sinθ),b⃗⃗=(cosθ,−1),∵a⃗⃗⊥b⃗⃗,∴1×cosθ+2sinθ×(−1)=0,化简得cosθ=2sinθ,故tanθ=sinθcosθ=12,故答案为12.24.【答案】5【解析】【分析】本题考查向量的坐标运算,向量垂直的坐标表示,向量的模,属于基础题.根据题意,由a⃗⊥b⃗⃗可得a⃗⋅b⃗⃗=0,解可得x的值,即可得a⃗⃗的坐标,由向量的坐标计算公式可得a⃗+2b⃗⃗的坐标,由向量模的公式计算可得答案.【解答】解:根据题意,向量a⃗⃗=(x,1),b⃗⃗=(1,−2),因为a⃗⊥b⃗⃗,则有a⃗·b⃗⃗=x−2=0,解得x=2,故a⃗=(2,1),又由b⃗⃗=(1,−2),则a⃗+2b⃗⃗=(4,−3),则,故答案为:5.25.【答案】−1213【解析】【分析】本题考查三角函数的化简求值,关键是利用向量平行的坐标表示方法求出关于三角函数式.根据题意,由向量的坐标运算可得求出2a⃗−b⃗⃗=(3sinθ,2),进而由向量平行的坐标表示方法可得有3sinθ×(−1)=2cosθ,化简可得,tanθ=−23,进而由二倍角公式变形分析可得sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1,代入tanθ的值计算即可得答案.【解答】解:根据题意,a⃗=(sinθ,1),b⃗⃗=(−sinθ,0),c⃗=(cosθ,−1),则2a⃗−b⃗⃗=(3sinθ,2),又由(2a⃗−b⃗⃗)//c⃗,则有3sinθ×(−1)=2cosθ,即−3sinθ=2cosθ,化简可得,tanθ=−23,sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=2×(−23)(−23)2+1=−1213,即sin2θ=−1213;故答案为−1213.26.【答案】√6【解析】【分析】利用题意首先求得e1⃗⃗⃗⃗⋅e2⃗⃗⃗⃗的值,然后结合平面向量模的计算公式整理计算即可求得最终结果.本题考查平面向量数量积的定义,平面向量模的计算等,重点考查学生对基础概念的理解和计算能力,属于基础题.【解答】解:由题意可得:e1⃗⃗⃗⃗⋅e2⃗⃗⃗⃗=1×1×14=14,则:|a⃗⃗|=√(e1⃗⃗⃗⃗+2e2⃗⃗⃗⃗)2=√e1⃗⃗⃗⃗2+4e1⃗⃗⃗⃗⋅e2⃗⃗⃗⃗+4e2⃗⃗⃗⃗2=√1+4×14+4×1=√6.故答案为√6.27.【答案】−√22【解析】解:根据条件,a⃗⃗在b⃗⃗方向上的投影为:|a⃗⃗|cos<a⃗⃗,b⃗⃗>=√2cos2π3=−√22.故答案为:−√22.由条件,可得出a⃗⃗在b⃗⃗方向上的投影为|a⃗⃗|cos2π3,从而求出投影的值.考查向量夹角的概念,向量投影的概念及计算公式.28.【答案】12【解析】【分析】本题考查了平面向量的坐标运算,也考查了同角的三角函数关系应用问题,是基础题.根据两向量垂直时的坐标运算,将向量a⃗=(cosθ,2),b⃗⃗=(−1,sinθ)代入,列方程即可求出tanθ的值.【解答】解:设θ∈(0,π2),向量a⃗=(cosθ,2),b⃗⃗=(−1,sinθ),若a⃗⃗⊥b⃗⃗,则a⃗·b⃗⃗=0,∴(cosθ,2)·(−1,sinθ)=−cosθ+2sinθ=0,,∴sinθcosθ=12,∵tanθ=sinθcosθ,∴tanθ=12,故答案为12.29.【答案】72【解析】【分析】本题考查平面向量的运算及平面向量的数量积,属于基础题.根据向量的运算法则进行计算即可.【解答】 解:如图:CE ⃗⃗⃗⃗⃗⃗⋅AB ⃗⃗⃗⃗⃗⃗=12(CA ⃗⃗⃗⃗⃗⃗+CB ⃗⃗⃗⃗⃗⃗)⋅(CB ⃗⃗⃗⃗⃗⃗−CA⃗⃗⃗⃗⃗⃗) =12(CB ⃗⃗⃗⃗⃗⃗2−CA ⃗⃗⃗⃗⃗⃗2)=12×(16−9)=72. 故答案为72.30.【答案】29【解析】解:AM ⃗⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+BM ⃗⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+12BC ⃗⃗⃗⃗⃗⃗,DB ⃗⃗⃗⃗⃗⃗⃗=DA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗=−BC ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗, ∴AB ⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μDB ⃗⃗⃗⃗⃗⃗⃗=λ(AB ⃗⃗⃗⃗⃗⃗+12BC ⃗⃗⃗⃗⃗⃗)+μ(−BC ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)=(λ+μ)AB ⃗⃗⃗⃗⃗⃗+(λ2−μ)BC ⃗⃗⃗⃗⃗⃗, ∴{λ+μ=112λ−μ=0,解得λ=23,μ=13, ∴λμ=29, 故答案为:29根据向量的三角形法则和平行四边形法则计算即可.本题考查了向量的三角形法则和平行四边形法则,属于基础题.31.【答案】解:(1)∵a ⃗=(√3sin x,cos x +sin x),b ⃗⃗=(2cos x,sin x −cos x),f(x)=a⃗⋅b ⃗⃗, ∴f(x)=2√3sinxcosx +(cosx +sinx)(sinx −cosx) =√3sin2x −cos2x =2sin(2x −π6),令2kπ−π2≤2x −π6≤2kπ+π2(k ∈Z), 解得:−π6+kπ≤x ≤π3+kπ,所以,函数f(x)的单调递增区间为:[−π6+kπ,π3+kπ](k ∈Z), 单调递减区间为[π3+kπ,5π6+kπ](k ∈Z).(2)当x ∈[5π24,5π12]时,π4≤2x −π6≤2π3,∴√2≤f(x)≤2,不等式mt 2+mt +3≥f(x)当x ∈[5π24,5π12]时恒成立, 必须且只需mt 2+mt +3≥f(x)max 成立即可, 即mt 2+mt +1≥0对任意的t ∈R ,即可, ①当m =0时,恒成立②当m ≠0时,只需满足{m >0Δ≤0, 解得:0<m ≤4, 综合所得:0≤m ≤4.【解析】本题考查的知识要点:三角函数关系式的恒等变换,向量的坐标运算,正弦型函数的单调区间,恒成立问题的应用.属于中档题.(1)首先根据向量的坐标运算求出函数的解析式,进一步变函数为正弦型函数,最后求出单调区间.(2)根据函数的定义域求出函数的值域,进一步利用恒成立问题,利用分类讨论的思想求出m 的取值范围.32.【答案】解:(1)因为a ⃗//b ⃗⃗, 所以34cos x +sin x =0, 所以tan x =−34. 故cos 2x −sin2x =cos 2x−2sinxcosx sin 2x+cos 2x=1−2tanx1+tan 2x=1−2×(−34)1+(−34)2=85.(2)f(x)=2(a ⃗+b ⃗⃗)⋅b ⃗⃗ =2sinxcosx −32+2(cos 2x +1)=sin2x +cos2x +32=√2sin (2x +π4)+32,因为f(α2)=34,所以f(α2)=√2sin (α+π4)+32=34, 即sin (α+π4)=−3√28, 因为α∈(π2,π), 所以3π4<α+π4<5π4,故cos (α+π4)=−√1−(3√28)2=−√468, 所以sinα=sin [(α+π4)−π4]=√22[sin (α+π4)−cos (α+π4)] =√22×(−3√28+√468) =−3+√238.【解析】本题主要考查向量数量积的应用以及向量共线的坐标公式,以及向量和三角函数的综合应用,根据向量数量积的关系求出函数,结合三角函数的性质是解决本题的关键.属于中档题.(1)根据向量关系的坐标关系进行转化,结合三角函数的性质进行求解即可.(2)根据向量数量积的公式求出函数f(x)的解析式,结合三角函数的公式进行化简求解.33.【答案】解:(1)f(x)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1;(2)∵f(A)=2sin(2A +π6)+1=2,∴sin (2A +π6)=12, ∵A ∈(0,π),∴2A +π6∈(π6,13π6),∴2A +π6=5π6,∴A =π3. ∴S △ABC =12bcsinA =12×1×c ×√32=√32, ∴c =2,由余弦定理可得,a 2=b 2+c 2−2bccosA =3, ∴a =√3.【解析】本题考查平面向量的数量积及三角函数恒等变换,余弦定理解三角形及面积公式的应用,属于中档题.(1)根据平面向量的数量积公式和三角恒等变换化简即可;(2)根据f(A)=2计算A ,根据面积计算c ,再利用余弦定理求出a .34.【答案】解:(1)因为cos A 2=2√55, 所以cosA =2cos 2A 2−1=35,sinA =45. 又由AB ⃗⃗⃗⃗⃗⃗⋅AC ⃗⃗⃗⃗⃗⃗=3得bccosA =3,所以bc =5 因此S △ABC =12bcsinA =2. (2)由(1)知,bc =5,又b +c =6,由余弦定理,得a 2=b 2+c 2−2bccosA =(b +c)2−165bc =20,所以a =2√5【解析】本题考查向量的数量积是应用,余弦定理的应用,同角三角函数基本关系式的应用,考查计算能力.(1)利用二倍角公式求出余弦函数值,利用同角三角函数基本关系式求出正弦函数值,利用向量的数量积求出bc ,然后求解三角形的面积. (2)利用余弦定理以及(1)的结果,代入求解即可.35.【答案】解:(Ⅰ)设b⃗⃗=(m,n), ∴{m 2+n 2=53m −n =−5, 解得{m =−1n =2或{m =−2n =−1,当b⃗⃗=(−1,2)时, ∴c ⃗=x(3,−1)+(1−x)(−1,2)=(4x −1,2−3x), ∵a ⃗⊥c ⃗,∴3(4x −1)−(2−3x)=0, 解得x =13,当b ⃗⃗=(−2,−1)时, ∴c ⃗=x(3,−1)+(1−x)(−2,−1)=(5x −2,−1), ∵a ⃗⊥c ⃗,∴3(5x −2)+1=0, 解得x =13,(Ⅱ)设b ⃗⃗与c⃗⃗的夹角θ 由(Ⅰ)可知,当b⃗⃗=(−1,2)时,c ⃗=(4x −1,2−3x), 则|c⃗|2=(4x −1)2+(2−3x)2=25x 2−20x +5=25(x −25)2+1, 当x =25时,|c⃗|取最小值,则|c ⃗|=1,c ⃗=(35,45), ∴b ⃗⃗⋅c ⃗=−35+85=1,|b⃗⃗|=√5 ∴cosθ=b⃗⃗⋅c ⃗|b⃗⃗|⋅|c ⃗|=√55当b⃗⃗=(−2,−1)时,c ⃗=(5x −2,−1), 则|c ⃗|2=(5x −2)2+(−1)2=25(x −25)2+1, 当x =25时,|c ⃗|取最小值,则|c ⃗|=1,c ⃗=(0,−1), ∴b ⃗⃗⋅c ⃗=1,|b⃗⃗|=√5 ∴cosθ=b ⃗⃗⋅c ⃗|b ⃗⃗|⋅|c ⃗|=√55【解析】(Ⅰ)根据向量的数量积和向量的模,先求出b ⃗⃗,再根据向量的垂直即可求出x的值,(Ⅱ)根据二次函数的性质即可求出x 的值,再根据向量的夹角公式即可求出.本题考查了向量的数量积的运算和向量的垂直以及二次函数的性质,属于中档题.。
数学提高题专题复习平面向量多选题练习题及答案

数学提高题专题复习平面向量多选题练习题及答案一、平面向量多选题1.Rt △ABC 中,∠ABC =90°,AB =BC =1,0PA PB PC PAPBPC++=,以下正确的是( ) A .∠APB =120° B .∠BPC =120° C .2BP =PC D .AP =2PC【答案】ABCD 【分析】根据条件作几何图形,由向量的关系可得P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形,∠APB =∠BPC =∠APC =120°,进而可确定P 为Rt △ABC 的费马点,利用相似可确定BP 、 AP 、 PC 之间的数量关系. 【详解】在直线PA ,PB ,PC 上分别取点M ,N ,G ,使得|PM |=|PN |=|PG |=1, 以PM ,PN 为邻边作平行四边形PMQN ,则PM PN PQ +=, ∵0PA PB PC PAPBPC++=,即0PM PN PG ++=,即0PQ PG +=,∴P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形, ∴∠APB =∠BPC =∠APC =120°,故A 、B 正确; ∵AB =BC =1,∠ABC =90°, ∴AC =2,∠ACB =60°,在△ABC 外部分别以BC 、AC 为边作等边△BCE 和等边△ACD ,直线CP 绕C 旋转60°交PD 于P’,∴120CE CB ECA BCD CA CD =⎧⎪∠=∠=︒⎨⎪=⎩,即ECA BCD ≅,故EAC BDC ∠=∠, EAC BDC CA CDPCA P CD ∠=∠⎧⎪=⎨⎪'∠=∠⎩,即CPA CP D '≅,故CP CP '=, ∴CPP '为等边三角形,120CP D CPA '∠=∠=︒,则B ,P ,D 三点共线,同理有A ,P ,E 三点共线, ∴△BPC ∽△BCD ,即12BP BC CP CD ==,即PC =2BP ,故C 正确, 同理:△APC ∽△ACB ,即AP ACCP BC==2,即AP =2PC ,故D 正确. 故选:ABCD.【点睛】关键点点睛:根据已知条件及向量的数量关系确定P为Rt△ABC的费马点,结合相似三角形及费马点的性质判断各项的正误.2.如图,A、B分别是射线OM、ON上的点,下列以O为起点的向量中,终点落在阴影区域内的向量是()A.2OA OB+B.1123 OA OB+C.3143OA OB+D.3145OA OB+【答案】AC【分析】利用向量共线的条件可得:当点P在直线AB上时,等价于存在唯一的一对有序实数u,v,使得OP uOA vOB=+成立,且u+v=1.可以证明点P位于阴影区域内等价于:OP uOA vOB=+,且u>0,v>0,u+v>1.据此即可判断出答案.【详解】由向量共线的条件可得:当点P在直线AB上时,存在唯一的一对有序实数u,v,使得OP uOA vOB=+成立,且u+v=1.可以证明点P位于阴影区域内等价于:OP uOA vOB=+,且u>0,v>0,u+v>1.证明如下:如图所示,点P 是阴影区域内的任意一点,过点P 作PE //ON ,PF //OM ,分别交OM ,ON 于点E ,F ;PE 交AB 于点P ′,过点P ′作P ′F ′//OM 交ON 于点F ′,则存在唯一一对实数(x ,y ),(u ′,v ′),使得OP xOE yOF u OA v OB ''''=+=+,且u ′+v ′=1,u ′,v ′唯一;同理存在唯一一对实数x ′,y ′使得OP x OE y OF uOA vOB =+=+'', 而x ′=x ,y ′>y ,∴u =u ′,v >v ′,∴u +v >u ′+v ′=1,对于A ,∵1+2>1,根据以上结论,∴点P 位于阴影区域内,故A 正确; 对于B ,因为11123+<,所以点P 不位于阴影区域内,故B 不正确; 对于C ,因为311314312+=>,所以点P 位于阴影区域内,故C 正确; 对于D ,因为311914520+=<,所以点P 不位于阴影区域内,故D 不正确; 故选:AC. 【点睛】关键点点睛:利用结论:①点P 在直线AB 上等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1;②点P 位于阴影区域内等价于OP uOA vOB =+,且u >0,v >0,u +v >1求解是解题的关键.3.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.4.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .32OA OB OC ++= D .132DE =【答案】AC 【分析】建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析. 【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确; B .因为E 为AB 中点,所以AB CE ,所以0AB CE ⋅=,故错误;C .因为()()(30,,1,0,1,0,32O A B C ⎛- ⎝⎭,所以33331,1,0,OA OB OC ⎛⎛⎛⎛++=+-+= ⎝⎭⎝⎭⎝⎭⎝⎭,所以3OA OB OC ++= D .因为()123,,0,033D E ⎛⎫ ⎪ ⎪⎝⎭,所以123,33DE ⎛⎫=-- ⎪ ⎪⎝⎭,所以133DE =,故错误, 故选:AC. 【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.5.如图所示,设Ox ,Oy 是平面内相交成2πθθ⎛⎫≠⎪⎝⎭角的两条数轴,1e ,2e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系中,若12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y =.在23πθ=的反射坐标系中,()1,2a =,()2,1b =-.则下列结论中,正确的是( )A .()1,3a b -=-B .5a =C .a b ⊥D .a 在b 上的投影为3714-【答案】AD 【分析】123a b e e -=-+,则()1,3a b -=-,故A 正确;3a =,故B 错误;32a b ⋅=-,故C 错误;由于a 在b 上的投影为3372147a b b-⋅==-,故D 正确.【详解】()()121212223a b e e e e e e -=+--=-+,则()1,3a b -=-,故A 正确;()2122254cos33a e e π=+=+=B 错误;()()22121211223222322a b e e e e e e e e ⋅=+⋅-=+⋅-=-,故C 错误; 由于()22227b e e =-=a 在b 上的投影为33727a b b-⋅==,故D 正确。
高中数学提高题专题复习平面向量多选题专项训练练习题及答案

高中数学提高题专题复习平面向量多选题专项训练练习题及答案一、平面向量多选题1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( )A .cos cos 0AB +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=答案:ABD 【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确.故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是答案:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin aR A =,可得R =ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()223B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.3.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( )A .a 是单位向量B .//BC b C .1a b ⋅=D .()4BC a b ⊥+答案:ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.4.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .32OA OB OC ++=D .ED 在BC 方向上的投影为76答案:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可.【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),(3E A B C D -, 设123(0,),3),(1,),(,33O y y BO y DO y ∈==--,BO ∥DO , 所以23133y y -=-,解得:3y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(3ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算. 5.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C答案:ACD 【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形答案:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对:因为,又,故可得, 故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=. 故a 在b 上的投影向量为12a b b b b ⎛⎫⋅⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -,则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形. 故D 选项正确;综上所述,正确的有:ABD . 故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题. 7.在ABC 中,15a =,20b =,30A =,则cos B =( ) A.B .23C .23-D.3答案:AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题. 8.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-B .(6,15)C .(2,3)-D .(2,3)答案:ABC 【分析】设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解. 【详解】第四个顶点为, 当时,,解得,此时第四个顶点的坐标为; 当时,, 解得解析:ABC 【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题. 9.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±答案:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确; 当,a b 共线同向时,||||cos0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.10.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-答案:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,解析:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.11.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形答案:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A B π+--∴-=-===cos 0cos cos C A B=->,cos cos cos 0A B C ∴<, 对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确.故选:BCD.【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题.12.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C 处,3km ,那么x 的值为( )A 3B .23C .33D .3答案:AB【分析】由余弦定理得,化简即得解.【详解】由题意得,由余弦定理得,解得或.故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 解析:AB【分析】 由余弦定理得293cos306x x︒+-=,化简即得解. 【详解】 由题意得30ABC ︒∠=,由余弦定理得293cos306x x ︒+-=,解得x =x =故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.13.已知,a b 为非零向量,则下列命题中正确的是( )A .若a b a b +=+,则a 与b 方向相同B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同答案:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.14.题目文件丢失!15.题目文件丢失!二、平面向量及其应用选择题16.题目文件丢失!17.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( ) A 13+B .13C 23+ D .23解析:B【分析】 由题意可得2b a c =+,平方后整理得22242a c b ac +=-,利用三角形面积可求得ac 的值,代入余弦定理可求得b 的值.【详解】解:∵a ,b ,c 成等差数列,∴2b a c =+,平方得22242a c b ac +=-,①又ABC 的面积为32,且30B ∠=︒, 由11sin sin 3022ABC S ac B ac ==⋅︒△1342ac ==,解得6ac =, 代入①式可得222412a c b +=-,由余弦定理得222cos 2a c b B ac+-=,2224123122612b b b ---===⨯解得24b =+,∴1b =故选:B .【点睛】本题考查等差数列的性质和三角形的面积公式,涉及余弦定理的应用,属于中档题.18.已知ABC中,1,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120° 解析:D【分析】由正弦定理可得,sin B =,根据b a >,可得B 角的大小. 【详解】由正弦定理可得,sin sin 2b A B a ==, 又0,,π<<>∴>B b a B A ,60︒∴=B 或120B =. 故选:D【点睛】本题考查了正弦定理的应用,考查了运算求解能力和逻辑推理能力,属于基础题目.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )AB .14 CD.2解析:B【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案;【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=,∴2b c =,又a b =, ∴22222114cos 12422b ac b B ac b ⋅+-===⋅⋅, 故选:B.【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值.20.已知菱形ABCD 边长为2,∠B =3π,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( )A .12B .-12C .13D .-13解析:A【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论.【详解】 法一:由题意可得BA ·BC =2×2cos 3π=2,BD ·CP =(BA +BC )·(BP -BC ) =(BA +BC )·[(AP -AB )-BC ] =(BA +BC )·[(λ-1)·AB -BC ] =(1-λ) BA 2-BA ·BC +(1-λ)·BA ·BC -BC 2=(1-λ)·4-2+2(1-λ)-4 =-6λ=-3,∴λ=12,故选A. 法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,),D (-13.令P (x,0),由BD ·CP =(-33(x -13=-3x +3-3=-3x =-3得x =1. ∵AP =λAB ,∴λ=12.故选A. 【点睛】1.已知向量a ,b 的坐标,利用数量积的坐标形式求解.设a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. 2.通过建立平面直角坐标系,利用数量积的坐标形式计算.21.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .14解析:D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目. 22.在ABC 中,若cos a b C =,则ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形解析:A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=,0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形.故选:A.【点睛】 本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.23.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(2a b c a c b ac +++-=,则cos sin A C +的取值范围为A .3)2B .C .3(2D .3(2解析:A【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C +)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=可得22()(2a c b ac +-=,即222a cb +-=,所以222cos 2ac b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos )6623A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A . 【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.24.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米解析:D【分析】 作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin 30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin 75BD BS =︒2000sin15sin 75=︒︒2000sin15cos15=︒︒1000sin 30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.25.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( )A .123B .63C .12D .183解析:A【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 4812322ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值26.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=- 解析:D【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =, M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.27.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( )A .1:4B .4:5C .2:3D .3:5解析:A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.28.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶2 解析:B【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。
高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】().doc

一、选择题(共36题)【基础题】1. 下列物理昼 ①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功;⑨电流强度;⑩摩擦系数,其中不是向量的有( ) A.4个B. 5个C.6个D.7个2. 下列六个命题中正确的是()①两个向量相等,则它们的起点相同,终点相同;②若丨a \ = \ b I ,贝ij a=b ;③若店=& ,则ABCD 是平行四边形;④平行四边形ABCD 中,一定有乔 =&;⑤若 m =n. n =k,则 m=k ;⑥若a//b,b//c ,贝\\a//c.以下说法错谋的是( )A. 零向虽与任一非零向虽平行 C. 平行向量方向相同B. 零向量与单位向量的模不相等D.平行向量一定是共线向量—》 1 —> —> —》 —》 1 ―> AC=-BC (C) BA = BC (D) BC=- AC 2(C) MB + AD-BM(D) OC-OA + CD---------------------------——•I -------- ►已知向量0M = (3,—2),CW = (-5-1),则/MN 等于(已知向量"(3-1),/? = (-1,2),则-3a 一 2b 的坐标是(A.①②③B.④⑤C.④⑤⑥D.⑤⑥4. 已知B 是线段AC 的中点, 则卜-列各式正确的是() 5. 下列四式不能化简为朮的是((A) (AB+CD) +BC(B) CAD+MB ) + ^BC + CM6、 A. (8,1)B. (-8,1)C ・(4冷)D.(-4冷) 7、A. (7,1)B. (-7-1)C. (-7,1)D ・(7-1)3.(A) A^=~BC (B)8. 与向量a=(-5, 4)平行的向量是( )5 4A. (-5k, 4k)B.C. (-10, 2)D. (5k, 4k)k k9.已知a = (_1,3)上=(兀厂1), SLa // b ,贝!J x 等于( )A. 3B. -3 c. 13D. -13—>10.已知d ==(昇) ,b = (-#,#),下列各式正确的是( )-> -> b (B) a ■ b -> T-》—>(A) a =J丿=1 (C) a = b (D)a与〃平行11.在四边形ABCD中,AB=DC ,且花・BD=0,则四边形ABCD是( )(A)矩形(B)菱形(C)直角梯形(D)等腰梯形【中等难度】12、下面给出的关系式屮正确的个数是( )①0Q = 0②H・b=bV③疋=\a\z@)@・b)C = U(b・C⑤云・b <a-b(A) 0 (B) 1 (C) 2 (D) 313.已知ABCD为矩形,E是DC的中点,且篇=;,AD = b f则旋 =( )(A) h + ^a (B) b _(C) a +^h(D) a —^h-- 》—► > —> -- A14.已知ABCDEF 是正六边形,.FL AB = a , AE = b ,则BC =( )T T -> T -> ->(A) y(/z- b) (B) j(b-a) (C) d+*b15.设a, 〃为不共线向量,AB =6t+2ft, BC =—4 a—b, CD= —5 a—3〃,-> ->(D) ^(a+b)则卞列关系式中正确的是()16. 设;与幺;是不共线的非零向量,凡与;+kw ;共线,则k 的值是()(A) 1(B) -1(C)±1(D)任意不为零的实数17. 在MBC 中,M 是 BC 的中点,AM=1,点 P 在 AM 上满足一 PA = 2PM PA (PB + ~PC )等于 ( ) 4 4 4 4 A.- B.- C.——D.——9 33918.己知a 、〃均为单位向量,它们的夹角为60。
平面向量提高题

D.16
8. 如图,O 为 ABC 的外心,AB 4, AC 2,BAC 为钝角,M 是边 BC 的中点,则 AM AO 的
值为( )
A. 4
B. 5
C. 6
D. 7
9.
(2020·山东省高三二模)如图,在
ABC
中,
BAC
3
,
AD
2DB
,
P
为
CD
上一点,且
满足
AP
m
AC
1 2
AB
,若
AC
3
,
D.5
6. 如图,在 ABC 中, AD AB , DC 2BD ,| AB | 2 ,则 AC AB 的值为
B AD
C
A. 4
B. 3
C. 2
D. 8
7. 如图,点 O 为 ABC 内一点,且 OA OB OC 0 ,OAOB 0 ,AB 2 ,则 CACB ( )
A.2
B.4
C.8
初高中数学学习资料的店
11. 在 ABC 中, AC 2AB 2 , BAC 120 , O 是 BC 的中点, M 是 AO 上一点,且
AO 3MO ,则 MB MC 的值是______.
12.
是半径为1的圆 O 的直径, 是圆 O 上一点, Q 为平面内一点,且 BQ 1 BP 2 AB ,
AB AD ( )
A. 1 3
B. 2 3
C.1
D.2
15. (湖南省永州市 2018 届高三下学期第三次模拟考试数学(理)试题)在 ABC 中,
BAC 60 , AB 5 , AC 6 , D 是 上一点,且 AB CD 5 ,则 BD 等于
A.1
高中数学必修4平面向量典型例题与提高题(可编辑修改word版)

= - = ⋅ ⋅ 平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1. 向量:既有大小又有方向的量。
记作: AB 或 a 。
2. 向量的模:向量的大小(或长度),记作: | AB | 或| a | 。
3. 单位向量:长度为 1 的向量。
若 e 是单位向量,则| e |= 1。
4. 零向量:长度为 0 的向量。
记作: 0 。
【0 方向是任意的,且与任意向量平行】5. 平行向量(共线向量):方向相同或相反的向量。
6. 相等向量:长度和方向都相同的向量。
7. 相反向量:长度相等,方向相反的向量。
AB BA 。
8. 三角形法则:AB + BC = AC ; AB + BC + CD + DE = AE ; AB - AC = CB (指向被减数)9. 平行四边形法则:以 a , b 为临边的平行四边形的两条对角线分别为 a + b , a - b 。
10.共线定理: = ⇔ 。
当> 0 时, 同向;当< 0 时,反向。
a b a / /b a 与b a 与b11. 基底:任意不共线的两个向量称为一组基底。
12. 向量的模:若 = (x , y ) , 则 = 22 ,, +a | a | a | a | | ab | 13. 数量积与夹角公式: a ⋅ b =| a | ⋅ | b | cos ;cos = | a | |b |14.平行与垂直: a / /b ⇔ a = b ⇔ x 1 y 2 = x 2 y 1 ; a ⊥ b ⇔ a ⋅ b = 0 ⇔ x 1 x 2 + y 1 y 2 = 0题型 1.基本概念判断正误:(1)若 a 与b 共线, b 与c 共线,则 a 与c 共线。
(2)若 ma = mb ,则 a = b 。
(3)若 ma = na ,则 m = n 。
(4)若 a 与b 不共线,则 a 与b 都不是零向量。
(5)若 a ⋅ b =| a | ⋅ | b | ,则 a / /b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量:1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2B .-13C .-1D .-23[答案] C[解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1.2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )A .-1B .- 3C .-3D .1[答案] C[解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3.(理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( )A .-611B .-116C.611D. 116[答案] C[解析] a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直,∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611.3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( )A.150° B.120°C.60° D.30°[答案] B[解析] 如图,在▱ABCD中,∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴〈a,b〉=120°,故选B.(理)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A.12B.13 C.14 D.15[答案] A[解析] ∵|a -b |=32,∴|a |2+|b |2-2a ·b =34,∵|a |=1,〈a ,b 〉=60°,设|b |=x ,则1+x 2-x =34,∵x >0,∴x =12.4. 若AB→·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形[答案] B[解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC→, ∴AB ⊥AC ,∴△ABC 为直角三角形.5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( )A .-a +3bB .a -3bC .3a -bD .-3a +b[答案] B[解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ),∴⎩⎪⎨⎪⎧λ+μ=-2λ-μ=4,∴⎩⎪⎨⎪⎧λ=1μ=-3,∴c =a -3b ,故选B.(理)在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →等于( )A.14a +12b B.23a +13b C.12a +14b D.13a +23b [答案] B[解析] ∵E 为OD 的中点,∴BE →=3ED →, ∵DF ∥AB ,∴|AB ||DF |=|EB ||DE |,∴|DF |=13|AB |,∴|CF |=23|AB |=23|CD |,∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →-OC →) =a +23(12b -12a )=23a +13b .6. 若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19[答案] D[解析] 据已知得cos B =72+52-622×7×5=1935,故AB→·BC →=|AB →|×|BC →|×(-cos B )=7×5×⎝ ⎛⎭⎪⎪⎫-1935=-19. 7. 若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .2 3 C .3 2 D .6[答案] D[解析] a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x+3y≥232x +y=6,等号在x =12,y =1时成立.8. 若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA→+xOB →+BC →=0,实数x 为( )A .-1B .0 C.-1+52D.1+52[答案] A[解析] x 2OA →+xOB →+OC →-OB →=0,∴x 2OA →+(x -1)OB →+OC →=0,由向量共线的充要条件及A 、B 、C 共线知,1-x -x 2=1,∴x =0或-1,当x =0时,BC→=0,与条件矛盾,∴x =-1. 9. (文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC→)( ) A .最大值为8 B .最小值为2 C .是定值6 D .与P 的位置有关[答案] C[解析] 以BC 的中点O 为原点,直线BC 为x 轴建立如图坐标系,则B (-1,0),C (1,0),A (0,3),AB →+AC →=(-1,-3)+(1,-3)=(0,-23),设P (x,0),-1≤x ≤1,则AP→=(x ,-3), ∴AP→·(AB →+AC →)=(x ,-3)·(0,-23)=6,故选C.(理)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD→|的最小值是( ) A.12 B.32 C. 2 D.22[答案] D[解析] ∵∠A =120°,AB →·AC →=-1, ∴|AB→|·|AC →|·cos120°=-1, ∴|AB→|·|AC →|=2, ∴|AB→|2+|AC →|2≥2|AB →|·|AC →|=4, ∵D 为BC 边的中点,∴AD →=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,∴|AD →|≥22. 10.如图所示,点P 是函数y =2sin(ωx +φ)(x ∈R ,ω>0)的图象的最高点,M ,N 是该图象与x 轴的交点,若PM→·PN →=0,则ω的值为( )A.π8 B.π4 C .4 D .8[答案] B[解析] ∵PM →·PN →=0,∴PM ⊥PN ,又P 为函数图象的最高点,M 、N 是该图象与x 轴的交点,∴PM =PN ,y P =2,∴MN =4,∴T =2πω=8,∴ω=π4.11.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF →=12AD →,AK →=λAC→,则λ的值为( )A.15B.14 C.13 D.12[答案] A[解析] 如图,取CD 的三等分点M 、N ,BC 的中点Q ,则EF ∥DG ∥BM ∥NQ ,易知AK →=15AC →,∴λ=15.12.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为( ) A.12 B .2 C .-2 D .-12[答案] C[解析] m a +4b =(2m -4,3m +8),a -2b =(4,-1), 由条件知(2m -4)·(-1)-(3m +8)×4=0, ∴m =-2,故选C. 13.在△ABC 中,C =90°,且CA =CB =3,点M 满足BM →=2MA →,则CM →·CB →等于( ) A .2 B .3 C .4 D .6[答案] B[解析] CM →·CB → =(CA→+AM →)·CB → =(CA →+13AB →)·CB→ =CA →·CB →+13AB →·CB → =13|AB →|·|CB →|·cos45° =13×32×3×22=3.14. 在正三角形ABC 中,D 是BC上的点,AB =3,BD =1,则AB→·AD →=________. [答案] 152 [解析] 由条件知,|AB →|=|AC →|=|BC →|=3,〈AB→,AC →〉=60°,〈AB →,CB →〉=60°,CD →=23CB →, ∴AB →·AD →=AB →·(AC →+CD →)=AB →·AC →+AB →·23CB →=3×3×cos60°+23×3×3×cos60°=152.15. 已知向量a =(3,4),b =(-2,1),则a 在b 方向上的投影等于________.[答案] -255[解析] a 在b 方向上的投影为a ·b |b |=-25=-255. 16. 已知向量a 与b 的夹角为2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.[答案] 1[解析] ∵〈a ,b 〉=2π3,|a |=1,|b |=4,∴a ·b =|a |·|b |·cos〈a ,b 〉=1×4×cos 2π3=-2,∵(2a +λb )⊥a ,∴a ·(2a +λb )=2|a |2+λa ·b =2-2λ=0,∴λ=1.17. 已知:|OA →|=1,|OB→|=3,OA→·OB →=0,点C 在∠AOB ,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则m n=________. [答案] 3[解析] 设mOA→=OF →,nOB →=OE →,则OC →=OF →+OE →,∵∠AOC =30°,∴|OC →|·cos30°=|OF →|=m |OA →|=m ,|OC→|·sin30°=|OE →|=n |OB →|=3n ,两式相除得:m3n =|OC →|cos30°|OC →|sin30°=1tan30°=3,∴m n =3. 18. (文)设i 、j 是平面直角坐标系(坐标原点为O )分别与x 轴、y 轴正方向相同的两个单位向量,且OA→=-2i +j ,OB →=4i +3j ,则△OAB 的面积等于________. [答案] 5[解析] 由条件知,i 2=1,j 2=1,i ·j =0,∴OA→·OB →=(-2i +j )·(4i +3j )=-8+3=-5,又OA→·OB →=|OA →|·|OB →|·cos 〈OA →,OB →〉=55cos 〈OA →,OB →〉,∴cos 〈OA →,OB →〉=-55,∴sin 〈OA →,OB →〉=255, ∴S △OAB =12|OA →|·|OB →|·sin 〈OA →,OB →〉=12×5×5×255=5.19.已知平面向量a =(1,x ),b =(2x +3,-x ).(1)若a ⊥b ,求x 的值.(2)若a ∥b ,求|a -b |.[解析] (1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0, 整理得x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则有1×(-x )-x (2x +3)=0,则x(2x+4)=0,解得x=0或x=-2,当x=0时,a=(1,0),b=(3,0),∴|a-b|=|(1,0)-(3,0)|=|(-2,0)|=-22+02=2,当x=-2时,a=(1,-2),b=(-1,2),∴|a-b|=|(1,-2)-(-1,2)|=|(2,-4)| =22+-42=2 5.。