2020年高考文科数学热点09 解析几何-2020年高考数学(教师版)

合集下载

2020年高考数学热点复习:解析几何热点问题

2020年高考数学热点复习:解析几何热点问题

y
l
P3A
P2
P1
P4
F2
O
F1
x
B
故不满足. ………………………6 分 (得分点 4)
从而可设 l:y=kx+m(m≠1). 将 y=kx+m 代入x42+y2=1 得(4k2+1)x2+8kmx+4m2-4=0.
…7 分 (得分点 5)
由题设可知 Δ=16(4k2-m2+1)>0.
设 A(x1,y1),B(x2,y2),
❸得计算分:解题过程中的计算准确是得满分的根本保证,如(得分点 3),(得 分点 5),(得分点 7).
解答圆锥曲线中的定点问题的一般步骤 第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所 要探求的定点. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.
(1)解 ∵椭圆xa22+by22=1(a>b>0)的离心率为 22, ∴e2=ac22=a2-a2b2=12,得 a2=2b2,① 又点 Qb,ba在椭圆 C 上,∴ba22+ab24=1,②
联立①、②得 a2=8,且 b2=4. ∴椭圆 C 的方程为x82+y42=1.
(2)证明 当直线 PN 的斜率 k 不存在时,
2020年高考数学热点复习
解析几何热点问题
高考导航
1.圆锥曲线是平面解析几何的核心部分,也是高考必考知识,主 要以一个小题一个大题的形式呈现,难度中等偏上; 2.高考中的选择题或填空题主要考查圆锥曲线的基本性质,高考 中的解答题,常以求曲线的标准方程、位置关系、定点、定值、 最值、范围、探索性问题为主.这些试题的命制有一个共同的特 点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂 的运算,对考生解决问题的能力要求较高.

2020届高考文科数学平面解析几何中的高考热点问题

2020届高考文科数学平面解析几何中的高考热点问题

平面解析几何中的高考热点问题[命题解读]1.圆锥曲线是平面解析几何的核心部分,也是高考必考知识,主要以一个小题一个大题的形式呈现,难度中等偏上.2.高考中的选择题或填空题主要考查圆锥曲线的基本性质,高考中的解答题,在第(1)问中常以求曲线的标准方程,在第(2)问以求作或证明位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高.圆锥曲线的方程与性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常见题型,多以选择题或填空题的形式考查,各种难度均有可能.【例1】(2017•全国卷UI)巳知双曲线C:5—右=1(口>0,》>0)的一条渐近巫x2v2线方程为y=^x,且与椭圆吉+;=1有公共焦点,则。

的方程为()X2/X2/A・厂亦=1 B.厂普=1C^=1D丈=iJ54'43'B[由y=^~x可得卜平•①22由椭圆书+;=1的焦点为(3,0),(—3,0),可得疽+方2=9.②由①②可得(?2=4,b2=5.x2v2所以C的方程为于一普=L故选B.]-[规律方法]解决此类问题的关键是熟练掌握各曲线的定义、性质及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.⑴(2017•全国卷II)若双曲线C:号一]=1(。

>0,力>°)的一条渐近线被圆(*—2尸+寸=4所截得的弦长为2,则。

的离心率为()A. 2B. «C.也D.罕(2)(2017-全国卷I)已知F 为抛物线C : /=4x 的焦点,过F 作两条互相垂直 的直线h ,直线Zi 与。

交于A, 8两点,直线,2与。

交于D, E 两点,则|A8| + \DE\的最小值为()A. 16B. 14C. 12D. 10⑴A (2)A [⑴设双曲线的一条渐近线方程为圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为卡二根据点到直线的距离公式得』2/>|解得 Z>2=3<z 2.所以。

2020年高考文科数学二轮专题复习九:解析几何(附解析)

2020年高考文科数学二轮专题复习九:解析几何(附解析)

2020年高考文科数学二轮专题复习九:解析几何(附解析)从近五年的高考试题来看,该部分的试题是综合性的,题目中既有直线和圆的方程的问题,又有圆锥曲线与方程的问题.考查的重点:直线方程与两直线的位置关系;圆的方程;点、线、圆的位置关系;椭圆、双曲线、抛物线及其性质;直线与圆锥曲线的位置关系;曲线的方程;圆锥曲线的综合问题.1.直线方程与圆的方程 (1)直线方程的五种形式(①两条直线平行:对于两条不重合的直线1l ,2l ,若其斜率分别为1k ,2k ,则有1212//l l k k ⇔=; 当直线1l ,2l 不重合且斜率都不存在时,12//l l . ②两条直线垂直:如果两条直线1l ,2l 的斜率存在,设为1k ,2k ,则有1212·1l l k k ⊥⇔=-; 当其中一条直线的斜率不存在,而另一条直线的斜率为0时,12l l ⊥. (3)两条直线的交点的求法直线1l :1110A x B y C ++=,2l :2220A x B y C ++=, 则1l 与2l 的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解.(4)三种距离公式①111(,)P x y ,222(,)P x y两点之间的距离:12||PP = ②点000(,)P x y 到直线l :0Ax By C ++=的距离:d =.③平行线10Ax By C ++=与20Ax By C ++=间距离:d =.(5)圆的定义及方程点00()M x y ,与圆222()()x a y b r -+-=的位置关系: ①若00()M x y ,在圆外,则22200()()x a y b r -+->. ②若00()M x y ,在圆上,则22200()()x a y b r -+-=. ③若00()M x y ,在圆内,则22200()()x a y b r -+-<.2.直线、圆的位置关系(1)直线与圆的位置关系(半径为r ,圆心到直线的距离为d )0∆<0∆=0∆>(2设两圆的圆心距为d ,两圆的半径分别为R ,()r R r >,则3.圆锥曲线及其性质(1)椭圆的标准方程及几何性质,()0F c -0(),F c ()0,F c -()0,F c220+=<mx ny mn1()(4.圆锥曲线的综合问题(1)直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程0()F x y =,,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即联立0(,)0Ax By C F x y ++=⎧⎨=⎩,消去y ,得20ax bx c ++=.①当0a ≠时,设一元二次方程20ax bx c ++=的判别式为∆, 则0∆>⇔直线与圆锥曲线C 相交;0∆=⇔直线与圆锥曲线C 相切; 0∆<⇔直线与圆锥曲线C 相离.②当0a =,0b ≠时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. (2)圆锥曲线的弦长设斜率为(0)k k ≠的直线l 与圆锥曲线C 相交于M ,N 两点,11(,)M x y ,22(,)N x y ,则12|||MN x x =-=12|||MN y y =-=.1.(2019·全国Ⅰ卷)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为︒130,则C 的离心率为( )A .︒40sin 2B .︒40cos 2C .︒50sin 1 D .︒50cos 12.(2019·全国II 卷)若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( )A .2B .3C .4D .83.(2019·全国III 卷)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||PO OF =,则△OPF 的面积为( )A .32 B .52 C .72 D .924.(2019·全国III 卷)设1F 、2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为________.5.(2019·全国Ⅰ卷)已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.经典常规题(45分钟)1.(2019·江西省上高县第二中学期末考试)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m 的值为( ) A .12 B .12- C .2- D .2 2.(2019·内蒙古乌兰察布市集宁第一中学适应性考试)过抛物线24y x =的焦点F 作与抛物线对称轴垂直的直线交抛物线于A ,B 两点,则以AB 为直径的圆的标准方程为( )A .22(1)4x y ++=B .22(1)4x y -+=C .22(1)4x y ++=D .22(1)4x y +-=3.(2019·宁夏银川一中调研考试)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 4.(2019·广东省5月仿真冲刺模拟卷)斜率为(0)k k <的直线l 过点(0,1)F ,且与曲线21(0)4y x x =≥ 及直线1y =-分别交于,A B 两点,若||6||FB FA =,则k =_____.5.(2019·河南省八校高三1月尖子生联赛)已知椭圆2222:1(0)x y C a b a b+=>>,1(2,2)P,2P ,3(2,3)P -,4(2,3)P 四点中恰有三点在椭圆C 上. (1)求C 的方程;(2)已知点(0,1)E ,问是否存在直线p 与椭圆C 交于M ,N 两点且||||ME NE =?若存在,求出直线p斜率的取值范围;若不存在,请说明理由.高频易错题1.(2019·江西省新余市第一中学模拟考试)若113420x y --=,223420x y --=,则过11(,)A x y ,22(,)B x y 两点的直线方程是( )A .4320x y +-=B .3420x y --=C .4320x y ++=D .3420x y -+=2.(2019·湖南、湖北、河南、河北、山东五省名校4月模拟)已知椭圆的长轴长是倍,则该椭圆的离心率是( )A .31 B.3 C.3 D.33.(2019·山东省济南第一中学2月适应考试)已知△ABC 的顶点0()5,A -,()5,0B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( )A .221916x y -=B .221169x y -=C .221(3)916x y x -=>D .221(4)169x y x -=>4.(2019·广东省高三二月调研考试)以抛物线24y x =的焦点为圆心且过点(5,P -的圆的标准方程为____________.5.(2019·湖南、湖北、河南、河北、山东五省名校高考适应性考试)过抛物线2:4C y x =的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,N 点在l 上,且MN l ⊥,则M 到直线NF 的距离为_____精准预测题2020年高考文科数学二轮专题复习九:解析几何(解析)从近五年的高考试题来看,该部分的试题是综合性的,题目中既有直线和圆的方程的问题,又有圆锥曲线与方程的问题.考查的重点:直线方程与两直线的位置关系;圆的方程;点、线、圆的位置关系;椭圆、双曲线、抛物线及其性质;直线与圆锥曲线的位置关系;曲线的方程;圆锥曲线的综合问题.1.直线方程与圆的方程(1)直线方程的五种形式(①两条直线平行:对于两条不重合的直线1l ,2l ,若其斜率分别为1k ,2k ,则有1212//l l k k ⇔=; 当直线1l ,2l 不重合且斜率都不存在时,12//l l . ②两条直线垂直:如果两条直线1l ,2l 的斜率存在,设为1k ,2k ,则有1212·1l l k k ⊥⇔=-; 当其中一条直线的斜率不存在,而另一条直线的斜率为0时,12l l ⊥. (3)两条直线的交点的求法直线1l :1110A x B y C ++=,2l :2220A x B y C ++=, 则1l 与2l 的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解.(4)三种距离公式①111(,)P x y ,222(,)P x y 两点之间的距离:12||PP = ②点000(,)P x y 到直线l :0Ax By C ++=的距离:d =.③平行线10Ax By C ++=与20Ax By C ++=间距离:d =.(5)圆的定义及方程点00()M x y ,与圆222()()x a y b r -+-=的位置关系: ①若00()M x y ,在圆外,则22200()()x a y b r -+->. ②若00()M x y ,在圆上,则22200()()x a y b r -+-=. ③若00()M x y ,在圆内,则22200()()x a y b r -+-<.2.直线、圆的位置关系(1)直线与圆的位置关系(半径为r ,圆心到直线的距离为d )0∆<0∆=0∆>(2设两圆的圆心距为d ,两圆的半径分别为R ,()r R r >,则3.圆锥曲线及其性质(1)椭圆的标准方程及几何性质,()0F c -0(),F c ()0,F c -()0,F c22+=mx ny(4.圆锥曲线的综合问题(1)直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程0()F x y =,,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即联立0(,)0Ax By C F x y ++=⎧⎨=⎩,消去y ,得20ax bx c ++=.①当0a ≠时,设一元二次方程20ax bx c ++=的判别式为∆, 则0∆>⇔直线与圆锥曲线C 相交;0∆=⇔直线与圆锥曲线C 相切; 0∆<⇔直线与圆锥曲线C 相离.②当0a =,0b ≠时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. (2)圆锥曲线的弦长设斜率为(0)k k ≠的直线l 与圆锥曲线C 相交于M ,N 两点,11(,)M x y ,22(,)N x y ,则12|||MN x x =-=12|||MN y y =-=.1.(2019·全国Ⅰ卷)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为︒130,则C 的离心率为( )A .︒40sin 2B .︒40cos 2C .︒50sin 1 D .︒50cos 1【答案】D【解析】根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 2.(2019·全国II 卷)若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( )A .2B .3C .4D .8 【答案】D【解析】抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±,∴p p22=,∴8=p .经典常规题3.(2019·全国III 卷)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||PO OF =,则△OPF 的面积为( )A .32 B .52 C .72 D .92【答案】B【解析】依据题意222224,5,9a b c a b ===+=, 设F 为右焦点,(3,0)F ,设P 在第一象限,(,)P x y ,根据||||PO OF =,22229145x y x y ⎧+=⎪⎨-=⎪⎩,得到53y =,所以15||22OPF S OF y ∆=⋅⋅=.4.(2019·全国III 卷)设1F 、2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为________. 【答案】)15,3(【解析】由椭圆22:13620x y C +=可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形12MF F 中,8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M , 代入22:13620x y C +=可得3=M x ,故M 的坐标为)15,3(.5.(2019·全国Ⅰ卷)已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.【答案】(1)2或6;(2)存在,(1,0)P ,详见解析.【解析】(1)∵M e 过点,A B ,∴圆心在AB 的中垂线上即直线y x =上, 设圆的方程为222()()x a y a r -+-=,又4AB =,根据222AO MO r +=,得2242a r +=,∵M e 与直线20x +=相切,∴2a r +=,联解方程得0a =,2r =或4a =,6r =. (2)设M 的坐标为(,)x y ,根据条件22222AO MO r x +==+,即22242x y x ++=+,化简得24y x =,即M 的轨迹是以(1,0)为焦点,以1x =-为准线的抛物线, 所以存在定点(1,0)P ,使(2)(1)1MA MP x x -=+-+=.1.(2019·江西省上高县第二中学期末考试)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m 的值为( ) A .12 B .12- C .2- D .2 【答案】A【解析】2321132232AB BC m k k m --+=⇒=⇒=+-. 2.(2019·内蒙古乌兰察布市集宁第一中学适应性考试)过抛物线24y x =的焦点F 作与抛物线对称轴垂直的直线交抛物线于A ,B 两点,则以AB 为直径的圆的标准方程为( )高频易错题(45分钟)A .22(1)4x y ++=B .22(1)4x y -+=C .22(1)4x y ++=D .22(1)4x y +-= 【答案】B【解析】由抛物线的性质知AB 为通径,焦点坐标为(1,0),直径224R AB p ===,即2R =,所以圆的标准方程为22(1)4x y -+=.3.(2019·宁夏银川一中调研考试)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 4.(2019·广东省5月仿真冲刺模拟卷)斜率为(0)k k <的直线l 过点(0,1)F ,且与曲线21(0)4y x x =≥ 及直线1y =-分别交于,A B 两点,若||6||FB FA =,则k =_____.【答案】12-【解析】易知曲线21(0)4y x x =≥是抛物线2:4C x y =的右半部分,如图,其焦点为(0,1)F ,准线1y =-,过点A 作AH ⊥准线,垂足为H ,则||||AH AF =, 因为||6||FB FA =,所以||5||AB AH =,||tan||AHABHBH∠===,故直线l的斜率为.5.(2019·河南省八校高三1月尖子生联赛)已知椭圆2222:1(0)x yC a ba b+=>>,1(2,2)P,2P,3(2,3)P-,4(2,3)P四点中恰有三点在椭圆C上.(1)求C的方程;(2)已知点(0,1)E,问是否存在直线p与椭圆C交于M,N两点且||||ME NE=?若存在,求出直线p斜率的取值范围;若不存在,请说明理由.【答案】(1)2211612x y+=;(2)存在,11(,)22-.【解析】(1)由于3P,4P两点关于y轴对称,故由题设知C经过34,P P两点,又由22224449a b a b+<+知C不经过点1P,所以点2P在C上.因此222221211649121abba b⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪+=⎪⎩,所以C的方程为2211612x y+=.(2)假设存在满足条件的直线:p y kx m=+,设11(,)M x y,22(,)N x y.将直线:p y kx m=+与椭圆联立可得22222(34)8448011612y kx mk x kmx mx y=+⎧⎪⇒+++-=⎨+=⎪⎩.222222644(34)(448)01612k m k m k m∆=-+->⇒+>①,故122834kmx xk-+=+,212244834mx xk-=+,设MN 的中点为00(,)F x y ,故12024234x x km x k +-==+,002334my kx m k =+=+, 因为||||ME NE =,所以EF MN ⊥,所以1EF k k =-,所以22231341(43)434mk k m k km k -+⋅=-⇒=-+-+, 代入①得22242111612(43)1683022k k k k k +>+⇒+-<⇒-<<, 故存在直线p 使得||||ME NE =,且直线p 斜率的取值范围是11(,)22-.1.(2019·江西省新余市第一中学模拟考试)若113420x y --=,223420x y --=,则过11(,)A x y ,22(,)B x y 两点的直线方程是( )A .4320x y +-=B .3420x y --=C .4320x y ++=D .3420x y -+= 【答案】B【解析】由题意得11(,)A x y ,22(,)B x y 两点的坐标都满足方程3420x y --=, 所以过11(,)A x y ,22(,)B x y 两点的直线方程是3420x y --=.2.(2019·湖南、湖北、河南、河北、山东五省名校4月模拟)已知椭圆的长轴长是倍,则该椭圆的离心率是( )A .31 B.3 C.3 D.3精准预测题【答案】C【解析】由题可知a =,则3c e a ===. 3.(2019·山东省济南第一中学2月适应考试)已知△ABC 的顶点0()5,A -,()5,0B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( )A .221916x y -=B .221169x y -= C .221(3)916x y x -=> D .221(4)169x y x -=> 【答案】C【解析】如图,||||8AD AE ==,||||2BF BE ==,||||CD CF =,所以|||||82610|CA CB AB -=-=<=.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,且0y ≠, 故轨迹方程为221(3)916x y x -=>. 4.(2019·广东省高三二月调研考试)以抛物线24y x =的焦点为圆心且过点(5,P -的圆的标准方程为____________.【答案】22(1)36x y -+=【解析】由题意知,P 在抛物线上,且F 的坐标为(1,0),则||55162p PF =+=+=, 故所求的圆的标准方程为22(1)36x y -+=.5.(2019·湖南、湖北、河南、河北、山东五省名校高考适应性考试)过抛物线2:4C y x =的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,N 点在l 上,且MN l ⊥,则M 到直线NF 的距离为_____.【答案】【解析】设00(,)M x y ,∴2004y x =,∴0y =,∴0sin 60︒=,020043214x x x =++, ∴20031030x x -+=,解得0=3x 或013x =(舍去),∴4MF =, ∵MN MF =,60NMF ∠=︒,∴△MNF 为等边三角形,∴M 到NF直线的距离为42⨯=。

历年高考数学真题考点归纳 2020年 第九章 解析几何 第二节 圆锥曲线1(1)

历年高考数学真题考点归纳 2020年 第九章 解析几何 第二节 圆锥曲线1(1)

历年高考真题考点归纳 2020年 第九章 解析几何 第二节 圆锥曲线1一、选择题1.(重庆理8)在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为A .25B .210 C. D .220【答案】B2.(浙江理8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则A .2132a =B .213a =C .212b =D .22b =【答案】C3.(四川理10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为A .(2,9)--B .(0,5)-C .(2,9)-D .(1,6)-【答案】C【解析】由已知的割线的坐标(4,114),(2,21),2a a K a ---=-,设直线方程为(2)y a x b =-+,则223651(2)b a =+-又2564(2,9)(2)y x ax b a y a x b ⎧=+-⇒=-⇒=⇒--⎨=-+⎩4.(陕西理2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x =-B .28y x =C .24y x =-D .24y x = 【答案】B5.(山东理8)已知双曲线22221(0b 0)x y a a b -=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -=【答案】A6.(全国新课标理7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为 (A(B(C ) 2 (D ) 3 【答案】B7.(全国大纲理10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-【答案】D8.(江西理9)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(-,) B .(,0)∪(0,)C .[3-,3]D .(-∞,3-)∪(3,+∞)【答案】B9.(湖南理5)设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1【答案】C10.(湖北理4)将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .n=0B .n=1C . n=2D .n ≥3【答案】C11.(福建理7)设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或 B .23或2 C .12或2 D .2332或 【答案】A 12.(北京理8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为 A .{}9,10,11 B .{}9,10,12C .{}9,11,12 D .{}10,11,12【答案】C13.(安徽理2)双曲线8222=-y x 的实轴长是(A )2 (B ) 22 (C ) 4 (D )42【答案】C14.(辽宁理3)已知F 是抛物线y2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为(A )34 (B )1 (C )54 (D )74【答案】C15.在极坐标系中,点(,)π23 到圆2cos ρθ= 的圆心的距离为 (A )(答案 D 【命题意图】本题考查极坐标的知识及极坐标与直角坐标的相互转化,考查两点间距离.【解析】极坐标(,)π23化为直角坐标为(2cos ,2sin )33ππ,即(1.圆的极坐标方程2cos ρθ=可化为22cos ρρθ=,化为直角坐标方程为222x y x +=,即 22(1)1x y -+=,所以圆心坐标为(1,0),则由两点间距离公式d ==故选D.二、填空题15.(湖北理14)如图,直角坐标系xOy 所在的平面为α,直角坐标系''x Oy (其中'y 轴一与y 轴重合)所在的平面为β,'45xOx ∠=︒。

2020年高考文科数学重难点04 解析几何(学生版)

2020年高考文科数学重难点04  解析几何(学生版)

重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·四川高三期末(文))已知双曲线()222210,0x y a b a b-=>>,点(4,1)在双曲线上,则该双曲线的方程为A .2214x y -= B .221205x y -= C .221123y x -= D .2218x y -= 2.(2019·天津南开中学高考模拟(文))过抛物线24y x =焦点F 的直线与双曲线221(0)y x m m -=>的一条渐近线平行,并交抛物线于,A B 两点,若|||AF BF >且||3AF =,则m 的值为( )A .8B .CD .43.(2020·宁夏高三月考(文))已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k=( )A .13B .3C .23D .34.(2019·山东高考模拟(文))已知抛物线2:4C y x =的焦点F 和准线l ,过点F 的直线交l 于点A ,与抛物线的一个交点为B ,且3FA FB =-u u u v u u u v ,则||AB =( )A .23B .43C .323D .1635 (2019·天津实验中学高考模拟(文))(10)设O 为坐标原点,1F ,2F 是双曲线2222x y 1a b -=(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠1F P 2F =60°,,则该双曲线的渐近线方程为( )A .BC .=0D ±y=0二、填空题 6.(2020·福建省龙岩第一中学高三期中(文))过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴的一个端点,且ABD ∆为钝角三角形,则此双曲线离心率的取值范围为__________.7.(2019·辽宁高三开学考试(文))已知双曲线C :22221(0,0)x y a b a b-=>>,过双曲线C 的右焦点F 作C 的渐近线的垂线,垂足为M ,延长FM 与y 轴交于点P ,且4FM PM =,则双曲线C 的离心率为__________.三、解答题8.(2020·广东高三期末(文))已知动圆C 过定点()F 1,0,且与定直线x 1=-相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点()M 2,0-的任一条直线l 与轨迹E 交于不同的两点P,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得QNM PNM π∠∠+=?若存在,求点N 的坐标;若不存在,说明理由.9.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p . (∠)求抛物线C 的标准方程与其准线l 的方程;(∠)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.10.(2019·广东高考模拟(文))过点()2,0M 的直线l 与抛物线()2:20C y px p =>交于A ,B 两点,O 为坐标原点,OA OB ⊥.(1)求p 的值;(2)若l 与坐标轴不平行,且A 关于x 轴的对称点为D ,求证:直线BD 恒过定点.11.(2020·四川高三期末(文))已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,椭圆的离心率为12,过椭圆1C 的左焦点1F ,且斜率为1的直线l ,与以右焦点2F 2C 相切.(1)求椭圆1C 的标准方程;(2)线段MN 是椭圆1C 过右焦点2F 的弦,且22MF F N λ=u u u u r u u u u r ,求1MF N ∆的面积的最大值以及取最大值时实数λ的值.12.(2019·贵州高考模拟(文))已知椭圆C :22221(0)x y a b a b+=>>的右焦点为F ,上顶点为M ,直线FM 的斜率为FM . (1)求椭圆C 的标准方程;(2)若不经过点F 的直线l :(0,0)y kx m k m =+与椭圆C 交于,A B 两点,且与圆221x y +=相切.试探究ABF ∆的周长是否为定值,若是,求出定值;若不是,请说明理由.13.(2019·河南高考模拟(文))已知O 为坐标原点,过点()1,0M 的直线l 与抛物线C :22(0)y px p =>交于A ,B 两点,且3OA OB u u u r u u u r ⋅=-. (1)求抛物线C 的方程;(2)过点M 作直线'l l ⊥交抛物线C 于P ,Q 两点,记OAB ∆,OPQ ∆的面积分别为1S ,2S ,证明:221211S S +为定值.以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。

2020年高考试题:解析几何

2020年高考试题:解析几何

(x 3)2 y2 9 圆心 (3,0) ,半径 3 。
过圆内一点的直线截得弦长最小值:与圆内该点与圆心连线垂直的直线截得弦长。
如下图所示:
根据两点之间的距离公式得到: PC (3 1)2 (0 2)2 22 22 8 ;
根据勾股定理得到: PA2 AC 2 PC 2 9 8 1 PA 1 ;
(1 m2 )x2 6m2 x (9m2 9) 0 。直线 PB 与椭圆 E 交于 B , D 两点。
根据韦达定理得到: xB
xD
6m2 1 m2
, xB
3
3
xD
6m2 1 m2
xD
6m2 1 m2
3
6m2 3(1 m2 ) 1 m2
6m2 3 3m2 1 m2
3m2 3

9 m2
AG GB 8 a a 1 (1) 8 a2 y2 1 。 a 3 A(3,0) , B(3,0) 。 9
(2) P 为直线 x 6 上的动点 假设:点 P 的坐标为 (6, m) 。
P(6, m)

A(3,0)
)

D(
3m2 3 1 m2
,
2m 1 m2
)
kCD
6m 2m 9 m2 1 m2 27 3m2 3m2 3
6m(1 m2 ) 2m(9 m2 ) (27 3m2 )(1 m2 ) (3m2 3)(9 m2 )
9 m2 1 m2
6m 6m3 18m 2m3
8m3 24m
(1)求 E 的方程;
(2)证明:直线 CD 过定点。
本题解析:(1) A , B 分别为椭圆 E : x2 y2 1的左右顶点 A(a,0) , B(a,0) ; a2

2020年高考文科数学分类汇编:专题九解析几何

2020年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》第九篇:解析几何一、选择题1.【2018全国一卷4】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D2.【2018全国二卷6】双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y = 3.【2018全国二11】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 14.【2018全国三卷8】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣5.【2018全国三卷10】已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为AB .2C .2D .6.【2018天津卷7】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d和2d ,且126d d +=,则双曲线的方程为A221412x y -=B221124x y -= C22139x y -=D 22193x y -= 7.【2018浙江卷2】双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)8.【2018上海卷13】设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A.2B.2C.2D.4二、填空题1.【2018全国一卷15】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.2.【2018北京卷10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.3.【2018北京卷12】若双曲线2221(0)4x y a a -=>的离心率为52,则a =_________. 4.【2018天津卷12】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.5.【2018江苏卷8】在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c ,则其离心率的值是 . 6.【2018江苏卷12】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 .7.【2018浙江卷17】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.8.【2018上海卷2】2.双曲线2214x y -=的渐近线方程为 . 9.【2018上海卷12】已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,的最大值为__________ 三、解答题1.【2018全国一卷20】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.2.【2018全国二卷20】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.3.【2018全国三卷20】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .4.【2018北京卷20】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .5.【2018天津卷19】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,||AB = (I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.6.【2018江苏卷18】如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为26,求直线l 的方程. 7.【2018浙江卷21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围. 8.【2018上海卷20】(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数t >2,在平面直角坐标系xOy 中,已知点F (2,0),直线l :x=t ,曲线τ:²8y x =00x t y (≦≦,≧),l 与x 轴交于点A ,与τ交于点B ,P 、Q 分别是曲线τ与线段AB 上的动点.(1)用t 为表示点B 到点F 的距离;(2)设t =3,2FQ =∣∣,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在τ上?若存在,求点P 的坐标;若不存在,说明理由. 参考答案 一、选择题1.C2.A3.D4.A5.D6.C7.B8.C 二、填空题1. 222.)0,1(3.44.0222=-+x y x 5.2 6.3 7.58.x y 21±= 9.32+三、解答题1.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN . 综上,∠ABM =∠ABN .2.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=.由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为 2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.3.解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,23=.于是1||22x FA ==-uu r .同理2||=22x FB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .4.解:(Ⅰ)由题意得2c =,所以c =又c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-==易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+,学科*网 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 5. 解:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由||AB ==,从而3,2a b ==.所以,椭圆的方程为22194x y +=. (II )设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得1294x k =+. 由215x x =,可得2945(32)k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 6.解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==.因此,点P 的坐标为(2,1).②因为三角形OAB 的面积为26, 所以21 26AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,). 综上,直线l 的方程为532y x =-+.7.解:(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是4. 8.解:(1)由抛物线的性质可知,抛物线x y 82=的准线为2-=x ,抛物线上的点B 到焦点)0,2(F 的距离等于点B 到准线2-=x 的距离,由题意知,点B 的横坐标为t ,则2+=t BF 。

2020高考文科数学总复习课件:第九章 解析几何9.7

2020高考文科数学总复习课件:第九章 解析几何9.7
x y+y x
x +x
y +y
点,则过点 P 的切线方程为 Ax0x+B 0 0 +Cy0y+D 0 +E 0 +F=0.
2
2
2
3.抛物线 y2=2px(p>0)的通径长为 2p.
第五页,编辑于星期日:一点 三十七分。
9.7 抛物线
第九章
必备知识·预案自诊
必备知识·预案自诊
知识梳理
关键能力·学案突破
C.x2=6y
D.x2=4y
(2)(2018河北衡水中学押题卷四,6)抛物线E:y2=2px(p>0)的焦点为F,点
A(0,2),若线段AF的中点B在抛物线上,则|BF|=(
)
D

.
x2=-2py(p>0)
第二页,编辑于星期日:一点 三十七分。
9.7 抛物线
第九章
必备知识·预案自诊
必备知识·预案自诊
知识梳理
-3-
关键能力·学案突破
考点自诊
3.抛物线的几何性质
标准方程

y2=2px
y2=-2px
x2=2py
x2=-2py
(p>0)
(p>0)
(p>0)
(p>0)
p 的几何意义:焦点 F 到准线 l 的距离
9.7 抛物线
第九章
必备知识·预案自诊
考点1
考点2
考点3
考点4
-13-
关键能力·学案突破
关键能力·学案突破
考点5
解析: (1)由抛物线C的方程为y2=4x,得F(1,0),
设A(x1,y1),B(x2,y2),|AF|等于点A到准线x=-1的距离x1+1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热点09 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用. 【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算. 【考查题型】选择,填空,解答题【限时检测】(建议用时:55分钟)1.(2019·湖南雅礼中学高考模拟(文))“26m <<”是“方程22126x y m m+=--为椭圆的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】试题分析:若方程22126x ym m+=--表示椭圆,则20{6026m m m m->->-≠-,解得26m <<且4m ≠,所以26m <<是方程22126x y m m+=--表示椭圆的必要不充分条件,故选B .考点:椭圆的标准方程;必要不充分条件的判定.2.(2019·四川高考模拟(文))已知P 为双曲线122=-y x 右支上任意一点,Q 与P 关于x 轴对称,12,F F 为双曲线的左、右焦点,则12F P F Q ⋅=u u u r u u u u r() A .1 B .-1C .2D .-2【答案】B 【解析】【分析】设出P 的坐标,求出Q 坐标,求出焦点坐标,利用向量的数量积求解即可. 【详解】P 为双曲线x 2﹣y 2=1右支上任意一点,Q 与P 关于x 轴对称, F 1(0),F 20)为双曲线的左,右焦点,设P (t ,m ),则Q (t ,﹣m ),根据点P 在双曲线上得到:t 2﹣m 2=1,则12F P F Q ⋅=u u u r u u u u r (t m )•(t ,-m )=t 2﹣m 2﹣2=1﹣2=﹣1. 故选:B . 【名师点睛】本题考查双曲线的简单性质的应用,向量的数量积的求法,考查计算能力.3.(2019·江西高考模拟(文))阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间的距离为2,动点P满足PA PB=P 、A 、B 不共线时,三角形PAB 面积的最大值是( ) A .12x x BC.3D【答案】A 【解析】 【分析】由题,设点A(-1,0), B(1,0),根据题意,求得圆的方程,再求得P 点的位置,即可求得面积的最大值. 【详解】以经过,A B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:A(-1,0), B(1,0) 设P(x, y),||||PA PB ==Q , 两边平方并整理得:2222610(3)8x y x x y +-+=⇒-+= , 当点P 到AB (x 轴)的距离最大时,三角形PAB 的面积最大,此时面积为122⨯⨯=故选:A 【名师点睛】本题考查了曲线的轨迹方程,熟悉圆的定义和求轨迹方程是解题的关键,属于中档题型.4.(2019·河北唐山一中高考模拟(文))已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别为12,,F F O 为坐标原点,A 为椭圆上一点,122F AF π∠=,连接2AF y 交轴于M 点,若23OM OF =,则该椭圆的离心率为( ) A .13BC .58D.4【答案】D 【解析】 【分析】设AF 1=m ,AF 2=n .如图所示,Rt △AF 1F 2∽Rt △OMF 2,可得12213AF OM AF OF ==.可得m +n =2a ,m 2+n 2=4c 2,n =3m .化简解出即可得出. 【详解】设AF 1=m ,AF 2=n .如图所示,由题意可得:Rt △AF 1F 2∽Rt △OMF 2,∴12213AF OM AF OF ==. 则m +n =2a ,m 2+n 2=4c 2,n =3m .化为:m 2223b =,n 2=9m 2=6b 2.∴223b +6b 2=4c 2.∴()2253a c -=c 2,化为:4c a =. 故选:D .【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222-c a b =转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2019·贵州高考模拟(文))已知实轴长为的双曲线C :22221(0)x y a b a b-=>>的左、右焦点分别为F 1(﹣2,0),F 2(2,0),点B 为双曲线C 虚轴上的一个端点,则△BF 1F 2的重心到双曲线C 的渐近线的距离为( )A .13B .3C .3D .23【答案】A 【解析】 【分析】求出a ,b ,c 得到三角形的重心坐标,求出双曲线的渐近线方程,然后利用点到直线的距离求解即可. 【详解】实轴长为C :22221(0)x y a b a b -=>>的左、右焦点分别为F 1(﹣2,0),F 2(2,0),可得a ,c =2,则b 不妨B (0),则△BF 1F 2的重心G 0,3⎛⎫⎪ ⎪⎝⎭,双曲线的渐近线方程为:y =x 的距离为:d 13=. 故选:A . 【名师点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.6.(2019·广东高考模拟(文))已知抛物线2:2(0)C y px p =>的焦点为F ,准线l 与x 轴的交点为A ,M 是抛物线C 上的点,且MF x ⊥轴,若以AF 为直径的圆截直线AM 所得的弦长为2,则p =( )A .2B .C .4D .【答案】B 【解析】 【分析】求出直线AM 的方程,根据垂径定理列方程得出p 的值. 【详解】把2p x =代入22y px =可得y p =±,不妨设M 在第一象限, 则,2p M p ⎛⎫⎪⎝⎭, 又,02p A ⎛⎫-⎪⎝⎭,∴直线AM 的方程为2p y x =+,即02px y -+=, ∴原点O 到直线AP的距离pd ==Q 以AF 为直径的圆截直线AM 所得的弦长为2,22148p p ∴=+,解得p =故选:B . 【名师点睛】本题考查了抛物线的性质,直线与圆的位置关系,属于中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.7.(2019·天津南开中学高考模拟)已知双曲线()222210,0x y a b a b-=>>的离心率为32,过右焦点F 作渐近线的垂线,垂足为M ,若FOM ∆O 为坐标原点,则双曲线的标准方程为( )A .22415y x -=B .222125x y -=C .22145x y -=D .2211620x y -=【答案】C 【解析】 【分析】运用离心率公式,求得渐近线方程,运用点到直线的距离公式可得F 到渐近线的距离为b ,由勾股定理可得OM a =,运用三角形的面积公式,结合,,a bc 的关系,解得,a b ,即可求出双曲线方程. 【详解】由题意可得 32c e a ==①,可得b a == ,设 (),0F c , 渐近线为by x a=, 可得 F到渐近线的距离为MF b == ,由勾股定理可得OM a === , 因为FOM ∆12ab =② , 又 222+=a b c ③,由①②③解得2,3b a c === ,所以双曲线的方程为22145x y -= ,故选C.【名师点睛】本题主要考查双曲线的方程与几何性质,属于中档题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.8.(2019·广东高三月考(文))已知椭圆22221(0)x y a b a b+=>>的短轴长为2,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB ∆的面积为22,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为( ) A .[1,2] B.C.4]D .[1,4]【答案】D 【解析】分析: 由得椭圆22221(0)x y a b a b +=>>的短轴长为2,()112F AB S a c b ∆=-=可得,2,a c ==1PF x =可得()21211442PF PF x +=--,从而可得结果.详解:由得椭圆22221(0)x y a b a b +=>>的短轴长为22,1b b ==,()11222F AB S a c b ∆=-=,解得22,a c a c -=∴==1224PF PF a +==,设1PF x =,则24PF x =-,[],x a c a c ∈-+,即22x ⎡∈⎣, ()[]212111141,4442PF PF x x x ∴+=+=∈---,故选D. 【名师点睛】:本题考查题意的简单性质,题意的定义的有意义,属于中档题. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、等椭圆的基本量时,要理清它们之间的关系, 挖掘出它们之间的内在联系. 二、填空题9.(2019·山东高考模拟(文))已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,A ,B 分别为椭圆C 的左,右顶点,F 为椭圆C 的右焦点,过F 的直线l 与椭圆C 交于不同的两点P ,Q ,当直线l 垂直于x 轴时,四边形APBQ 的面积为6,则椭圆C 的方程为__________.【答案】22143x y +=【解析】 【分析】根据题意和椭圆的几何性质得到四边形的面积为:221226 3.2b a b a⨯⨯=⇒=结合离心率的值,构造方程得到结果.【详解】根据题意得到当直线和x 轴垂直时四边形可分割成两个三角形,底边为2a,高为半通径长2b a此时四边形的面积为:221226 3.2b a b a⨯⨯=⇒=再由离心率为12,得到()222221,44 4.2c a c a b a a ===-⇒= 此时方程为:22143x y +=.【名师点睛】这个题目考查了椭圆的几何性质的应用,方程的求法,涉及离心率的应用,以及椭圆通径的应用;题目比较基础. 求椭圆方程的方法一般就是根据条件建立,,a b c的方程,求出22,a b 即可,注意222,ca b c e a=+=的应用. 10.(2019·湖南高考模拟(文))已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.【答案】2【解析】 【分析】 由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y y x c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --= 由ce a=,可得2410e e --=,解得2e =+【名师点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).11.(2019·江西高考模拟(文))设1F ,2F 为椭圆1C :221122111(0)x y a b a b +=>>与双曲线2C 的公共左、右焦点,椭圆1C 与双曲线2C 在第一象限内交于点M ,12MF F ∆是以线段1MF 为底边的等腰三角形,且1=2MF .若椭圆1C 的离心率152,145e ⎡⎤∈⎢⎥⎣⎦,则双曲线2C 的离心率2e 的取值范围是_______. 【答案】5,24⎡⎤⎢⎥⎣⎦【解析】 【分析】由题,椭圆和双曲线的焦点相同和定义可得122a a c -=,即转化为离心率12112e e -=,再由题152,145e ⎡⎤∈⎢⎥⎣⎦,可求得双曲线2C 的离心率2e 的取值. 【详解】设双曲线2C 的方程为()2222222210,0x y a b a b -=>>,由题意知11222,2MF F F MF c ===,其中222222211c a b a b =+=-,又根据椭圆与双曲线的定义得1211222|2MF MF a MF MF a ⎧+=⎪⎨-=⎪⎩,则12222222c a c a +=⎧⎨-=⎩,即122a a c -= 其中122,2a a 分别为椭圆的长轴长和双曲线的实轴长.所以12112e e -=因为椭圆的离心率152,145e ⎡⎤∈⎢⎥⎣⎦,所以2111142,25e e ⎡⎤=-∈⎢⎥⎣⎦所以25,24e ⎡⎤∈⎢⎥⎣⎦,即双曲线2C 的离心率的取值范围是5,24⎡⎤⎢⎥⎣⎦.【名师点睛】本题考查了圆锥曲线综合知识,熟悉椭圆、双曲线的性质和定义是解题的关键,属于难题.12.(2019·重庆高考模拟(文))已知双曲线2221(0)12x y a a -=>的一条渐近线方程为0y -=,左焦点为F ,当点M 在双曲线右支上,点N 在圆22(3)4x y +-=上运动时,则||||MN MF +的最小值为__________. 【答案】7 【解析】 【分析】先由双曲线渐近线求出a ,记双曲线的右焦点为'F ,利用2'MF a MF =+,得'2MN MF MN MF a +=++,再由两点之间线段最短求出'MN MF +的最小值,然后得出答案. 【详解】解:由双曲线方程222112x y a -=,得b =y x =0y -=,得2a =所以双曲线方程为221412x y -=,点()4,0F -记双曲线的右焦点为()'4,0F ,且点M 在双曲线右支上,所以4'MF MF =+ 所以'4MN MF MN MF +=++由两点之间线段最短,得'4MN MF ++最小为'4F N + 因为点N 在圆()2234x y +-=上运动所以'F N 最小为点F 到圆心()0,3的距离减去半径2 所以'523min F N =-= 所以MN MF +的最小值为7 故答案为:7. 【名师点睛】本题考查了双曲线的定义与方程,双曲线的渐近线,平面中线段和最小问题,利用双曲线定义进行线段转化是解本题的关键,属于中档题. 三、解答题13.(2019·天水市第一中学高三月考(文))已知椭圆22221(0)x y a b a b+=>>的离心率为,短轴的一个端点到右焦点的距离为2, (1)试求椭圆M 的方程; (2)若斜率为12的直线l 与椭圆M 交于C 、D 两点,点3(1)2P ,为椭圆M 上一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问:12k k +是否为定值?请证明你的结论【答案】(1)22143x y +=(2)见解析【解析】分析:(1)由条件得a,c ,解得b,即得椭圆标准方程,(2)设C,D 坐标,根据斜率公式得12k k +,设直线方程并与椭圆方程联立方程组,利用韦达定理代入化简可得12k k +为定值.详解:(1).,椭圆的方程为(2)设直线的方程为:,联立直线l 的方程与椭圆方程得:(1)代入(2)得:化简得: (3)当时,即,即时,直线l 与椭圆有两交点,由韦达定理得:,所以,,则,12k k +所以为定值.【名师点睛】:直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化.14.(2019·河南高考模拟(文))椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,A 为椭圆上一动点(异于左、右顶点),若12AF F ∆的周长为4+,且面 积的最大(1)求椭圆C 的方程;(2)设,A B 是椭圆C 上两动点,线段AB 的中点为P ,,OA OB 的斜率分别为12,k k (O 为坐标原点),且1214k k =-,求OP 的取值范围. 【答案】(1)2214x y +=;(2)2⎢⎣.【解析】 【分析】(1)通过2a+2c=4+且122c b ⋅⋅= (2)当直线AB 的斜率k =0时,|OP|2=, 当直线AB 的斜率k ≠0时,可令AB 的方程为:x =my +t ,由2244x y x my t⎧+=⎨=+⎩可得(m 2+4)y 2+2mty +t 2﹣4=0,求得p (244t m +,24mt m -+).由1214k k =-,⇒4222+=m t ,代入|OP |2的运算中,化简得|OP |22132t =+∈(12,2]即可.【详解】(1)由题知,12AF F ∆的周长为=+c a 224+且122c b ⋅⋅= ∴21a b ==,,∴椭圆C 的方程为:2214x y +=;(2)当直线AB 的斜率k =0时,此时k 1,k 2(O 为坐标原点),满足1214k k =-,k 1=-k 2=﹣12. 可令OB 的方程为:y 12x =,(x B >0) 由22244x y x y ⎧=⎪⎨⎪+=⎩可得B),此时|OP|=当直线AB 的斜率k ≠0时,可令AB 的方程为:,my+t x = 由2244x y x my t ⎧+=⎨=+⎩可得0424222=-mty+t +y +m )(, 04t -0)4-t )(4m 4(-t 4△=222222>+>+m m 即…①21212222444mt t y y y y m m ,--+==++, t y y m +x x 2+)+(=2121284tm =+.∴p (244t m +,24mtm -+).∵1214k k =-,∵121214y y x x =-0=42121x +x y y 即. ⇒04221212=++t +y y mt y y +m )()(.⇒4-t 222224m tm-+++.0=t 2 ⇒4+222m t =,且2≥t 2,…② 由①②可得2≥t 2恒成立,|OP |2()222222222222222162416161613(4)(2)442t t m t t m t m m t t t t+-+++=====++∈(12,2]|OP|∈⎝.综上,|OP |的取值范围为]. 【名师点睛】本题考查了椭圆的方程的求法,考查了椭圆的几何性质及直线与椭圆的位置关系的应用,考查了计算能力,转化思想,属于难题.15.(2019·建瓯市第二中学高三月考(理))已知抛物线()220x py p =>的焦点为()0,1F ,A ,B 为抛物线上不重合的两动点,O 为坐标原点,4OA OB ⋅=-u u u r u u u r,过A ,B 作抛物线的切线1l ,2l ,直线1l ,2l 交于点M . (1)求抛物线的方程;(2)问:直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由; (3)三角形ABM 的面积是否存在最小值,若存在,请求出最小值.【答案】(1)24x y =;(2)是,()0,2;(3)是,【解析】 【分析】(1)根据焦点坐标直接求抛物线方程;(2)设直线AB 的方程是y kx b =+,与抛物线方程联立,得到根与系数的关系,同时4OA OB ⋅=-u u u r u u u r,用坐标表示,并代入根与系数的关系,求得定点;(3)由(2)知,直线AB 的方程是2y kx =+,与抛物线方程联立224y kx x y =+⎧⎨=⎩,得到 124x x k +=,128x x ⋅=-,求弦长AB ,利用导数的几何意义求过A ,B 作抛物线的切线1l ,2l ,并求交点M 的坐标,求点M 到直线的距离,并求ABM ∆的面积,和面积的最小值. 【详解】(1)由()0,1F 得2p =,所以抛物线方程为24x y =.(2)当斜率不存在时,与对称轴平行,没有两个交点,当斜率存在时,设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y ,由24y kx b x y=+⎧⎨=⎩得2440x kx b --=,则124x x k +=,124x x b ⋅=-. 又4OA OB ⋅=-u u u r u u u r ,得12124x x y y ⋅+⋅=-,即22121211444x x x x ⋅+⋅=-,∴24402b b b -+=⇒=,所以直线AB 过定点()0,2.(3)由224y kx x y=+⎧⎨=⎩得2480x kx --=,则124x x k +=,128x x ⋅=-∴12AB x =-=设()00,M x y ,由12y x '=, 所以直线()111112:l y y x x x -=-,即11102x x y y --=. 同理直线2221:02l x x y y --=, 又直线1l ,2l 交于点M ,则有10012002102102x x y y x x y y ⎧--=⎪⎪⎨⎪--=⎪⎩,可知点A 、B 在直线00102x x y y --=上,与直线AB 方程20kx y -+=对应系数相等,则02x k =,02y =- 则M 到直线AB的距离d =.所以三角形ABM 的面积()3221422ABMS AB d k =⋅=+△ 则当0AB k =时,()min ABM S =△. 【名师点睛】1本题考查直线与抛物线位置关系的综合问题,意在考查分析问题和解决问题的能力,涉及抛物线中三角形面积的最值的求法和定点问题,第二问中设而不求的基本方法也使得求解过程变得简单,在解决圆锥曲线与动直线问题中,韦达定理,弦长公式都是解题的基本工具.2对于第二问中的定点问题也可以采用特殊值计算也是可以的.16.(2019·重庆南开中学高三月考(文))已知离心率为12的椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,P 为椭圆上异于长轴顶点的动点.当2PF x ⊥轴时,12PF F △面积为32. (1)求椭圆C 的方程;(2)12F PF ∠的内角平分线交x 轴于Q ,求OP OQ ⋅u u u r u u u r的取值范围.【答案】(1)22143x y +=(2)[0,1)【解析】 【分析】(1)利用已知条件,求出椭圆的几何量,然后求解椭圆C 的方程;(2)设()00,P x y ,则直线1PF :()0001y x xy y +=+;2PF :()0001y x xy y -=-,利用点到直线的距离,建立等量关系,从而得到014t x =,表示目标即可. 【详解】(1)213222b c a ⋅⋅=,2a c =,b =,解得1c =,2a =,b =22143x y +=. (2)设()00,P x y ,则直线1PF :()0001y x xy y +=+;2PF :()0001y x xy y -=- 设(,0)Q t=,2200314x y ⎛⎫=- ⎪⎝⎭,=,由于(1,1)t ∈-,0(2,2)x ∈-,则()()0011(1)4(1)422t x t x +⋅-=-⋅+. 化简得014t x =;则201[0,1)4OP OQ x ⋅=∈u u u r u u u r .【名师点睛】本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力.17.(2019·上海高三)曲线()2222:10x y a b a bΓ+=>>的右焦点分别为()()121,0,1,0F F -,短袖长为()0P y 在曲线Γ上,Q 直线:4l x =-上,且11PF QF ⊥.(1)求曲线的标准方程;(2)试通过计算判断直线PQ 与曲线Γ公共点的个数.(3)若点()()1122,,,A x y B x y 在都在以线段12F F 为直径的圆上,且12OA OB x x •=+u u u r u u u r,试求2x 的取值范围.【答案】(1)22143x y +=(2)只有一个公共点(3)1,1⎡⎤-⎣⎦ 【解析】【分析】(1)根据椭圆的几何性质,列出方程组,求得22,a b 的值,即可得到椭圆的标准方程;(2)由11PF QF ⊥,根据向量的数量积公式可得Q 的纵坐标,取得直线PQ 的直线方程,即可作出判定,得到答案;(3)由121212x x y y x x +=+得到()2121210x x y y x -+-=,进而得打不等式222220x x +-≤,即可求解.【详解】(1)由曲线()2222:10x y a b a bΓ+=>>的右焦点分别为()()121,0,1,0F F -,短袖长为22221b c a b c ⎧=⎪=⎨⎪=+⎩,解得2243a b ⎧=⎨=⎩,所以曲线Γ的标准方程为:22143x y +=(2)由()0P y 在()2222:10x y a b a bΓ+=>>,可得23143o y +=,解得0y =,所以2P ⎛⎫± ⎪ ⎪⎝⎭, 设()4,Q t -,则()()1011,3,PF y QF t =--=-u u u r u u u r又由11PF QF ⊥,则120PF QF •=u u u r u u u u r,即(0310ty -+=,解得)031t y =,所以0Q ⎛=- ⎝⎭,所以):4PQ y t x -=+若2P ⎛⎫ ⎪ ⎪⎝⎭,则3:2PQ y x =+由2223230143y x x x y ⎧=+⎪⎪⇒++=⎨⎪+=⎪⎩,解得x = 知道直线PQ 与曲线Γ相切,只有一个公共点;若2P ⎛- ⎝⎭,同理可知直线与曲线相切,只有一个公共点;(3)因为12121212OA OB x x x x y y x x •=+⇒+=+u u u r u u u r,即()2121210x x y y x -+-=2221220x x ≤⇒+-≤所以211x ≤,又211x-≤≤,所以21,1x ⎡⎤∈-⎣⎦.【名师点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。

相关文档
最新文档