三角形章节综合检测(无答案) 新人教版

合集下载

最新人教版八年级数学上册期末章节复习 三角形单元检测及答案

最新人教版八年级数学上册期末章节复习 三角形单元检测及答案

最新人教版八年级数学上册期末章节复习三角形单元检测及答案一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A =90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ).A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上)10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC =95°,∠B=50°,求∠A和∠D.21.(本题满分12分)如图,经测量,B处在A处的南偏西57°的方向,C 处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B中较短两边之和大于第三边,能组成三角形.2.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k 倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC 三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE +∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360° 点拨:由图可知∠1=∠A +∠B ,∠2=∠C +∠D ,∠3=∠E +∠F ,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A +∠B +∠C +∠D +∠E +∠F =360°.17.45° 点拨:在△ABC 中,∠ABC =180°-∠A -∠C =70°,∠1=∠ABC -∠D =70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n ,得180(n -2)=360×3,解得n =8.答:这个正多边形是八边形.20.解:因为∠AOC 是△AOB 的一个外角,所以∠AOC =∠A +∠B (三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC =95°,∠B =50°,所以∠A =∠AOC -∠B =95°-50°=45°.因为AB ∥CD ,所以∠D =∠A =45°(两直线平行,内错角相等).21.解:因为BD ∥AE ,所以∠DBA =∠BAE =57°.所以∠ABC =∠DBC -∠DBA =82°-57°=25°.在△ABC 中,∠BAC =∠BAE +∠CAE =57°+15°=72°,所以∠C =180°-∠ABC -∠BAC =180°-25°-72°=83°.22.答案:(1)12πR 2 (2)πR 2 (3)32πR 2 (4)n -22πR 2 点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.。

人教版八年级上册第11章《三角形》章末达标检测卷

人教版八年级上册第11章《三角形》章末达标检测卷

人教版八年级上册第11章《三角形》章末达标检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形具有稳定性的是()A.正方形B.长方形C.五边形D.直角三角形2.下列四组长度的小木棒中,按首尾顺次连结能组成一个三角形的是()A.1,2,3B.4,5,6C.3,4,12D.4,8,43.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.4.若△ABC的三个内角的比为3:5:2,则△ABC是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形按边分可分为不等边三角形和等腰三角形D.三角形的一个外角大于任何一个内角6.如图,已知△ABC,点D在BC的延长线上,∠ACD=140°,∠ABC=50°,则∠A的大小为()A.50°B.140°C.120°D.90°7.如图,已知BD是△ABC的中线,AB=7,BC=4,△ABD和△BCD的周长的差是()A.2B.3C.4D.不能确定8.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB交BD于点D,已知∠ACB =34°,则∠D的度数为()A.30°B.28°C.26°D.34°9.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长10.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题(共6小题,满分24分,每小题4分)11.在门框钉一根木条能固定住门框,不易变形,这里利用的数学原理是.12.三角形的三边长分别为3、8、x,则x的取值范围是.13.正六边形的一个内角是正n边形一个外角的4倍,则n=.14.在正六边形ABCDEF中,对角线BD、AC交于点M,则∠CMD的度数为.15.如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=25°,∠BDA'=120°,则∠A'EC=.16.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.三.解答题(共7小题,满分46分)17.(5分)如图,Rt△ABC中,∠C=90°,∠B=3∠A,求∠B的度数.18.(5分)如图,已知∠1=20°,∠2=25°,∠A=50°,求∠BDC的度数.19.(6分)如图为一机器零件,∠A=36°的时候是合格的,小明测得∠BDC=98°,∠C =38°,∠B=23°.请问该机器零件是否合格并说明你的理由.20.(6分)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图1,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.求证:∠ACD=∠A+∠B证明:过点C作CE∥AB(过直线外一点)∴∠B=∠A=∵∠ACD=∠1+∠2∴∠ACD=∠+∠B(等量代换)应用:如图2是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值为21.(7分)已知:如图,点D是直线AB上一动点,连接CD.(1)如图1,当点D在线段AB上时,若∠ABC=105°,∠BCD=30°,求∠ADC度数;(2)当点D在直线AB上时,请写出∠ADC、∠ABC、∠BCD的数量关系,并证明.22.(8分)如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于E.(1)若AD⊥BC于D,∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.23.(9分)如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O.(1)若∠ABC=60°,∠C=70°,求∠DAE的度数.(2)若∠C=70°,求∠BOE的度数.(3)若∠ABC=α,∠C=β(α<β),则∠DAE=.(用含α、β的式子表示)参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:具有稳定性的图形是三角形.故选:D.2.解:A、1+2=3,不满足三角形三边关系定理,故错误,不符合题意;B、4+5>6,满足三边关系定理,故正确,符合题意;C、3+4<12.不满足三边关系定理,故错误,不符合题意;D、4+4=8.不满足三角形三边关系定理,故错误,不符合题意.故选:B.3.解:线段BE是△ABC的高的图是选项A.故选:A.4.解:∵△ABC的三个内角的比为3:5:2可设此三角形的三个内角分别为2x°,3x°,5x°,∴2x°+3x°+5x°=180°,解得x=18°,∴5x°=5×18°=90°.∴此三角形是直角三角形.故选:C.5.解:A、正确,符合线段的定义;B、正确,符合三角形内角和定理;C、正确;D、三角形的一个外角大于任何一个和它不相邻的内角,错误.故选:D.6.解:∵∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ACD=140°,∠ABC=50°,∴∠A=140°﹣50°=90°故选:D.7.解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=7﹣4=3.故选:B.8.解:∵∠BAC=90°,∠ACB=34°,∴∠ABC=180°﹣90°﹣34°=56°,∵BD平分∠ABC,∴∠ABD=∠ABC=28°,∵CD∥AB,∴∠D=∠ABD=28°,故选:B.9.解:∵从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,∴=72°,∴每走完一段直路后沿向右偏72°方向行走.故选:A.10.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的四边形为13或14或15,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:利用的数学原理是三角形的稳定性,故答案为:三角形的稳定性.12.解:∵三角形的三边长分别为3,x,8,∴8﹣3<x<3+8,即5<x<11,故答案为:5<x<11.13.解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.14.解:根据题意得∠ABC=,∵AB=BC,∴∠ACB=,∴∠CMD=2∠ACB=60°.故答案为:60°.15.解:如图,∵∠BDA'=120°,∴∠ADA'=60°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=30°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=25°+30°=55°,∴∠AED=125°,∴∠A′ED=125°,∴∠A′EC=∠A′ED﹣∠CED=125°﹣55°=70°.故答案为70°.16.解:①∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,故②错误;③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°,故③正确;④∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∴∠ADB=∠DBC,∵∠DCF=90°﹣∠ABC=∠DBC+∠BDC,∴∠BDC=90°﹣2∠DBC,∴∠DBC=45°﹣∠BDC,故④正确;故答案是:①③④.三.解答题(共7小题,满分46分)17.解:∵∠B=3∠A,∴∠A=∠B,∵∠C=90°,∴∠A+∠B=90°,∴∠B+∠B=90°,解得∠B=67.5°.18.解:∵∠1=20°,∠2=25°,∠A=50°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣50°=85°,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣85°=95°.19.解:作直线AD,∴∠3=∠B+∠1﹣﹣﹣(1)∴∠4=∠C+∠2﹣﹣﹣(2)由(1)、(2)得:∠3+∠4=∠B+∠C+∠1+∠2,即∠BDC=∠B+∠C+∠BAC,∵∠BDC=98°,∠C=38°,∠B=23°∴∠BAC=98°﹣38°﹣23°=37°≠36°,∴该机器零件不合格.20.证明:过点C作CE∥AB(过直线外一点有且只有一条直线与已知直线平行)∴∠B=∠2(两直线平行,同位角相等),∠A=∠1(两直线平行,内错角相等),∵∠ACD=∠1+∠2,∴∠ACD=∠A+∠B(等量代换)应用:对于△BDN,∠MNA=∠B+∠D,对于△CEM,∠NMA=∠C+∠E,对于△ANM,∠A+∠MNA+∠NMA=180°,∴∠A+∠B+∠D+∠C+∠E=180.故答案为:有且只有一条直线与已知直线平行;∠2(两直线平行,同位角相等);∠1(两直线平行,内错角相等);A;180°21.解:(1)如图1中,∵∠ADC=∠ABC+∠BCD,∠ABC=105°,∠BCD=30°,∴∠ADC=135°.(2)如图1中,当点D在线段AB上时,∠ADC=∠ABC+∠BCD.如图2中,当点D在线段AB的延长线上时,∠ABC=∠ADC+∠BCD.如图3中,当点D在线段BA的延长线上时,∠ADC+∠ABC+∠BCD=180°.22.(1)解:∵∠C=40°,∠B=2∠C,∴∠B=80°,∴∠BAC=60°,∵AE平分∠BAC,∴∠EAC=30°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=50°,∴∠DAE=50°﹣30°=20°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.23.解:(1)∠ABC=60°,∠C=70°∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣60°﹣70°=50°,∵AE是角平分线,∴∠EAC=∠BAC=×50°=25°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣70°=20°,∴∠DAE=∠EAC﹣∠CAD=25°﹣20°=5°;(2)∵AE,BF是角平分线,∴∠OAB=∠BAC,∠OBA=∠ABC,∴∠BOE=∠OAB+∠OBA=(∠BAC+∠ABC)=(180°﹣∠C)=×(180°﹣70°)=55°;(3)∠ABC=α,∠C=β,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣α﹣β,∵AE是角平分线,∴∠EAC=∠BAC=(180°﹣α﹣β),∵AD是高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣β,∴∠DAE=∠EAC﹣∠CAD═(180°﹣α﹣β)﹣(90°﹣β)=(β﹣α).故答案为(β﹣α).。

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB=  .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。

渝北区第九中学八年级数学上册 第11章 三角形章末综合训练含解析新人教版

渝北区第九中学八年级数学上册 第11章 三角形章末综合训练含解析新人教版

第11章三角形一、选择题1. 如图,D,E,F是△ABC的边BC上的点,且BD=DE=EF=FC,那么△ABE的中线是( )A.线段AD B.线段AEC.线段AF D.线段DF2. 在△ABC中,∠A=95°,∠B=40°,则∠C的度数是 ( )A. 35°B. 40°C. 45°D. 50°3. 至少有两边相等的三角形是( )A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形4. 如图,小明书上的三角形被墨迹遮挡了一部分,测得其中两个角的度数分别为28°,62°,于是他很快判断出这个三角形是( )A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形5. 如图是六边形ABCDEF,则该图形的对角线的条数是()A.6B.9C.12D.186. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA =10米,OB=8米,那么A,B两地之间的距离可能是( )A.2米B.15米C.18米D.28米7. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°8. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是( )A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)9. 如图,将△ABC沿BC向右平移后得到△DEF,∠A=65°,∠B=30°,则∠DFC的度数是( )A.65° B.35° C.80° D.85°10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为( )A .70°B .108°C .110°D .125°二、填空题11. 如图,已知∠CAE 是△ABC 的外角,AD ∥BC ,且AD 是∠EAC 的平分线.若∠B=71°,则∠BAC=________.12. 如图,在△ABC 中,∠ABC,∠ACB 的平分线相交于点O ,OD⊥OC 交BC 于点D.若∠A=80°,则∠BOD=________°.13. 如图,小明从点A 出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A 时,一共走了________米.14. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别是D ,E ,F .若AC =4,AD =3,BE =2,则BC =________.15. 如图所示,在△ABC 中,∠A =36°,E 是BC 延长线上一点,∠DBE =23∠ABE ,∠DCE =23∠ACE ,则∠D 的度数为________.16. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题17. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?18. 如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=25°,∠E=30°,求∠BAC的度数.19. 如图1-Z-18是一个大型模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?20. 如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)求证:∠BOC+∠A=180°.21. 如图,在△ABC中,BD是角平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.人教版八年级上册第11章三角形章末综合训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】C∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.故选C.8. 【答案】C9. 【答案】D10. 【答案】C ∠1=∠2,∴∠2+∠BCP=∠1+∠BCP=∠ACB=70°.∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.二、填空题11. 【答案】38°12. 【答案】4013. 【答案】120 则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】8 315. 【答案】24°16. 【答案】67.5三、解答题17. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.18. 【答案】解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.19. 【答案】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.故这块模板是合格的.20. 【答案】解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∵∠ABC=50°,∠ACB=60°.∴∠BCO=40°,∠CBO=30°.∴∠BOC=180°-40°-30°=110°.(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∴∠ABE=90°-∠A.∴∠BOC=∠ABE+∠BDC=90°-∠A+90°=180°-∠A.∴∠BOC+∠A=180°.21. 【答案】解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是△ABC的角平分线,∴∠ABC=74°.∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°.∴∠ACE=90°-∠A=44°.第2课时等腰三角形的判定教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知 AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V布置作业:第13章《整式的乘除》整章水平测试(A)一、选择题(每小题3分,共30分)1、下列计算正确的是()(A)(-a)2.(-a)3=-a5(B)(-a)2.(-a4)=(-a)6(C)-a4.(-a)3=(-a)7(D)-a4.a3=-a122、(-x n-1)2的运算的结果是()(A)x2n-1(B)x2n-2(C)-x2n-2(D)-2x2n-23、(a m)3.a n的运算结果是()(A)a3m+n(B)a m+3n(C)a3mn(D)a3(m+n)4、(-2x3y4)3的运算结果是()(A)-6x6y7(B)-8x27y64(C)-6x9y12(D)-8x9y125、下列计算题中,能用公式(a+b)(a-b)=a2-b2的是()(A)(x-2y)(x+y) (B)(n+m)(-m-n)(C)(2x+3)(3x-2) (D)(-a-2b)(-a+2b)6、下列各式从左到右的变形中,是因式分解的是()(A)3x+2x-1=5x-1 (B)(3a+2b)(3a—2b)=9a2-4b2(C)x2+x=x2(1+1/x) (D)2x2—8y2=2(x+2y)(x-2y)7、(1-4x)(x+3y)是下列哪个多项式分解因式的结果()(A)4x2+12xy-x-3y (B)4x2-12xy+x-3y(C)4x2+12xy-x-3y (D)x+3y-4x2-12xy8、多项式a2+b2—2a+4b+6的值总是()(A)负数(B)0 (C)正数(D)非负数9、在下列各多项式中,各项的公因式是6x2y3的是()A、6x2y+12xy2-24y3B、x4y3-3x3y4+2x2y5C、6x4y3+12x3y4-24x2y5D、x2y-3xy2+2y310、下列各多项式中:① x2-y2;②x2+1;③x2+4x;④x2-10x+25其中能直接运用公式法分解因式的个数是()A、1个B、2个C、3个D、4个二、填空题(每小题3分,共24分)11、0.0005=0.5×10n,则n=______.12、-32×(-3)2×3=___.13、a.a 2.a 3.a 4.a 5=________.14、[(102)3]4=_____.15、分解因式:22a a -= . 16、分解因式:92-x = . 17、分解因式2x 2-18 = .18、若3a-b=2,则9a 2-6ab+b 2=______. 三、解答题(共46分)19、(12分)计算:(1)(-2b )2.a 3.(-a)2+(-2ab)2.(-a)3.b.(2)(-4a 2b )3.(bc 2)2-(2a 4b 3c 2).(-a 2b 2).c 2.(3)(-a 5)÷(-a)2+(-3a 2)(-2a).20、分解因式(16分)(1)ma 2—4ma+4m ;(2)a 2—ab+ac —bc.(3)4x 2―y 2+2yz —z 2.(4)a 4+a 3b —ab 3—b 4.21、(4分)已知,求的值.22、(4分)利用因式分解计算.23.(5分)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,下载趣相应的种类和数量的卡片,拼成一个矩形,使它的面积等于a 2+5ab+4b 2并根据你拼成的图形分解多项式a 2+5ab+4b 2.24、(5分)观察下列等式: 9-1=2×4,16-4=3×4,25-9=4×4,36-16=5×4,…,这些等式反映出自然数间的某种规律,设n 表示自然数,请你猜想出这个规律,用含n 的等式表示出来.并加以证明.参考答案一、1.B ;提示:正确的是(-a)2.(-a 4)=(-a)62、B ;提示:利用积的乘方法则,注意符号,结果为x 2n-23、A ;提示:先算乘方,再算积,结果为(a m )3.a n4、D ;提示:利用公式(ab )2=a 2b 25、C ;提示:注意公式中的字母的对应.6、D;提示:A示加法,B是整式的乘法,C的右边不是整式,故正确的是D.7、D;提示:x+3y-4x2-12xy=(x+3y)-4x(x+3y)=(1-4x)(x+3y)8、C;提示:a2+b2—2a+4b+6=(a2-2a+1)+(b2+4b+4)+1=(a-1)2+(b+2)2+19、C;提示:6x4y3+12x3y4-24x2y5=6x2y3(x2+3xy-4y2)10、B;提示:能运用公式法的有①④二、11、-2;提示:0.0005=0.5×10-2=0.5×10n,∴n=-212、-243;提示:-32×(-3)2×3=-32+2+1=-3513、a15;提示:a.a2.a3.a4.a5=a1+2+3+4+5=a15,注意a指数是114、1024;提示:、[(102)3]4=102×3×415、原式=a(a-2);16、原式=(x+3)(x-3);17、原式=2(x+3)(x-3);18、4;提示:9a2-6ab+b2=(3a-2b)2三、19、(1)-12a5b3;(2)-62a6b5c4;(3)7a320.(1)m(a—2)2;(2)(a+c)(a—b);(3)(2x—y+z)(2x+y—z);(4)(a+b)(a—b)(a2+ab+b2).21.解:.则可列方程为,∴.点评:熟练掌握单项式除以单项式的除法法则是解题关键.22、解:.23、由式a2+5ab+4b2知,可用1张图(1),5张图(2),4张图(3)拼成如图.由图形的面积可把a2+5ab+4b2分解为(a+b)(a+4b)。

人教版八年级上册数学12.2 三角形全等的判定 知识点和对应练习(无答案)

人教版八年级上册数学12.2 三角形全等的判定 知识点和对应练习(无答案)

12.2 三角形全等的判定第1课时 “边边边”一、课堂导入问题提出:一块三角形的玻璃损坏后,只剩下如图①所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.学生活动:观察,思考,回答教师的问题.方法如下:可以将图①的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图②,剪下模板就可去割玻璃了.如果△ABC ≌△A ′B ′C ′,那么它们的对应边相等,对应角相等.反之,如果△ABC 与△A ′B ′C ′满足三条边对应相等,三个角对应相等,即AB =A ′B ′,BC =B ′C ′,CA =C ′A ′,∠A =∠A ′,∠B =∠B ′,∠C =∠C ′这六个条件,就能保证△ABC ≌△A ′B ′C ′.从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等.这种说法对吗?二、知识点梳理边边边1.三边分别相等的两个三角形全等.简记为“边边边”或“SSS ”. 2.“边边边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,∴△ABC ≌△A 1B 1C 1(SSS).三、考点分类考点一: 利用“SSS ”判定两个三角形全等【例1】 如图,AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .求证:△ABC ≌△DEF .解析:已知△ABC 与△DEF 有两边对应相等,通过BE =CF 可得BC =EF ,即可判定△ABC ≌△DEF .证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧BC =EF ,AB =DE ,AC =DF ,∴△ABC ≌△DEF (SSS).方法总结:判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二: “SSS ”与全等三角形的性质结合进行证明或计算【例2】 如图所示,△ABC 是一个风筝架,AB =AC ,AD 是连接点A 与BC 中点D 的支架,求证:AD ⊥BC .解析:要证AD ⊥BC ,根据垂直定义,需证∠1=∠2,∠1=∠2可由△ABD ≌△ACD 证得.证明:∵D 是BC 的中点,∴BD =CD .在△ABD 和△ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD (SSS),∴∠1=∠2(全等三角形的对应角相等).∵∠1+∠2=180°,∴∠1=∠2=90°,∴AD ⊥BC (垂直定义).方法总结:将垂直关系转化为证两角相等,利用全等三角形证明两角相等是全等三角形的间接应用.考点三:利用“边边边”进行尺规作图【例3】已知:如图,线段a、b、c.求作:△ABC,使得BC=a,AC=b,AB=c.(保留作图痕迹,不写作法)解析:首先画AB=c,再以B为圆心,a为半径画弧,以A为圆心,b为半径画弧,两弧交于一点C,连接BC,AC,即可得到△ABC.解:如图所示,△ABC就是所求的三角形.方法总结:关键是掌握基本作图的方法,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.考点四:利用“SSS”解决探究性问题【例4】如图,AD=CB,E、F是AC上两动点,且有DE=BF.(1)若E、F运动至图①所示的位置,且有AF=CE,求证:△ADE≌△CBF.(2)若E、F运动至图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E、F不重合,AD和CB平行吗?说明理由.解析:(1)因为AF=CE,可推出AE=CF,所以可利用SSS来证明三角形全等;(2)同样利用三边来证明三角形全等;(3)因为全等,所以对应角相等,可推出AD∥CB.解:(1)∵AF =CE ,∴AF +EF =CE +EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(2)成立.∵AF =CE ,∴AF -EF =CE -EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(3)平行.∵△ADE ≌△CBF ,∴∠A =∠C ,∴AD ∥BC .方法总结:解决本题要明确无论E 、F 如何运动,总有两个三角形全等,这个在图形中要分清.【课堂练习】1、找第三边(减公共部分)如图,已知点 B ,C ,D ,E 在同一直线上,且 A B=AE ,AC=AD ,BD=CE . 求证:△ABC ≌△AED .2、找第三边(加公共部分) 如图,点 B ,E ,C ,F 在同一条直线上,AB=DE ,AC=DF ,BF=CE ,求证:△ABC ≌△DEF ;3、找第三边(公共边)如图,AD=CB,AB=CD,求证:△ACB≌△CAD.第2课时“边角边”一、课堂导入小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?让我们一起来探索三角形全等的条件吧!二、知识点梳理边角边1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS”.2.“边角边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,∠B =∠B 1,BC =B 1C 1,∴△ABC ≌△A 1B 1C 1(SAS).3.“SSA ”不能判定两个三角形全等. 三、考点分类考点一: 利用“SAS ”判定三角形全等【例1】 如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .解析:由AE ∥BC ,根据平行线的性质,可得∠A =∠B ,由AD =BF 可得AF =BD ,又AE =BC ,根据SAS ,即可证得△AEF ≌△BCD .证明:∵AE ∥BC ,∴∠A =∠B .∵AD =BF ,∴AF =BD .在△AEF 和△BCD 中,∵⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,∴△AEF ≌△BCD (SAS).方法总结:判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.考点二: “边边角”不能证明三角形全等【例2】 下列条件中,不能证明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DFC .BC =EF ,∠B =∠E ,AC =DFD .BC =EF ,∠C =∠F ,AC =DF解析:要判断能不能使△ABC ≌△DEF ,应看所给出的条件是不是两边和这两边的夹角,只有选项C 的条件不符合,故选C.方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的.考点三:利用全等三角形进行证明或计算【例3】 已知:如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=45°,求∠C 的度数.解析:利用已知条件易证∠ABC =∠FBE ,再根据全等三角形的判定方法可证明△ABC ≌△FBE ,由全等三角形的性质即可得到∠C =∠BEF .再根据平行,可得出∠BEF 的度数,从而可知∠C 的度数.解:∵∠1=∠2,∴∠ABC =∠FBE .在△ABC 和△FBE 中,∵⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,∴△ABC≌△FBE (SAS),∴∠C =∠BEF .又∵BC ∥EF ,∴∠C =∠BEF =∠1=45°.方法总结:全等三角形是证明线段和角相等的重要工具.考点四: 全等三角形与其他图形的综合【例4】 如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .解析:(1)因为已知条件中有两个正方形,所以AD =CD ,DE =DG ,它们的夹角都是∠ADG加上直角,可得夹角相等,所以△ADE 和△CDG 全等;(2)再利用互余关系可以证明AE ⊥CG .证明:(1)∵四边形ABCD 、DEFG 都是正方形,∴AD =CD ,GD =ED .∵∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,∴∠CDG =∠ADE .在△ADE 和△CDG 中,∵⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDG ,DE =GD ,∴△ADE≌△CDG (SAS),∴AE =CG ;(2)设AE 与DG 相交于M ,AE 与CG 相交于N ,在△GMN 和△DME 中,由(1)得∠CGD =∠AED ,又∵∠GMN =∠DME ,∠DEM +∠DME =90°,∴∠CGD +∠GMN =90°,∴∠GNM =90°,∴AE ⊥CG .【课堂练习】1、找角(加公共部分) 如图所示,CD=CA ,∠1=∠2,EC=BC ,求证:△ABC ≌△DEC .2、找边(加公共部分) 如图,点 E ,F 在 A B 上,AD=BC ,∠A=∠B ,AE=BF .求证:△ADF ≌△BCE .3、角转换,边转换如图,点E、F 在A C 上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE.第2课时“角边角”“角角边”一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、知识点梳理“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”. 2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.3.三角形全等是证明线段相等或角相等的常用方法. 三、考点分类考点一: 应用“ASA ”判定两个三角形全等【例1】 如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用ASA 可证明△ADF ≌△CBE .证明:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.考点二: 应用“AAS ”判定两个三角形全等【例2】 如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等.证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是“其中一个角的对边”.考点三: 灵活选用不同的方法证明三角形全等【例3】 如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是______________.解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.考点四:运用全等三角形解决有关问题【例4】 已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎪⎨⎪⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,∴△BDA ≌△AEC (AAS);(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.【课堂练习】1、角转换,边转换 如图,已知 A B ∥DE ,BC ∥EF ,D ,C 在 A F 上,且 A D=CF , 求证:△ABC ≌△DEF .2、隐含条件(对顶角) 已知:如图 A C ,BD 相交于点 O ,∠A=∠D ,AB=CD , 求证:△AOB ≌△DOC .3、利用外角找角相等1如图,∠A=∠B,AE=BE,点 D在AC 边上,∠1=∠2,AE 和BD 相交于点O.求证:△AEC≌△BED;4、利用外角找角相等2如图,在△ABC 中,AB=AC,点D、E、F 分别在边A B、BC、AC 上,且B D=CE,∠DEF=∠B.图中是否存在和△BDE 全等的三角形?说明理由.第4课时“斜边、直角边”一、课堂导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、知识点梳理“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL”,除此之外,还可以选用“SAS”“ASA”“AAS”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.三、考点分类考点一:应用“斜边、直角边”判定三角形全等【例1】如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD ,∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.考点二: 利用“HL ”判定线段相等【例2】 如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.考点三: 利用“HL ”判定角相等或线段平行【例3】 如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等. 证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt△ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2.方法总结:证明角相等可通过证明三角形全等解决.考点四: 利用“HL ”解决动点问题【例4】 如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.考点五: 综合运用全等三角形的判定方法判定直角三角形全等【例5】 如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.【课堂练习】如图,在△ABC 中,AB=AC ,DE 是过点 A 的直线,BD ⊥DE 于 D ,CE ⊥DE 于点 E ; (1)若 B 、C 在 D E 的同侧(如图所示)且 A D=CE .求证:AB ⊥AC ;(2)若。

三角形综合测试(人教版)(含答案)

三角形综合测试(人教版)(含答案)

三角形综合测试(人教版)试卷简介:本套试卷是针对三角形全章重要知识点及其应用的考查,包括三角形内角和、外角定理,三边关系,多边形内角和公式及镶嵌等。

一、单选题(共12道,每道8分)1.下列判断:①三角形的三个内角中,最多有一个钝角;②三角形的三个内角中,至少有两个锐角;③有两个内角分别为50°和20°的三角形一定是钝角三角形;④直角三角形两锐角互余.其中判断正确的有( )A.1个B.2个C.3个D.4个答案:D解题思路:∵三角形的内角和为180°∴三角形的三个内角中最多有一个钝角,三角形的三个内角中至少有两个锐角,则①②正确;有两个内角为50°和20°的三角形的第三个角为110°,是钝角∴这个三角形是钝角三角形,则③正确;∵直角三角形中有一个角等于90°∴直角三角形中两锐角的和为90°,互余,则④正确.故正确的有①②③④,共4个.故选D.试题难度:三颗星知识点:三角形内角和定理2.如图,在△ABC中,∠ABC=60°,∠ACB=45°,AD,CF都是高,相交于点P,角平分线BE分别交AD, CF于Q,S,则图中的等腰三角形个数是( )A.2B.3C.4D.5答案:D解题思路:∵∠ABC=60°,∠ACB=45°,AD,CF都是高∴∠DAC=45°∴CD=AD∴△ADC为等腰直角三角形∵∠BAC=180°-45°-60°=75°∠BAC=∠BAD+∠DAC∴∠BAD=75°-45°=30°∴∠APF=60°∴∠SPQ=∠APF=60°∵∠ABC=60°,且BE是∠ABC的角平分线∴∠QBD=∠ABQ=30°∴∠BQD=60°∴∠BQD=∠PQS∵∠SPQ=∠PQS=60°∴SP=SQ∴△QSP为等腰三角形∵∠BAD=EBA=30°∴△QAB是等腰三角形∵∠ABE=30°,∠AEB=∠EBC+∠ACD=30°+45°=75°,∠BAC=75°∴∠BAC=∠AEB∴AB=BE∴△ABE是等腰三角形∵在Rt△BCF中,∠BFC=90°,∠CBF=60°∴∠SCB=∠SBC=30°∴△SBC是等腰三角形故△ADC,△QSP,△QAB,△ABE,△SBC是等腰三角形,有5个故选D.试题难度:三颗星知识点:等腰三角形3.如图,一花坛的形状是正六边形(设其为六边形ABCEFG),管理员从BC边上的一点H出发, 沿HC→CE→EF→FG→GA→AB→BH的方向走了一圈回到H处,则管理员从出发到回到原处在途中身体转过了( ).A.90°B.180°C.270°D.360°答案:D解题思路:管理员从BC边上的一点H出发,HC→CE→EF→FG→GA→AB→BH的方向走了一圈回到H处,他正好转过了六边形的所有外角∵多边形外角和为360°∴管理员从出发到回到原处在途中身体转过了360°.故选D.试题难度:三颗星知识点:多边形外角和定理4.如图,D是△ABC中BC边上一点,AB=AC=BD,则∠1和∠2的关系是( )A.180°+∠2=3∠1B.∠1+∠2=90°C.180°-∠1=3∠2D.∠1=2∠2答案:A解题思路:∵AB=AC∴∠B=∠C∵AB=BD∴∠BAD=∠1∵∠1=∠2+∠C=∠2+∠B,∴∠B=∠1-∠2,在△ABD中,∵∠B+∠1+∠BAD=∠B+2∠1=180°∴∠1-∠2+2∠1=180°∴3∠1-∠2=180°即180°+∠2=3∠1.故选A.试题难度:三颗星知识点:三角形外角定理5.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125°B.120°C.140°D.130°答案:D解题思路:如图,∠1=40°∴∠3=90°+∠1=90°+40°=130°∵直尺的两边互相平行∴∠2=∠3=130°故选D.试题难度:三颗星知识点:三角形外角定理6.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为( )A.1B.2C.3D.4答案:C解题思路:∵四条线段的所有组合:3,6,8和3,6,9和6,8,9和3,8,9根据三角形三边关系可得:只有3,6,8和6,8,9和3,8,9能组成三角形.∴最多能组成三角形的个数为3故选C.试题难度:三颗星知识点:三角形三边关系7.如图,过正五边形ABCDE的顶点A作直线,则∠1的度数为( )A.30°B.36°C.38°D.45°答案:B解题思路:∵ABCDE是正五边形∴∠BAE=(5-2)×180°÷5=108°∵AB=AE∴∠AEB=(180°-108°)÷2=36°∵∴∠1=∠AEB=36°故选B.试题难度:三颗星知识点:多边形内角和定理8.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远答案:C解题思路:∵∠C=100°,∠B=30°∴AB>AC如图,取BC的中点E,连接AE,则BE=CE∴AB+BE>AC+CE由三角形三边关系,AC+BC>AB∴AB<AD∴AD的中点M在BE上即点M在BC上,且距点B较近,距点C较远.故选C.试题难度:三颗星知识点:三角形三边关系9.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2的度数是( )A.90°B.100°C.130°D.180°答案:B解题思路:如图,∠BAC=180°-90°-∠1=90°-∠1∠ABC=180°-60°-∠3=120°-∠3∠ACB=180°-60°-∠2=120°-∠2在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°-∠1+120°-∠3+120°-∠2=180°,∴∠1+∠2=150°-∠3,∵∠3=50°∴∠1+∠2=150°-50°=100°故选B.试题难度:三颗星知识点:三角形内角和定理10.一个多边形除了一个内角外,其余各内角的和为2000°,则这个内角是( )A.20°B.160°C.200°D.140°答案:B解题思路:设多边形的边数是n,没加的内角为α(0°<α<180°)根据题意得:(n-2)•180°=2000°+α∵2000°÷180°=11……20°∵n是正整数∴n-2=12∴n=14∴α=160°.故选B.试题难度:三颗星知识点:多边形内角和定理11.用边长为1的正方形纸板,制成一幅七巧板(如图1),将它拼成“小天鹅”图案(如图2),其中阴影部分的面积为( )A. B.C. D.答案:A解题思路:如图,阴影部分面积是正方形的面积减去A,B,C部分的面积,A与B的和是正方形的面积的一半,C的面积是正方形的,∴阴影部分面积==.故选A.试题难度:三颗星知识点:面积问题12.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( )A.正方形B.正六边形C.正八边形D.正十二边形答案:C解题思路:∵正方形的每个内角是90°,90°×2+60°×3=360°,故A选项能密铺;∵正六边形每个内角是120°,120°+60°×4=360°,故B选项能密铺;∵正八边形每个内角是,135°与60°无论怎样也不能组成360°的角,故C选项不能密铺;∵正十二边形每个内角是150°,150°×2+60°=360°,故D选项能密铺.故选C.试题难度:三颗星知识点:平面镶嵌。

人教版八年级上册数学《三角形》单元综合检测卷带答案

人教版八年级上册数学《三角形》单元综合检测卷带答案

人教版数学八年级上学期《三角形》单元测试(考试时间:60分钟试卷满分:120分)一.选择题(每题3分,共计30分)1.已知一个三角形中一个角是锐角,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.(2020•永城市期末)如图,已知BD=CD,则AD一定是△ABC的()A.角平分线 B.高线 C.中线 D.无法确定3.(2019•永城市期中)在三角形的①三条中线;②三条角平分线;③三条高中,一定相交于一点的是()A.①②③B.②C.①D.①②4.(2020•江岸区期末)下列各组线段,能构成三角形的是()A.1cm,3cm,5cm B.2cm,4cm,6cmC.4cm,4cm,1cm D.8cm,8cm,20cm5.(2020•河南二模)如图,直线a∥b,Rt△ABC的直角顶点C落在直线b上,若∠A=50°,∠1=110°,则∠2的度数为()A.40° B.50° C.60° D.70°6.(2019•浉河区期末)如图所示,在△ABC中,∠C=90°,EF∥AB,∠B=39°,则∠1的度数为()A.38° B.39° C.51° D.52°7.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()8.(2020•郑州期末)如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为()A.30° B.60° C.90° D.120°9.(2019•路北区一模)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少()A.30° B.15° C.18° D.20°10.(2019•川汇区期中)长为9,7,5,3的四根水条,选其中三根组成三角形,有几种选法?()A.1种B.2种C.3种D.4种二.填空题(每题3分,共计15分)11.(2020•周口期中)如图,伸缩晾衣架利用的几何原理是四边形的.12.(2020•中原区期末)∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=.13.(2019•金水区三模)如图,将三角尺ABC和三角尺DFF(其中∠A=∠E=90°,∠C=60°,∠F=45°)摆放在一起,使得点A、D、B、E在同一条直线上,BC交DF于点M,那么∠CMF度数等于.14.(2020•交城县期末)有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A点处行走的路程是.15.(2020•永城市期末)如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.在图2中,∠ACD的度数为.三.解答题(共75分)16.(8分)(2020 •洛龙区月考)一个多边形除了一个内角外,其余内角的和为2680度,则这个内角是多少度?17.(9分)(2020•禹州市期中)如图,△ABC中(AB>BC),AB=2AC,AC边上中线BD把△ABC 的周长分成30和20两部分,求AB和BC的长.18.(9分)(2020•滑县期末)如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.(9分)如图所示,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE ∥DF,求证:△DCF为直角三角形.20.(9分)(2020•洛阳期末)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)请你写出∠BAC、∠B、∠E三个角之间存在的等量关系,并写出证明过程.21.(10分)(2020•襄城县期末)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.22.(10分) 2019 •辉县市期末)(1)如图①,在△ABC中,∠C=90°,∠BAC的平分线与外角∠CBE的平分线相交于点D,求∠D的度数.(2)如图②,将(1)中的条件”∠C=90°”改为∠C=α,其它条件不变,请直接写出∠D与∠α的数量关系.23.(11分)(2020•瀍河区月考)在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系是(直接写出结论,不需证明).参考答案一.选择题(每题3分,共计30分)1.已知一个三角形中一个角是锐角,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【答案】D【解析】在锐角三角形中,三个角都是锐角,在直角三角形中,两个角是锐角,在钝角三角形中,两个角是锐角,∴一个三角形中一个角是锐角,那么这个三角形是三种情况都有可能,故选:D.2.(2020•永城市期末)如图,已知BD=CD,则AD一定是△ABC的()A.角平分线 B.高线 C.中线 D.无法确定【答案】C【解析】由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.3.(2019•永城市期中)在三角形的①三条中线;②三条角平分线;③三条高中,一定相交于一点的是()A.①②③B.②C.①D.①②【答案】D【解析】三角形的三条角平分线、三条中线分别交于一点是正确的;锐角三角形或直角三角形的三条高线交于一点,而钝角三角形的三条高所在的直线交于一点,高线指的是线段,故三角形的三条高,不一定相交于一点.故选:D.4.(2020•江岸区期末)下列各组线段,能构成三角形的是()A.1cm,3cm,5cm B.2cm,4cm,6cmC.4cm,4cm,1cm D.8cm,8cm,20cm【答案】C【解析】根据三角形的三边关系,得A、1+3=4<5,不能组成三角形,故此选项错误;B、2+4=6,不能组成三角形,故此选项错误;C、1+4=5>4,能够组成三角形,故此选项正确;D、8+8<20,不能组成三角形,故此选项错误.故选:C.5.(2020•河南二模)如图,直线a∥b,Rt△ABC的直角顶点C落在直线b上,若∠A=50°,∠1=110°,则∠2的度数为()A.40° B.50° C.60° D.70°【答案】D【解析】∵∠ACB=90°,∠A=50°,∴∠B=90°﹣∠A=40°,∵直线a∥b,∴∠3=∠1=110°,∴∠2=∠4=∠3﹣∠B=70°,故选:D.6.(2019•浉河区期末)如图所示,在△ABC中,∠C=90°,EF∥AB,∠B=39°,则∠1的度数为()A .38°B .39°C .51°D .52°【答案】C【解析】∵在△ABC 中,∠C =90°,∠B =39°,∴∠A =51°,∵EF ∥AB ,∴∠1=∠A ,∴∠1=51°,故选:C .7.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是() A .6 B .7 C .8 D .9【答案】C【解析】多边形的外角和是360°,根据题意得:180°•(n ﹣2)=3×360°解得n =8.故选:C .8.(2020•郑州期末)如图,BP 、CP 是△ABC 的外角角平分线,若∠P =60°,则∠A 的大小为()A .30°B .60°C .90°D .120°【答案】B【解析】证明:∵BP 、CP 是△ABC 的外角的平分线,∴∠PCB =12∠ECB ,∠PBC =12∠DBC ,∵∠ECB =∠A +∠ABC ,∠DBC =∠A +∠ACB ,∴∠PCB +∠PBC =12(∠A +∠ABC +∠A +∠ACB )=12(180°+∠A )=90°+12∠A ,∴∠P =180°﹣(∠PCB +∠PBC )=180°﹣(90°+12∠A )=90°−12∠A =60°,∴∠A =60°,故选:B .9.(2019•路北区一模)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少( )A.30° B.15° C.18° D.20°【答案】C×(5﹣2)×180°=108°,正方形的内角是90°,【解析】∵正五边形的内角的度数是15∴∠1=108°﹣90°=18°.故选:C.10.(2019•川汇区期中)长为9,7,5,3的四根水条,选其中三根组成三角形,有几种选法?()A.1种B.2种C.3种D.4种【答案】C【解析】可以选:①9,7,5;②7,5,3;③9,7,3三种;故选:C.二.填空题(每题3分,共计15分)11.(2020•周口期中)如图,伸缩晾衣架利用的几何原理是四边形的.【答案】不稳定性【解析】伸缩晾衣架利用的几何原理是四边形的不稳定性,故答案为:不稳定性.12.(2020•中原区期末)∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=.【答案】50°【解析】∵∠ACD=∠A+∠B,∠ACD=125°,∠A=75°,∴∠B=125°﹣75°=50°,故答案为.50°13.(2019•金水区三模)如图,将三角尺ABC和三角尺DFF(其中∠A=∠E=90°,∠C=60°,∠F=45°)摆放在一起,使得点A、D、B、E在同一条直线上,BC交DF于点M,那么∠CMF度数等于.【答案】105°【解析】∵直角△ABC中,∠ABC=90°﹣∠C=90°﹣60°=30°,同理,∠FDE=90°﹣∠F=90°﹣45°=45°,∴∠DMB=180°﹣∠ABC﹣∠FDE=180°﹣30°﹣45°=105°,∴∠CMF=∠DMB=105°.故答案为:105°.14.(2020•交城县期末)有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A点处行走的路程是.【答案】30米【解析】2×(360°÷24°)=30米.故答案为:30米.15.(2020•永城市期末)如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.在图2中,∠ACD的度数为.【答案】72°【解析】∵五边形ABCDE是正五边形,∴其每个内角为108°,且AB=BC,∴△ABC是等腰三角形,∴∠BCA=(180°﹣108°)÷2=36°,∴∠ACD=∠BCE﹣∠BCA=108°﹣36°=72°.故答案为:72°三.解答题(共75分)16.(8分)(2020 •洛龙区月考)一个多边形除了一个内角外,其余内角的和为2680度,则这个内角是多少度?【解析】设这个内角度数为x°,边数为n,则(n﹣2)×180﹣x=2680,180•n=3040+x,,∴n=3040+x180∵n为正整数,0°<x<180°,∴n=17,∴这个内角度数为180°×(17﹣2)﹣2680°=20°.故这个内角的度数是20°.17.(9分)(2020•禹州市期中)如图,△ABC中(AB>BC),AB=2AC,AC边上中线BD把△ABC 的周长分成30和20两部分,求AB和BC的长.【解析】设AC=x,则AB=2x,∵BD是中线,x,∴AD=DC=12x=30,由题意得,2x+12解得,x=12,则AC=12,AB=24,×12=14.BC=20−12答:AB=24,BC=14.18.(9分)(2020•滑县期末)如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.【解析】∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.19.(9分)如图所示,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE ∥DF,求证:△DCF为直角三角形.【解析】∵在四边形ABCD中,∠A与∠C互补,∴∠ABC+∠ADC=360°﹣180°=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠CDF+∠EBF=90°,∵BE∥DF,∴∠EBF=∠CFD,∴∠CDF+∠CFD=90°,故△DCF为直角三角形.20.(9分)(2020•洛阳期末)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)请你写出∠BAC、∠B、∠E三个角之间存在的等量关系,并写出证明过程.【解析】(1)∵∠ECD=∠B+∠E,∠B=35°,∠E=25°,∴∠ECD=60°,∵EC平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=60°+25°=85°.(2)结论:∠BAC=∠B+2∠E.理由:∵∠BAC=∠ACE+∠E,∠ECD=∠ACE=∠B+∠E,∴∠BAC=∠B+∠E+∠E=∠B+2∠E.21.(10分)(2020•襄城县期末)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.【解析】(1)∵∠BAC=90°∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.22.(10分) 2019 •辉县市期末)(1)如图①,在△ABC中,∠C=90°,∠BAC的平分线与外角∠CBE的平分线相交于点D,求∠D的度数.(2)如图②,将(1)中的条件”∠C=90°”改为∠C=α,其它条件不变,请直接写出∠D与∠α的数量关系.【解析】(1)如图①,∵∠CBE是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=12∠CAB,∠2=12∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=12(∠CBE﹣∠CAB)=12∠C=12×90°=45°.(2)如图②,∵∠CBE是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=12∠CAB,∠2=12∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=12(∠CBE﹣∠CAB)=12∠C=12α.23.(11分)(2020•瀍河区月考)在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E 在AD 的延长线上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系是 (直接写出结论,不需证明).【解析】(1)如图1,∵AD 平分∠BAC ,∴∠CAD =12∠BAC ,∵AE ⊥BC ,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣(90°﹣∠C )=12∠C −12∠B=12(∠C ﹣∠B ),∵∠B =50°,∠C =70°,∴∠DAE =12(70°﹣50°)=10°.(2)结论:∠DEF =12(∠C ﹣∠B ).理由:如图2,过A 作AG ⊥BC 于G ,∵EF ⊥BC ,∴AG ∥EF ,∴∠DAG =∠DEF ,由(1)可得,∠DAG =12(∠C ﹣∠B ),∴∠DEF =12(∠C ﹣∠B ).(3)仍成立.如图3,过A 作AG ⊥BC 于G ,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,(∠C﹣∠B),由(1)可得,∠DAG=12∴∠DEF=1(∠C﹣∠B),2故答案为∠DEF=1(∠C﹣∠B).2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第七章《三角形》章节检测题
时间:90分钟 满分:100分
一、填空题(每小题3分,共计24分):
1、三角形的三个外角中,钝角的个数最多有______个,锐角最多______个。

2、造房子时屋顶常用三角结构,从数学角度看,是应用了______________________,而活
动挂架则用了四边形的_______________________。

3、要使五边形木架不变形,则至少要钉上_________________根木条。

4、如图,AB ∥CD ,∠A =45º,∠C =19º,则∠E =_________。

5、正十边形的内角和等于_______度,每个内角等于_______度。

6、已知a =2 cm ,b =5 cm 是△ABC 的两边,则第三边c 的取
值范围是_________________。

7、一个多边形每个外角都是30°,这个多边形的边数是 ,
它的内角和是 。

8、如图,△ABC 中,∠A =40°,∠B =72°,
CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,
则∠CDF = 度。

二、选择题(每小题3分,共计24分): 9、如图中,三角形的个数为( ) (A )3个 (B )4个 (C )5个 (D )6个
10、下列说法错误的是( )
(A )锐角三角形的三条高线、三条角平分线分别交于一点
(B )钝角三角形有两条高线在三角形的内部
(C )直角三角形只有一条高线
(D )任意三角形都有三条高线、中线、角平分线
11、以下列各组线段为边,能组成三角形的是( )
(A )1 cm ,2 cm ,4 cm 。

(B )8 cm ,6 cm ,4 cm 。

(C )12 cm ,5 cm ,6 cm 。

(D )2 cm ,3 cm ,6 cm 。

12、三角形一个外角小于与它相邻的内角,这个三角形( )
(A )是直角三角形 (B )是锐角三角形
(C )是钝角三角形 (D )属于哪一类不能确定。

13、下列正多边形材料中,不能单独用来铺满地面的是( )
(A )正三角形 (B )正四边形 (C )正五边形 (D )正六边形
14、六边形的对角线的条数是( )
(A )7 (B )8 (C )9 (D )10
15、正多边形的一个内角等于135º,则该多边形是正( )边形。

(A )8 (B )9 (C )10 (D )11
16、如图,BO 、CO 是∠ABC ,∠ACB 的两条角平分线,∠A =100º,则∠BOC 的
度数为( )
(A )80º (B )90º (C )120º (D )140º
三、解答题(共52分):
17、(10分)(1)若多边形的内角和为2340º,求此多边形的边数;
(2)一个多边形的每个外角都相等,如果它的内角
与外角的度数之比为13∶2,求这个多边形的边数。

A C E
B
D 【第4题图】 A
E D B 【第9题图】 C
A E
B 【第8题图】 D
F
18、(10分)如图,△ABC 中,AD 是高,AE 、BF 是角平分线,
它们相交于点O ,∠A =60º,∠C =70º,求∠CAD ,∠BOA 。

19、(10分)如图,请复制并剪出若干个纸样,通过拼图解答以下问题。

(1)这种图形能密铺平面吗?如果你认为能,请用这种图形组成一幅镶嵌图案。

(2)若AB =4 cm ,AD =BC =1.5 cm ,由20个这种图形组成的镶嵌图形面积有多大?
20、(10分)△ABC 中,∠ABC ,∠ACB 的平分线相交于点O 。

(1)若∠ABC =40°,∠ACB =50°,则∠BOC = 。

(2)若∠ABC +∠ACB =116°,则∠BOC = 。

(3)若∠A =76°,则∠BOC = 。

(4)∠BOC =120°,则∠A = 。

(5)你能找出∠A 与∠BOC 之间的数量关系吗?
21、(12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草
坪。

(1)图○
1中草坪的面积为________________。

(2)图○
2中草坪的面积为________________。

(3)图○
3中草坪的面积为________________。

(4
A B C E D F O 【第18题图】
【第19题图】。

相关文档
最新文档