爬杆机器人说明书

爬杆机器人说明书
爬杆机器人说明书

目录

设计任务书 1 摘要 5 引言 6 第一章总体方案设计 6 第二章结构设计 7 2.1动力缸的选择 7 2.1.1爬杆气缸(伸缩缸)的选择 7 2.1.2 夹紧缸的选择 7 2.2 杆夹持机构的设计 8 2.2.1导向机构的设计 8 2.2.2夹紧缸连接板的设计 9 2.2.3 夹紧块设计 9 2.3 其他部分设计 10 2.3.1伸缩缸连接板的设计 10 2.3.2固定电磁阀的连接板的设计 10 2.3.3 电磁阀的选用 11 2.3.4传感器的选用 11 第三章控制系统设计 14 3.1气动原理图的设计 14 3.2 PLC控制系统的硬件设计 16 3.3 PLC控制系统的程序设计 18

3.3.1 顺序控制设计法的基本思路 18 3.3.2 用顺序控制设计法编程 19 结论23致谢24 参考文献25附录A 英文翻译

附录B综述

附录C 调研报告

附录D 装配图及主要零件图

附录E PLC程序

江苏大学

毕业设计(论文)任务书机械工程学院机电0701班班级白清文学生设计(论文)题目小型气动爬杆机器人设计

课题来源江苏大学工业中心

起讫日期2011 年03月14日至2011年06 月24 日共15 周指导教师(签名)

系(教研室)主任(签名)

毕业设计(论文)进度计划:

引言

小型气动爬杆机器人属于机电气结合类的综合实验及训练装置。根据设计任务,这个爬杆机器人应该能模拟人的运动,通过“机械手”、“机械脚”的抓放动作和身体伸缩动作,实现沿杆方向的前后双向移动,运动速度可调而爬杆高度或距离可以控制。整个设计过程就是做出一个完整的“爬杆机器人”的操作实验台而设计出图、购料、加工、组装、调试完成的过程。

这个实验台最初的设计目的也是从一个实用目的出发的,工业机械手的效用是代替人从事繁重的工作和危险的工作,所以,爬杆机器人最初的设计思想也是想到人有一些危险或难以到达的地方需要探测或勘察时,可以用爬杆机器人代替,另外,这个爬杆机器人也有一定的额外负重,这些因素在设计时都应考虑。

第一章总体方案设计

按照设计任务要求,选择空气压缩机为机器人的动力源,爬杆机器人的手、脚抓放及身体伸缩动作可采用气缸作为执行元件来模仿,使用气动系统进行动力的传递及控制,其各部分的协调运动由多执行元件的时间或行程顺序动作控制实现,采用PLC控制方式和人机界面操作。爬杆动作的快慢控制采用气动节流调速方式,可自动实现向上和向下的双向运动。

如工作原理图1.1所示,在小型气动爬杆机器人的上水平对面布置两气缸是手缸,下水平对面布置两气缸是脚缸,垂直布置的气缸则是人身体,它们通过板件连接,压缩气体是动力源,使用电磁换向阀改变各气缸进排气的方向实现活塞杆的伸缩运动,通过时间控制和行程顺序控制,实现机械手、机械脚的放松和夹紧、身体的伸缩和协调,机器人作向上、向下和上下往复运动。

由于爬杆机器人在结构及控制上大量采用气动元件,减少了设计、加工时间,保证设备工作可靠性和维护方便性。通过连接件设计制作和装配训练,进一步熟悉零件机械设计、机械加工方法,理解气动元件的结构、工作原理及并能正确使用;通过选择可编程控制器的控制方式,掌握顺序流程图的设计思想,在现场接线、编程及调试的完整训练过程中,将所学理论知识与实践相结合,增强动手能力和分析、解决问题能力。

图1.1 工作原理图

第二章结构设计

2.1动力缸的选择

根据原理图1.1首先选择气缸,然后根据气缸的具体尺寸进行详细的设计。目前气动元件市场上最主要的几个品牌有德国的费思托(Festo),日本的SMC 以及台湾的气立可(Chelic)。针对这个试验台的资金投入及实用性,台湾的气立可价格比较经济,而其质量也较为可靠,因此成为最终选择。

2.1.1爬杆气缸(伸缩缸)的选择

实验台提供的气源压强为0.6–0.8Mpa,对整个爬杆部分的总估重为2Kg,则伸缩缸的驱动力应大于

2Kg×9.8N/Kg=19.6N

选用气立可的笔型不锈钢气缸SBA系列。根据其给出的缸径对应的空气压力,当气缸内径为16mm时,其拉侧受力为3.4Kgf/cm2 ,即当拉侧受力时,气缸最小能驱动3.4Kg的负重,再考虑经验阻力系数0.6,气缸除机构自重外可另外负重0.7Kg,基本符合预想的要求,故伸缩缸最终选择定为:气立可的笔型不锈钢气缸SBA16缸,行程定为100mm是一个折中的选择,既适合行程大小调整,亦不会因为行程过大而增大爬动的不稳定性。

2.1.2夹紧缸的选择

选择夹紧缸时同样要考虑减少自重,所以根据实际情况初步选择了气立可笔型不锈钢气缸。再计算驱动力,查气缸的空气压力表,缸径16mm的空气压力拉侧受力为4.85Kgf,而力臂相对于夹紧处倍数为2,那么,在圆柱块处夹紧力将会达到5.7Kgf,乘上摩擦系数最小值0.15,再乘上这个力的两倍(两侧受力),就有1.7Kg,而实际上在爬行中每个夹紧缸只会承受估重的一半,即1Kg,这样,即使再乘上经验系数0.6,仍可负重。而其它尺寸则或大或小,经检验后确定:夹紧缸为气立可笔型不锈钢标准型气缸,缸径16mm, 15mm的行程是在考虑到一般机械手臂打开所需要的空间确定的,活塞杆在供气后预留5mm行程,两侧打开范围为10mm,这样不会碰到不必要的摩擦阻力。(夹紧缸简图如图2.1所示)

图2.1 夹紧缸简图

2.2 杆夹持机构的设计

机器人能完成抱住杆前后双向爬行,最主要的部分是其机械手与脚的夹具部分,由于初步设计是让机器人爬等截面圆柱杆,宜采用V形块夹具。爬方杆的难度系数较低,而圆杆较方杆来说在现实生活中比较多见,故最终选择爬圆杆。机器人要爬杆必须要有抱住所爬杆的手脚。根据原理图,已经选好了气缸,伸缩缸即作为机器人的身体部分,伸缩缸的伸与缩动作使整个机体能作一维方向上的前后运动,两个多位置夹紧缸以及导向机构与伸缩缸相联结。于是,必须做的一个很重要的工作就是设计出导向机构,从而作为机器人的手脚抓放动作的功能装置。下面将分别说明。

2.2.1导向机构的设计

仔细研究气立可的产品手册可发现,夹紧缸能在它的活塞杆的头部固定,在杆头上有一个安装螺纹孔,可以加以利用;而伸缩缸的活塞杆头部上也是给预留了两处安装位置,脚部的安装,在伸缩缸的缸体尾部虽然有螺纹,不过,必须通过接头与导向机构连接。由此设计出加工零件图。(见图2.2)

图2.2 导向机构结构示意图

2.2.2夹紧缸连接板的设计

为了将夹紧缸固定,还必须另外设计与导向机构相配的连接板。所以根据夹紧缸与导向机构的尺寸设计出连接板如图2.3所示。由于夹紧缸前端有可供连接的螺纹,所以采用螺纹连接方式将夹紧缸固定在连接板上,然后采用螺钉连接方式将连接板固定在导向机构上。连接板的壁厚一般取5mm,这样是节省材料减轻总量与保证刚性及强度的折中。具体尺寸可根据需要改动,当然,材料要用钢料, 这里有强度及刚度要求。

图2.3 连接板结构示意图

2.2.3夹紧块设计

V型块固定在活塞杆上,应尽可能地减少自重,因为V型块是一块实体形块,取钢材强度上当然没有问题,但钢与钢的摩擦系数太小(虽然估算时按照钢钢间摩擦系数计算,属于保守算法),而且钢太重,故不予考虑;铝合金及工程塑料的强度均能达到本设计的要求,而且比重小,故可考虑这两种材料。最终我们选择了铝合金,下面简单验算铝合金的强度是否复合要求。

铝合金的最小的抗压强度为60MPa,而受压面积大约为15×15×10-6 mm2=0.000225m2

则压强为164/0.000225=0.73MPa<<60MPa

事实上,根据经验不必校验强度要求,因为夹紧力很小,其它各连接件的强度则无须校验。

V型块的尺寸方面设计为夹15mm的圆截面钢杆,具体尺寸如图2.4所示。

图2.4 夹紧块结构示意图

2.3 其他部分设计

2.3.1伸缩缸连接板的设计

考虑到机器人在爬行过程中伸缩缸和夹紧缸均保持垂直(这个位置力臂最大,夹紧力没有作用偏角,夹紧力效率最高),根据所选用的伸缩缸的特点,将伸缩缸的活塞杆采用螺纹连接方式直接连接在导向机构上,而尾部通过连接接头与导向机构连接。

2.3.2固定电磁阀的连接板的设计

根据所选电磁阀的大小以及导向机构的尺寸,设计的连接板结构图6所示,

其中连接板与导向机构采用螺钉连接方式固定。

图2.5 电磁阀连接板结构示意图

2.3.3 电磁阀的选用

电磁阀是利用电能流经线圈产生电磁吸力将阀芯(克服弹簧或自重力)吸引.分常开与常闭两类.通常用于切断油,水,气等物质的流通.配合压力,温度传感器等电气设备实现自动控制.。根据实际需要所以我们选用气立可SV5101系列单线圈二位五通电磁阀。其外观图形如图2.6所示。

图2.6 二位五通电磁阀外形图

在综合考虑了实际加工需要以及机器人身体平衡性和美观等方面的因素之后,选用电磁阀联座将三个电磁阀固定在一起。

2.3.4传感器的选用

传感器是能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形

式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。根据传感器工作原理,可分为物理传感器和化学传感器二大类传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。所以根据实际情况选用了气立可CS120系列有接点感应器。

图2.7 传感器外形图

采用固定带将传感器箍在气缸上,固定带两端则采用螺钉连接方式固定。

图2.8 气动爬杆机器人实物图

第三章控制系统设计

3.1气动原理图的设计

任何复杂的气动控制回路都是由一些特定功能的基本回路和常用回路组成,但不论它如何复杂,一般都应该包括几个部分,如供气部分、启动部分、控制部分、导气部分和工作部分等。

1.供气部分由空压机、气罐等组成。一般空压机使用家庭用电即可,大型的空压机也采用工业电压电源。在气罐上往往还有一些辅助元件,例如安全阀要有,压力表的存在利于随时检查气压的大小。气罐的输出端有的采用了压力继电器保护,甚至加上截止阀随时关闭,这是为了防止气压超过工作气压造成气动元件的损坏。绝大多数气动回路在气罐的输出端采用气动三联件来对输送出的气体进行过滤清洁,如果压缩气体中存在水或者油类液体的话,那是很可能对工作元件及控制元件造成损坏的。在设计气动回路的时候便选了气立可的三联件套件。

2.启动部分实际上这个部分是与前一部分交合的,启动部分常常由进气开关或者还包括压力开关等,打开开关就可以直接为工作回路供气了,这一部分常常与前一部分合在一起,例如,在设计时,因为气动回路相对比较简单,更为了节省购买元件的费用,便尽量将它们合在一起处理了。

3.控制部分在设计的气动回路里是由电磁换向阀和传感器组成。控制伸缩缸和控制夹紧缸的都是单电控电磁换向阀。

4.工作部分这个部分指的是伸缩缸与夹紧缸。

图3.1是气动回路的原理图,基本反映了爬杆机器人的气动回路控制原理:三只单电控电磁换向阀并联,其电磁铁按顺序得电并保持,控制各缸活塞杆的伸缩动作,单向节流阀控制爬杆缸活塞杆伸缩的速度。

图3.1气动回路原理图

气动自动化系统的设计关键要注意它的优化安排及合理存在性,如果不必要,就应当省略,以免造成浪费。在本设计回路中就不需要压力继电器等保护装置,因为气压为中压不算大,使用压力在0.6~1.0MPa之间,这样的气压力尚不足以破坏工作部分。

3.2 PLC控制系统的硬件设计

可编程逻辑控制器(Programmable Logic Controller,简称PLC)的特点是:通用灵活、可靠性强、易于编程、使用方便、安装简单、体积小并且便于维修,一般来说,它的采用往往能缩短系统设计和调试的周期。气动技术与PLC 的结合正是因为其具有以上的优点,从而将气动控制技术从庞大的复杂的多变的全气动控制中解放了出来,使程序的编制、修改变得容易了。随着PLC技术的发展,气动控制乃至自动化控制已经越来越离不开PLC了。本课题理论上说是一个比较简单的气动回路控制,所以当然不能将它的控制部分复杂化,采用PLC技术可说是必然而且必要的。

PLC系统硬件配置: 选择日本三菱公司PLC机型FX1S—20MR,根据控制系统要求,分配输入/输出点,画I/O分配表,绘制PLC端子接线图。

1.FX PLC简介

可编程序控制器(PLC)是一种数字运算操作的电子系统,专为工业环境下应用而设计。它采用可编程序的存贮器,用来在其内部存贮执行逻辑运算、顺序控制、定时、计数和算术运算等操作指令,并通过数字式、模拟式的输出,控制各种机械或生产过程。

PLC由CPU、RAM、ROM和输入、输出接口电路等组成,如图3.2所示:

图3.2 PLC组成电路

CPU完成输入信号的检测、程序指令的编译、指令规定的动作及输出结果的功能。

存储器包括RAM、ROM:RAM用来存放各种暂存的数据、中间结果和用户程序

等。ROM用来存放监控程序及用户程序。

输入接口接收输入信号。通常采用光电耦合电路,减少电磁干扰。

输出接口用于输出结果。通常输出也采用光电隔离,并有三种方式,即继电器、晶体管和可控硅。三菱FX2N系列均采用继电器输出。

PLC采用循环扫描工作方式,在PLC中,用户程序按先后顺序存放,PLC从第一条指令开始执行程序,直至遇到结束符后又返回第一条,不断循环。程序被完整扫描一次的时间,称为程序扫描周期。这个周期的长短,取决于程序所用指令的条数以及每条指令执行所需的时间。

PLC对输入/输出有三种控制方式:直接方式、集中刷新控制方式和混合方式。三菱FX2N系列采用集中刷新控制方式,即在程序执行前,先把所有输入的状态集中读取并保存,程序执行时,所需的输入状态就到存储器中去读取,要输出的结果也都暂存起来,直到程序执行END后,才集中让输出产生动作。

实质上,PLC是由许多电子继电器、定时器、计数器组成的一个组合件。而这些电子继电器、定时器、计数器则由PLC的内部寄存器来模拟实现。例如,可以选某个寄存器的一位(bit)作为中间继电器,以“1”表示继电器接通,以“0”表示继电器断开等。三菱FX2N系列具有下列器件:输入继电器、输出继电器、定时器、计数器、辅助继电器、状态寄存器、数据寄存器、特殊继电器等。

这些内部器件都是字节或字的形式。在内存的数据存储区,各自占有一定数量的存储单元,使用这些器件,实质上就是对相应的存储内容以位或字节或字的形式进行存取。

根据实际要求,通过编程器对这些内部器件进行控制,就是编程。

程序是由若干条指令组成的,而指令是由指令字和器件组合而成的,并且指令还表示出了连接的方法。每个指令都用顺序号标出,该顺序号称为步进号。如标出的步进号范围为0-999,即最多在一个程序内可编1000条指令。

PLC的编程语言通常有下列几种:指令表(助记符)语言、梯形图语言、流程图语言、布尔代数语言。三菱FX2N系列采用梯形图语言及指令表语言。

2. 分配输入/输出点

表3.1 I/O 地址表

3.PLC与现场器件的实际连接图(端子接线图)

图3.3 PLC端子接线图

3.3PLC控制系统的程序设计

3.3.1 顺序控制设计法的基本思路

如果一个控制系统的工艺流程或过程可以分解成若干个顺序相连而又相互独立的阶段,这些阶段必须严格按照一定的先后次序执行,才能保证生产过程正

常有序运行,那么这样的控制系统称为顺序控制系统,或称为步进控制系统,其存在的范围较广泛,爬杆机器人控制系统就属于这一种,这些阶段称为步(step)。参照状态时序图3.4,步是根据各输出量的状态变化来划分的,在任意一个步内,各个输出量(Y0、Y1、Y2)的状态(0或1)是不变的,但相邻两个步的输出量的总的状态是不同的,并且用软元件(如辅助继电器M或状态继电器S)来代表各个步。爬杆关键在于动作的协调,手脚抓放、身体伸缩动作由输出量状态变化控制,可看作是各个步,按序完成步,就能实现爬杆。

使系统从当前步进入下一步的信号称为转换条件,转换条件可以是PLC外部的输入信号,如按钮的按压/松开,行程开关的通断等,也可以是PLC内部产生的信号,如定时器、计数器常开触点的的通断等,转换信号还可以是若干个信号的逻辑组合。用转换条件去控制代表各步的软元件(S0、S1等),使它们的状态按照一定的顺序变化(依次为1),然后用代表各步的软元件驱动各输出继电器(即控制输出量)。气动爬杆机器人的转换条件是每步动作完成后的行程信号,每步完成后只有发出转移控制信号才能进入下一步,每上升或下降一个体缸行程距离作为一个周期,循环执行,可以实现连续爬杆运动。

X0

Y0(脚)

Y2(手)

Y1(体)

步1 步2 步3 步4 步5 步6

图3.4状态时序图

3.3.2 用顺序控制设计法编程

1.分析系统的工艺流程

通过分析系统的控制流程,划分系统的各个步并确定步对应的动作和步的活动状态进展的转换条件,爬杆机器人爬杆(上行)的单周期工作过程可划分为手

移动机器人定位系统设计方案

移动机器人定位--传感器和技术 摘要 确切的了解车辆的位置是移动机器人应用的一个基本问题。在寻找解决方案时,研究人员和工程师们已经开发出不同的移动机器人定位系统、传感器以及技术。本文综述了移动机器人定位相关技术,总结了七种定位系统:1.里程法;2.惯性导航;3.磁罗盘;4.主动引导; 5.全球定位系统; 6.地标式导航和 7.模型匹配。讨论了各自的特点,并给出了现有技术的例子。 移动机器人导航技术正在蓬勃发展,正在开发更多的系统和概念。因为这个原因,本文给出的各种例子只代表各自的种类,不表示作者的倾向。在文献上可以发现许多巧妙的方法,只是限于篇幅,本文不能引用。 1。介绍 摘要概述了该技术在传感器、系统、方法和技术的目标,就是在一个移动机器人的工作环境中被找到。在测量文献中讨论这个问题,很明显,不同方法的基准比较是困难的,因为缺乏公认的测试标准和规的比较。使用的研究平台大不相同,用于不同的方法的关键假设也大不相同。再进一步,困难源自事实上不同的系统是处在其发展的不同阶段。例如,一个系统已经可以商业化;而另一个系统,也许有更好的性能,却只能实验室条件下作有限的测试。正是由于这些原因,我们一般避免比较甚至判断不同系统或技术的表现。在这篇文章里,我们也不考虑自动引导车(AGV)。AGV使用磁带、地下的引导线、或地面上的彩色条纹在作引导。这些小车不能自由设计路径,不能改变自己的道路,那样它们无法响应外部传感器输入(如避障)。然而,感兴趣的读者可能会在[Everett, 1995]找到AGV引导技术调查。 也许最重要的移动机器人定位文献的阅读结果,正是到目前为止,并没有真正完美的解决问题的方案。许多局部的解决办法大致分为两组:绝对的和相对的位置测量。因为缺乏一种完善的方法,开发移动机器人通常结合两种方法,从每个小组选一个方法。这些方法可以进一步分为以下七类: I:相对位置的测量(也称为Dead-reckoning) 1。里程法 2。惯性导航 II:绝对位置测量(基于参考的系统) 3。磁罗盘 4。主动发射引导 5。全球定位系统 6。地标式导航 7。模型匹配

爬杆机器人论文综述

中文摘要 姓名:曲新波学号:101014109 指导老师:谭月胜 爬杆机器人家族很庞大,从动力源进行划分,主要分为机械式和气动式两大类。从有无控制系统的层面进行划分,主要分为普通型和智能型两大类。普通型就是只有动力源、执行机构,智能型相比普通型还有(反馈)控制机构。智能型在实现运动的难度上比普通型要低。论文中,笔者所研究制造的蠕行式仿生爬杆机器人为非智能型机械式爬行器。 论文在比较几类爬行机构的优劣的基础上,确定了机器人本体的大致结构。在此基础上详细阐述了仿生爬行的原理和机器人模块化设计的理念。根据路灯杆的尺寸数据,设计并制造出机器人样机。机器人建模的过程(功能的实现与机械结构的尺寸优化)包括以下几个关键点:爬杆机器人设计中的功能机构的协调配合、攀爬手臂夹持重合度的选择、攀爬力的变化与结构参数之间的关系、攀爬力零点的渡过等难点的设计方法和设计准则,为此类爬行机器人的设计提供参考、论文中,对机器人展开运动学和动力学仿真分析。运用ADAMS对用Solldworks所建机器人模型展开运动模拟仿真分析,测试运动部件的各项运动参数和受力情况并优化所建模型的尺寸参数。机器人中关键部件如机械手连接臂,对机器人的稳定爬行很重要,运用有限元分析软件ANSYS对此进行承载受力分析,查看各机械臂的变形挠度。 关键词:爬杆机器人,变直径杆,攀爬,仿生学

1.1论文研究的目的和意义 目前全国日益加快的现代化建设步伐,除了2008年8月在北京举办的奥运会、2010年将要在上海举办的世博会之外,随着我国国民经济的飞速增长、人民生活水平日益提高,城镇中随之矗立起无数的高层城市建筑,各类集实用性与美观性一体的市政、商业工程诸如电线杆、路灯杆、大桥斜拉钢索、广告牌立柱等(图1-1),它们通常5-30米,有的甚至高达百米,壁面多采用油漆、电镀、玻璃钢结构等,由于常年裸露在大气之中,风沙长年累月的积累会形成灰尘层,该污染影响城市的美观,同时空气中混合的酸性物质也会对这些城市建筑特别是金属杆件造成损坏,加快它们的生锈,并缩短它们的使用寿命,需要定期进行壁面维护工作。 图1-1变直径杆城市建筑图 为保持清洁,许多国际性城市如厦门、深圳、香港等地规定,每年至少清洗数次。目前传统的清洗技术主要分为人工清洗(化学药剂清洗)和高压水枪清洗等方法。其中人工清洗是由清洁工人搭乘吊篮进行高空作业来完成,工人的工作环境恶劣,具有很大程度上的危险性,工作效率也很低,耗资巨大。化学药剂中所用的去污剂具有很强的毒副作用会对人造成潜在的危害,并易造成环境的二次污染;高压水枪清洗耗能比较大、成本高,且对周边环境有很大的影响。在利用高压水

移动监控机器人远程控制说明书

移动监控机器人远程控制说明书 TP-LINK R460+移动监控机器人实现远程监控 感谢您购买该产品,接下来,这个教程将展示如何应用带有花生壳动态域名功能的TP-LINK路由器,和移动监控机器人实现远程监控 产品照片: 公司名称:杭州星视科技有限公司 公司网站:https://www.360docs.net/doc/181669364.html, 淘宝购买地址:https://www.360docs.net/doc/181669364.html,/item.htm?id=14675153768

第一步注册护照第一步注册护照、、域名并登陆嵌入式花生壳服务 1.注册护照与域名 通过ORAY 官方网站的注册页面 https://www.360docs.net/doc/181669364.html,/passport/register.php ,进行护照注册(如下图): 注册护照成功后,域名会自动赠送一个已激活花生壳服务,后缀为https://www.360docs.net/doc/181669364.html, 的免费域名。当然,我们也可以另外去进行注册其他后缀的免费域名点击站点上 的玉米酷选择注册域名,查询需要注册的域名进行注册,并且激活花生壳服务。

备注:新注册的Oray护照及其域名需在注册成功1小时后方可在嵌入式花生壳DDNS中正常使用; 1、登陆嵌入式花生壳服务 登陆路由器(默认管理的地址为http://192.168.0.1帐号admin密码admin); 在动态DNS里面输入我们刚注册的帐号和密码,并启用动态DNS,点击登陆。登陆成功后,会直接显示目前护照的花生壳服务级别和能够得到花生壳解析服务的域名,域名https://www.360docs.net/doc/181669364.html,已经可以绑定我们当前的公网IP了,动态解析服务已经做好了。

第二步 搭建你的搭建你的远程控制远程控制远程控制系统系统 首先将移动监控机器人接电源并连接路由器,通过移动监控机器人的默认管理地址进行登陆管理设置,如http://192.168.0.64 登陆管理。安装控件后会出现一个登陆的管理界面,输入默认的管理帐号admin 密码12345 , 端口默认8000; 登陆成功后,双击左边摄像头列表当中的摄像头,可以看到一个监控的页面,就证明这个移动监控机器人已经正常在本地工作了。接下来,我们要对录像机进行网络上的配置。

自动螺丝机说明书

自动螺丝机说明书 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

自动锁螺丝机 (SCREW-160/180II/320 ) 目录 一、自动锁螺丝机功能简介 (01) 二、主画面概要 (01) 三、主界面功能介绍 (02) 四、参数设置界面介绍··················-03~04- 五、螺丝规格界面介绍 (05) 六、教导(模拟手柄)界面介绍 (06) 七、步骤镜像界面介绍 (07) 八、参数复制界面介绍 (08) 九、其他设置界面介绍 (09) 十、坐标校正界面介绍 (10) 十一、文件管理界面介绍 (11) 十二、产量报表界面介绍 (12) 十三、USB复制界面介绍 (13) 十四、螺丝供给器和电批调节 (14) 十五、程序制作简易流程 (15) 十六、故障排除 (16)

十七、维护与保养 (17) 十八、技术参数 (17) 十九、售后服务 (18) 二十、注意事项 (18) 二十一、易损伤配件表···················-19~22- 一、自动锁螺丝机功能简介 1.全中文界面,动态显示运行状态,直观可见的参数 2.密码保护功能、保护系统参数不被随意更改 3.程序之间有阵列复制、参数复制功能 4.程序具有坐标部分校正、整体校正功能、节省手动调试程序的时间 5.具备插入、手动输入坐标、删除功能、方便快速修改及制作程序 6.单步自动定位功能,极大的方便程序的制作确认及坐标修复等 7.大容量储存数据程序使用时可随意切换调用 8.自动防呆感应、流水式作业平台高效、节省人工、节约成本 二、主要面概要 人机界面由以下供13界面组成: 1.主界面 2.参数设置 3.螺丝规格 4.教导 5.步骤镜像 6.参数复制

爬杆机器人说明书

目录 设计任务书 1 摘要 5 引言 6 第一章总体方案设计 6 第二章结构设计 7 2.1动力缸的选择 7 2.1.1爬杆气缸(伸缩缸)的选择 7 2.1.2 夹紧缸的选择 7 2.2 杆夹持机构的设计 8 2.2.1导向机构的设计 8 2.2.2夹紧缸连接板的设计 9 2.2.3 夹紧块设计 9 2.3 其他部分设计 10 2.3.1伸缩缸连接板的设计 10 2.3.2固定电磁阀的连接板的设计 10 2.3.3 电磁阀的选用 11 2.3.4传感器的选用 11 第三章控制系统设计 14 3.1气动原理图的设计 14 3.2 PLC控制系统的硬件设计 16 3.3 PLC控制系统的程序设计 18

3.3.1 顺序控制设计法的基本思路 18 3.3.2 用顺序控制设计法编程 19 结论23致谢24 参考文献25附录A 英文翻译 附录B综述 附录C 调研报告 附录D 装配图及主要零件图 附录E PLC程序

江苏大学 毕业设计(论文)任务书机械工程学院机电0701班班级白清文学生设计(论文)题目小型气动爬杆机器人设计 课题来源江苏大学工业中心 起讫日期2011 年03月14日至2011年06 月24 日共15 周指导教师(签名) 系(教研室)主任(签名)

毕业设计(论文)进度计划:

引言 小型气动爬杆机器人属于机电气结合类的综合实验及训练装置。根据设计任务,这个爬杆机器人应该能模拟人的运动,通过“机械手”、“机械脚”的抓放动作和身体伸缩动作,实现沿杆方向的前后双向移动,运动速度可调而爬杆高度或距离可以控制。整个设计过程就是做出一个完整的“爬杆机器人”的操作实验台而设计出图、购料、加工、组装、调试完成的过程。 这个实验台最初的设计目的也是从一个实用目的出发的,工业机械手的效用是代替人从事繁重的工作和危险的工作,所以,爬杆机器人最初的设计思想也是想到人有一些危险或难以到达的地方需要探测或勘察时,可以用爬杆机器人代替,另外,这个爬杆机器人也有一定的额外负重,这些因素在设计时都应考虑。

机器人操作调节说明书

机器人操作调节说明 1.开启机器人电箱电源,待机器人启动完毕后将将选择开关扭至手动模式,机器人处于手动工作状态;2.程序说明: a.nWheelH1放下高度 b.nWheelH2抓取高度 c.nWheelD扫粉深度(高度) d.wobjCnv1固化线解码器(坐标) e.wobjCnv2喷粉线解码器(坐标) f.tool_Grip机器人坐标 g.phome机器人原点位置 h.pReady1机器人准备位置1 i.pcln1机器人清扫位置1 j.pReady2机器人准备位置2 k.Pick机器人抓取位置 l.pLeave机器人离开位置 m.Dplace机器人放下位置 n.rOpenGripper打开夹爪 o.rCloseGripper放开夹爪 3.机器人启动完毕,按一下左上角ABB,弹出选择目录,可进入不同控制目录; 4.选择程序调试,进入各单元程序,可手动调节及测试各单元程序及位置点; 进入程序调试后选择phome,运行程序为使机器人回原点,修改phome位置为改变原点位置; 选择TSingle为校正追踪固化线输送机及追踪喷粉线输送机,具体操作步骤为: 开启固化线输送机后单步运行程序 DeactUnit CNV1; DropWObj wobjCnv1; ActUnit CNV1; 跳步将PP移至WaitWObj wobjCnv1;时连续执行程序 待出现警报立即停止固化线输送机,停止运行程序可手动操纵机器人到固化线轮毂放下位置,修改相应位置; 再次运行一次该程序,正常后完成放下轮毂位置的设定; 关于追踪喷粉线输送机位置的步骤如上; 注意:同步感应开关位置不能变更!!! 选择ClnWheel为校正清扫位置,设定好相应位置后,修改相应位置;

自动螺丝机说明书

自动锁螺丝机 (SCREW-160/180II/320 V4.0) 目录 一、自动锁螺丝机功能简介 (01) 二、主画面概要 (01) 三、主界面功能介绍 (02) 四、参数设置界面介绍··················-03~04- 五、螺丝规格界面介绍 (05) 六、教导(模拟手柄)界面介绍 (06) 七、步骤镜像界面介绍 (07) 八、参数复制界面介绍 (08) 九、其他设置界面介绍 (09) 十、坐标校正界面介绍 (10) 十一、文件管理界面介绍 (11) 十二、产量报表界面介绍 (12) 十三、USB复制界面介绍 (13)

十四、螺丝供给器和电批调节 (14) 十五、程序制作简易流程 (15) 十六、故障排除 (16) 十七、维护与保养 (17) 十八、技术参数 (17) 十九、售后服务 (18) 二十、注意事项 (18) 二十一、易损伤配件表···················-19~22- 一、自动锁螺丝机功能简介 1.全中文界面,动态显示运行状态,直观可见的参数 2.密码保护功能、保护系统参数不被随意更改 3.程序之间有阵列复制、参数复制功能 4.程序具有坐标部分校正、整体校正功能、节省手动调试程序的时间 5.具备插入、手动输入坐标、删除功能、方便快速修改及制作程序 6.单步自动定位功能,极大的方便程序的制作确认及坐标修复等 7.大容量储存数据程序使用时可随意切换调用 8.自动防呆感应、流水式作业平台高效、节省人工、节约成本 二、主要面概要 人机界面由以下供13界面组成: 1.主界面 2.参数设置 3.螺丝规格 4.教导

5.步骤镜像 6.参数复制 7.其他设置 8.坐标校正 9.文件管理 10.产量报表 11.U SB复制 -1- 三、主界面功能介绍 术语说明: 元素名称说明元素类型单位 程序程序序号数字显示- 名称产品名称文本显示- 步骤显示当前工作的步骤编号数字显示-

利用电动机爬杆机器人

电动机设计攀爬器设计说明书 设计题目:爬杆机器人 学院:电信学院 班级:自动化0801 设计者:200820314102胥文举 指导老师:杨柱中

目录 1.设计题目……………………………………………11.1设计目的………………………………………………11.2设计题目简介…………………………………………1 1.3设计条件及设计要求…………………………………1 2.运动方案设计……………………………………22.1机械预期的功能要求…………………………………22.2功能原理设计…………………………………………22.3运动规律设计…………………………………………3 2.3.1工艺动作分解……………………………………………3 2.3.2运动方案选择……………………………………………5 2.3.3执行机构形式设计………………………………………6 2.3.4运动和动力分析…………………………………………7 2.3.5执行系统运动简图………………………………………8 3.计算内容……………………………………………8 4.应用前景 (10) 5.个人小结 (11) 6.参考资料 (12)

附录 (13) 1.设计题目 1.1设计目的 机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸以及润滑方式等进行构思、分析和计算,并将其转化为制造依据的工作过程。 机械设计是机械产品生产的第一步,是决定机械产品性能的最主要环节,整个过程蕴涵着创新和发明。 为了综合运用机械原理课程的理论知识,分析和解决与本课程有关的实际问题,使所学知识进一步巩固和加深,我们参加了此次的机械原理课程设计。1.2设计题目简介 我们此次做的课程设计名为爬杆机 器人。该机器人模仿虫蠕动的形式向上 爬行,其爬行运用简单的曲柄滑块机构。 其中电机与曲柄固接,驱动装置运动。 曲柄与连杆铰接,其另一端分别铰接一 自锁套(即上下两个自锁套),它们是实 现上爬的关键结构。当自锁套有向下运 动的趋势时,由力的传递传到自锁套, 球、锥管与圆杆之间形成可靠的自锁,阻止构件向下运动,而使其运动的方向始终向上(运动示意见右图)。

AI机器人系统使用说明书

智营呼叫中心系统 使用说明书 目录 目录 (1) 前言 (3) 功能说明 (4) 1. 登陆 (4) 2. 客户管理 (4) 2.1客户列表 (4)

2.2跟进记录 (6) 3. 坐席管理 (6) 3.1坐席列表 (6) 3.2分机管理(软电话或语音网关登录的账号) (7) 3.3主叫号码 (7) 3.4坐席统计 (8) 3.5班组管理 (8) 3.6分机统计 (9) 4. 通话记录 (9) 5. 财务管理 (9) 6. 企业管理 (9) 6.1添加企业 (9) 6.2企业管理 (10) 7. 大数据 (10) 8. AI机器人 (11) 8.1纠正列表 (11) 8.2数据列表 (11) 8.3呼叫队列 (12) 8.4呼叫记录 (12) 8.5模板列表 (13) 9. 知识库 (15) 9.1分类管理 (15) 9.2问题列表 (16) 10. 短信管理 (17) 11. 系统设置 (17) 11.1修改密码 (17) 11.2系统配置 (17) 11.3定义字段 (18)

前言 本手册针对的用户需要具备一定的后台管理系统操作常识。本手册从使用者的角度,充分地描述系统所具有的特点、功能及使用方法并配截图页面说明,从而使用户通过说明书能够了解系统的操作及用途,并且能够确定在何种情况下,如何使用它;同时向用户提供系统每一个运行的具体过程及相关知识。

功能说明 1.登陆 用户在浏览器输入后台http地址,按回车键,跳转到登录页面,输入用户名、密码,点击“登陆”按钮进入系统,如图1。 图1 注意: 企业登录,直接用企业账号+密码. 坐席登录坐席工号@企业账号+密码. 或者坐席绑定的主叫号码+密码登录. 2.客户管理 2.1客户列表 1)客户管理:查看和编辑客户的详细信息。(如图2) ①添加客户:手动添加单个客户。(如图3) ②导入:下载导入模板,并按模板编排好客户资料,成批导入客户。(如 图4) ③分配:可将客户分配至坐席进行人工拨打。(图5)

A 机器人操作培训 S C IRB 说明书 完整版

S4C IRB 基本操作 培训教材 目录 1、培训教材介绍 2、机器人系统安全及环境保护 3、机器人综述 4、机器人启动 5、用窗口进行工作 6、手动操作机器人 7、机器人自动生产 8、编程与测试 9、输入与输出 10、系统备份与冷启动 11、机器人保养检查表 附录1、机器人安全控制链 附录2、定义工具中心点 附录3、文件管理 1、培训教材介绍 本教材解释ABB机器人的基本操作、运行。 你为了理解其内容不需要任何先前的机器人经验。 本教材被分为十一章,各章分别描述一个特别的工作任务和实现的方法。各章互相间有一定联系。因此应该按他们在书中的顺序阅读。 借助此教材学习操作操作机器人是我们的目的,但是仅仅阅读此教材也应该能帮助你理解机器人的基本的操作。 此教材依照标准的安装而写,具体根据系统的配置会有差异。

机器人的控制柜有两种型号。一种小,一种大。本教材选用小型号的控制柜表示。大的控制柜的柜橱有和大的一个同样的操作面板,但是位于另一个位置。 请注意这教材仅仅描述实现通常的工作作业的某一种方法,如果你是经验丰富的用户,可以有其他的方法。 其他的方法和更详细的信息看下列手册。 《使用指南》提供全部自动操纵功能的描述并详细描述程序设计语言。此手册是操作员和程序编制员的参照手册。 《产品手册》提供安装、机器人故障定位等方面的信息。 如果你仅希望能运行程序,手动操作机器人、由软盘调入程序等,不必要读8-11章。 2、机器人系统安全及环境保护 机器人系统复杂而且危险性大,在训练期间里,或者任何别的操作过程都必须注意安全。无论任何时间进入机器人周围的保护的空间都可能导致严重的伤害。只有经过培训认证的人员才可以进入该区域。请严格注意。 以下的安全守则必须遵守。 ?万一发生火灾,请使用二氧化碳灭火器。 ?急停开关(E-Stop)不允许被短接。 ?机器人处于自动模式时,不允许进入其运动所及的区域。 ?在任何情况下,不要使用原始盘,用复制盘。 ?搬运时,机器停止,机器人不应置物,应空机。 ?意外或不正常情况下,均可使用E-Stop键,停止运行。在编程,测试及维修时必须注意既使在低速时,机器人仍然是非常有力的,其动量很大,必须将机器人置于手动模式。 ?气路系统中的压力可达0.6MP,任何相关检修都要断开气源。 ?在不用移动机器人及运行程序时,须及时释放使能器(Enable Device)。?调试人员进入机器人工作区时,须随身携带示教器,以防他人无意误操作。?在得到停电通知时,要预先关断机器人的主电源及气源。 ?突然停电后,要赶在来电之前预先关闭机器人的主电源开关,并及时取下夹具上的工件。 ?维修人员必须保管好机器人钥匙,严禁非授权人员在手动模式下进入机器人软件系统,随意翻阅或修改程序及参数。 安全事项在《用户指南》安全一章中有详细说明。 如何处理现场作业产生的废弃物 现场服务产生的危险固体废弃物有:废工业电池、废电路板、废润滑油和废油脂、粘油回丝或抹布、废油桶。

爬杆机器人

1 绪论 1.1 背景 “机器人学的进步和应用是本世纪自动控制最有说服力的成就,是当代最高意义的自动化”。这是宋健院士对机器人在上个世纪所取得的成就的精辟概括。同时机器人技术也是20世纪人类最伟大的发明之一,自60年代初问世以来,经历40余年的发展已取得长足的进步。走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。 所以我们必须走进它,了解它。近年来,在我国大学,机器人作为机械电子学、计算机技术、人工智能等的典型载体被广泛地用来作为工科本科生的讲授课程之一;在中学,模型机器人则逐渐成为素质教育,技能实践的选题之一,各种机器人比赛正方兴未艾。进入21世纪,人们也愈来愈亲身感受到机器人深入产业、深入生活、深入社会的坚实步伐。这些都说明了机器人技术离我们越来越近了。 但大家是否可以给耳熟能详的机器人一个准确的定义呢?有人认为机器人无所不能,有人认为机器人必须像人。那么,何为机器人?虽然很难给机器人下准确的定义,但是通常的理解就是:机器人是一种在计算机控制下的可编程的自动机器,根据所处的环境和作业的需要,它具有至少一项或多项拟人功能,如抓取功能或移动功能,或两者兼而有之,另外还可能程度不等地具有某些环境感知功能(如视觉、力觉、触觉、接近觉等)以及语音功能乃至逻辑思维、判断决策功能等,从而使它能在要求的环境中代替人进行作业。 如今进入二十一世纪,随着科技的迅速发展,现代化进程的日益加快,机器人的创新与研究越来越成为一个国家科技力量的具体体现,越来越多的机器人已成为各个领域重要的组成部分,因此机器人的发展也日益成熟,为人们的生活提供了更多的方便与快捷。在世界经济快速发展的前提下,我国国民经济也有着飞速的增长,人民生活水平日益提高,伴随着城市和乡村矗立起无数的高层建筑和无数的高高的杆类,如电线杆、路灯杆等等。这些杆类长年累月的暴露在空气中,很容易受到腐蚀和污染,不仅影响着城市的美观,而且缩短了它们的寿命,也大大提高的它的危险性,对人们造成诸多不便与危险。 然而,如果人工的对这些杆类进行清洗与保养,由于其条件所致,势必需要清洗工人高空作业完成,这样不仅工作效率低下,耗资巨大,而且安全系数低,很容易造成危险。如果采取高压水枪清洗,则太浪费人力物力,得不偿失了。这时,人们通过设想,能不能设计一种机器人,使得它能够代替人类进行对杆类的清洗或进行相关工作,用这些机器人代替人工进行高空危险作业,从而把工人从危险、恶劣、繁重的劳动环境中解脱出来,不仅提高的工作效率,同时也保护了工人的生命安全。

四轮式室内移动机器人发明专利说明书

说明书 四轮式室内移动机器人 技术领域 本发明的技术方案涉及机器人,具体地说是四轮式室内移动机器人。 背景技术 移动机器人技术是机器人技术中的一个重要分支,它的研究始于二十世纪六十年代,其主要目标是研究应用人工智能技术,在复杂环境下系统地自主推理、规划和控制。自主式移动机器人是具有高度的自规划、自组织和自适应能力,适合于在复杂的环境中工作的一种智能机器人,具有模型不确定性、系统的高度非线性和控制的复杂性。 地面移动机器人在环境中无约束的运动需要一个具有优异性能的移动平台,机器人的运动机构则是机器人移动平台的一个重要组成部分,它直接影响到机器人运动的稳定性、灵活性和可操作性。因此,合理选择和设计机器人的运动机构是移动机器人设计的一个重要方面。一般来讲,地面移动机器人的运动机构主要有3种:轮式移动机构、履带式移动机构和腿足式移动机构。 轮式移动机构通常应用于室内移动机器人,该运动机构采用车辆人造工艺技术,结构相对简单,非常适合于相对平坦的地面。轮式移动机器人是移动机器人中应用最多的一种,在相对平坦的地面上,车轮式移动方式具有相当的优势。与其他形式的移动机器人相比,轮式移动机器人具有机械结构简单、运动灵活度大、操作性能好和能量利用率高的优点,因此轮式移动机器人的应用领域最为广泛。轮式移动机器人是最重要、最常见的一类移动机器人。 发明内容 本发明所要解决的技术问题是:提供四轮式室内移动机器人,安装有两个独立的采用带有霍尔效应传感器的轮毂式直流无刷电机作为驱动电机的驱动轮,驱动轮与驱动电机构成一体,其控制器采用工作于双极模式下的全桥PWMDC/DC变换器来驱动直流无刷电机,克服了现有技术中直流有刷电机换向速度慢、噪声较大和电机长期处于磨损状态会导致容易损坏的缺点。 本发明解决该技术问题所采用的技术方案是:四轮式室内移动机器人,包括底盘、两个驱动轮、两个万向轮、控制器和锂电池;其中,两个驱动轮分别安置在底盘左右两侧的缺口处,两个万向轮分别安置在底盘前后,四个轮子的安装中心在水平平面上位于同一圆周,控制器和锂电池置于底盘面上;所述的两个驱动轮均是独立的采用带有霍尔效应传感器的轮毂式直流无刷电机作为驱动电机的驱动轮;控制器是采用工作于双极模式下的全桥

移动机器人控制系统的发展方向

移动机器人控制系统的发展方向 摘要随着计算机技术、传感器技术的不断发展,对于机器人领域的发展具有一定的促进作用。而由于移动机器人具有能够自治与移动的特征,在机器人领域处于核心地位。在复杂、危险的环境中,移动机器人所发挥的作用是有目共睹的。对此,对当前国内外较为常见的移动机器人控制系统进行剖析,并在此基础上论述了该领域的未来发展方向。 【关键词】移动机器人控制系统发展方向 移动机器人属于能够自动执行工作任务的机器,不但能够按照事先编译的程序运行,同时人类还可对其指挥。当前主要被运用在生产业、建筑业以及航空航天领域,而该领域的发展情况直接关系到国家综合实力的提升速度,对此加强对移动机器人控制系统的发展情况,以及未来发展方向的研究势在必行。 1 国内外常见的移动机器人控制系统 相对于国内在移动机器人的研究状况,能够看出国外在该领域的研究是较早的,其中具有代表性的有Saphira、TeamBots以及ISR。而在国内方面,代表性的有OSMOR、ZJMR以及Agent。下面,便对较为常用的控制系统进行介绍:

1.1.1 Saphira控制系统 Saphira控制系统是移动机器人领域中最早的系统,是有SRI国际人工智能中心在1990年所研发的,此系统是基于本地感知空间的共享内存与黑板,来实现协调与通信进程。由于Saphira是采用C语言来进行开发的,同时支持Windows 与Unix系统,因此具有文档资料相对完整、系统资源占用少等特征。但是需注意的是,由于Saphira系统在定位方面无法达到当前的实际需求,因此运用是相对较少的。 1.1.2 TeamBots控制系统 本系统是基于Java包与Java应用程序而构建的,经过20余年的发展后,此系统截止到目前已经被运用到多种类型的机器人平台当中。除此之外,在适用的操作系统方面,其中具有代表性的有Windows、MacOS以及Linux等,因此其运用的范围是更加广泛的。 1.1.3 ISR控制系统 ISR是基于行为的控制模式,其中是有任务执行层、反映层以及推理层所构成的,是有CAS研究中心所研发的。其中,任务执行层的作用是执行推理层所传输的指令;反映层其中包含资源、控制器以及行为;推理层的功能是根据用户的指令来对决策进行制定。此外,ISR控制系统仅能够在Linux中进行操作,并且没有公开化使用。

机器人示教器操作说明

一.示教操作盘面板介绍 示教操作盘是主管应用工具软件与用户之间的接口的操作装置。示教操作盘经由电缆与控制装置内部的主CPU印刷电路板和机器人控制印刷电路板连接。示教操作盘在进行如下操作时使用。 ●机器人的JOG进给 ●程序创建 ●程序的测试执行

●操作执行 ●状态确认 示教操作盘由如下构件构成。 ●横向40字符、纵向16行的液晶画面显示屏 ●61个键控开关 ●示教操作盘有效开关 ●Deadman开关 ●急停按钮 1.示教操作盘有效开关 在盘左上角,如右图所示: 其将示教操作盘置于有效状态。示教操作盘处在无效状态下,不能进行JOG进给、程序创建和测试执行等操作。 2.Deadman开关 在盘背面,如右图所示两黄色键: 示教操作盘处在有效状态下松开此开关时,机器人将进入急停状态。 3.急停按钮 在盘右上角,如右图所示红色键:

不管示教操作盘有效开关的状态如何,都会使 执行中的程序停止,机器人伺服电源被切断,使 得机器人进入急停状态。 示教操作盘的键控开关,由如下开关构成。 ●与菜单相关的键控开关 ●与JOG相关的键控开关 ●与执行相关的键控开关 ●与编辑相关的键控开关 1.与菜单相关的键控开关: 1.)、、、、 功能( F )键,用来选择液晶画面最下行的功能键菜单。 2.) 翻页键将功能键菜单切换到下一页。 3.)、 MENU(画面选择)键,按下,显示出画面菜单。 FCTN(辅助)键用来显示辅助菜单。 4.)、、、、、、、、SELECT(一览)键用来显示程序一览画面。 EDIT(编辑)键用来显示程序编辑画面。 DATA(数据)键用来显示寄存器等数据画面。 OTF键用来显示焊接微调整画面。 STATUS(状态显示)键用来显示状态画面。 I/O(输入/输出)键用来显示I/O画面。 POSN(位置显示)键用来显示当前位置画面。 DISP单独按下的情况下,移动操作对象画面。在与SHIFT键同时按下的情况下,分割画面(1个画面、2个画面、3个画面、状态/1个

(完整版)KUKA简单操作说明书

KUKA简单操作说明书 一、KUKA控制面板介绍 1、示教背面 在示教盒的背面有三个白色和一个绿色的按钮。三个白色按钮是使能开关(伺服上电),用在T1和T2模式下。不按或者按死此开关,伺服下电,机器人不能动作;按在中间档时,伺服上电,机器人可以运动。绿色按钮是启动按钮。 Space Mouse为空间鼠标又称6D鼠标。 2、示教盒正面

急停按钮: 这个按钮用于紧急情况时停止机器人。一旦这个按钮被按下,机器人的伺服电下,机器人立即停止。 需要运动机器人时,首先要解除急停状态,旋转此按钮可以抬起它并解除急停状态,然后按功能键“确认(Ackn.)”,确认掉急停的报警信息才能运动机器人。 伺服上电: 这个按钮给机器人伺服上电。此按钮必须在没有急停报警、安全门关闭、机器人处于自动模式(本地自动、外部自动)的情况下才有用。 伺服下电: 这个按钮给机器人伺服上电。

模式选择开关: T1模式:手动运行机器人或机器人程序。在手动运行机器人或机器人程序时,最大速度都为250mm/s。 T2模式:手动运行机器人或机器人程序。在手动运行机器人时,最大速度为250mm/s。在手动运行机器人程序时,最大速度为程序中设定的速度。 本地自动:通过示教盒上的启动按钮可以使程序自动运行。 外部自动:必须通过外部给启动信号才能自动执行程序。 退出键: 可以退出状态窗口、菜单等。 窗口转换键: 可以在程序窗口、状态窗口、信息窗口之间进行焦点转换。当某窗口背景呈蓝色时,表示此窗口被选中,可以对这个窗口进行操作,屏幕下方的功能菜单也相应改变。 暂停键: 暂停正在运行的程序。按“向前运行”或“向后运行”重新启动程序。 向前运行键: 向前运行程序。在T1和T2模式,抬起此键程序停止运行,机器人停止。 向后运行键: 向后运行程序。仅在T1和T2模式时有用。 回车键: 确认输入或确认指令示教完成。 箭头键: 移动光标。

双工位自动锁螺丝机设备使用说明书

双工位自动锁螺丝机设备使用说明书 产品型号:JFT-S02 版本:V2015.04 申明 感谢使用巨丰泰自动锁螺丝机产品。为了更好的发挥本设备作用,在节省人力的同时提高生产效率,更为了保障使用者的安全和健康,请务必在使用前阅读本说明书。 对于未接触过自动化设备的使用者,初次使用本设备时,难免会有一段学习和熟悉过程。我司除了在交付现场对客户进行操作培训外,也会在其后给予各种技术支持。同时本设备已充分考虑了防呆及易操作性,使用者遇到故障时无需焦虑,严格按照使用说明操作,即可避免和解决大部分问题。 机器操作时切记注意安全!正常工作时严禁将手或其它任何物品伸进机械手及 Z轴工作区间。应学会正确使用急停按钮。 本设备内含多种精密传感器,虽有一定防护,但无法阻止粗暴操作带来的破坏。例如螺丝供料器上的光电传感器,其与吸嘴距离很近,关机时如随意推动Z轴,螺丝吸嘴就有可能与之碰撞而导致其失效。因此类不当操作而造成的设备故障,我司将依照售后条款收取维修费用。 自动化设备的稳定工作与日常保养维护密切相关。我司已尽可能将维护项目简化,并编写了《自动锁螺丝机保养及操作说明》。请认真执行。 本设备含有消耗材料,详见《自动锁螺丝机常备耗材清单》。耗材会随着使用 时间而逐渐失效。耗材的失效不属于机器质量问题,请根据使用说明定期检查及更换。部分耗材必须使用我司原厂正品(详见清单)。 使用过程如有疑问和建议,欢迎致电,我们将竭诚为您服务。 设备说明 1:设备介绍: 巨丰泰自动锁螺丝机系列,广泛应用于手机,U盘,遥控器,PCB板等电子 行业。包含人工取料型、机械手取料型、加大工位型、双种螺丝型等多种型号。 可以根据不同的产品编写程序进行螺丝的锁附。 2 :主要技术参数:

爬杆机器人设计说明书

目录 一.方案构思---------------------------------------------1 二.机械部分---------------------------------------------3 三. 电控部分---------------------------------------------17 四.设计小结---------------------------------------------19

一方案构思 我们通过三个手臂来抓紧杆件再通过手臂上的电机来实现机器人的爬升和下降。原理上两个就能实现,但三个手臂是一作联结,二可起稳定作用。手臂上升下降是通过齿轮齿条来实现的。 二.机械部分 1.机器人的整体装配图如下: 图1 我们是通过三个手臂爬杆的,上手臂装在一个齿条的最上端,并且固

定,在具体设计时我们可以使上手臂有一定的上下和左右转动范围,具体的设计将在下面介绍。下手臂装在下杆C上齿条的下端,中间手臂固定在滑槽上,上手臂的上升和下降是通过装在滑槽上端的电动机带动齿轮啮合齿条来实现的.下手臂的上升和下降是通过装在滑槽下端的电动机带动齿轮啮合齿条来实现的,中间手臂的升降是通过上下两对齿轮齿条反转来实现的。 1 升降设备———液压剪叉升降 剪叉机构由两根中间用枢轴连接,可在平面内相互转动的剪杆组成,每根剪杆又可以认为由两段一端铰接和一端固接的梁单元连接而成。剪杆作为机构折叠变化的对象,铰点约束剪杆的变化,折叠过程既剪杆围绕铰点旋转,最后达到指定位置,从而完成一个折叠过程。剪叉式升降台主要由底座、剪叉机构和工作台三个部分组成,其中剪叉机构是剪叉式升降台的主体,也是主要承力构件。剪叉式升降台按驱动形式主要分为液压式和电机式驱动。其中,液压水平驱动剪叉式升降台具有结构紧凑、设计简单、压缩比大、噪声小、工作平稳可靠等突出优点,作为机器人的升降装置非常合适。 (1)升降装置的运动学分析 以单片剪叉式升降台为研究对象,如图1 所示,分析滑块B水平速度v1与升降平台CD 在垂直速度v 之间的关系。 该运动为平面运动,采用速度瞬心法进行求解。因为D点速度垂直向上,B 点速度水平向左,所以剪杆BD 运动瞬心为点C,令其瞬时角速度为ω,则D、B 点的速度为: V=W*R =W*Lcosα D

智能式移动机器人设计说明书

智能移动式送料机器人机械系统设计 摘要:智能移动式送料机器人以电动机作为驱动系统,运用单片机传感器等技术达到其智能移动的目的,实现行走、刹车、伸缩、回转等多种动作的操作。因此它具有机械化、程序化、可控化、适应性、灵活性强的特点。 前言:工业机器人是一种典型的机电一体化产品在现代生产中应用日益广泛,作用越来越重要,机器人技术是综合了计算机、控制、机构学、传感技术等多学科而形成的高新技术是当代研究十分活跃,应用日益广泛的领域。

现在,国际上对机器人的概念已经逐渐趋近一致。一般说来,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”我国研制的排爆机器人不仅可以排除炸弹,利用它的侦察传感器还可监视犯罪分子的活动。监视人员可以在远处对犯罪分子昼夜进行观察,监听他们的谈话,不必暴露自己就可对情况了如指掌。 智能小车,又称轮式机器人,可以在人类无法

适应的恶劣和危险环境中代替人工作。它是一个集环境感知,规划决策,自动驾驶等功能于一体的智能系统。现如今已在诸多领域有广泛的应用。对于快要毕业的大学生来说也是一个实时、富有意义和挑战的设计课题。 正文: 设计方案: 一课题名称:智能移动式送料机器人设计 二机器人工作过程及设计要求 自主设计智能移动小车,设计一个取料 手爪装配到小车上,完成取料机器人的机械系统设计,并进行机器人运动规划和取料虚拟仿真,使机

器人完成如下动作:沿规定路径行驶——工件夹取——车体旋转——手爪张开,将工件从储存处送到运料车上。 三机器人设计的内容 一机械手的设计:

螺丝机控制器手持版说明书V汇总

螺丝机控制器-手持版说明书V.汇总

————————————————————————————————作者: ————————————————————————————————日期:

双Y轴智能螺丝机控制系统QZ-LS03(手持盒版) V6.4说明书 东莞市领航自动化有限公司

目录 1.产品介 绍........................................................................................................3 1.1产品概述..... (3) 1.2功能简介 (3) 1.3功能特性 (3) 1.4产品列表.. (4) 2.接线说明图... (5) 2.1控制器接线引脚定义.......………………………………………………………………………………….52.2 控制器接线说明……. ......…………………………………………………………………………………. 6 2.3系统连接示意图........... (7) 2.4转接板接线说明..... (8) 2.5 转接板接线示意图.……………………………………………………………………………….………. 9 2.6安装尺寸.......... (10) 3.按键说明..... (11) 3.1手持盒按键图..............................................................................................................113.2手持盒按键说明...........................................................................................................11 4.手持盒操作说明......... (13) 4.1开机画面介绍................... (13) 4.2主菜单功能介绍.................. (15) 4.3新增功能操作.................. (19) 4.4插入指令操作............................................................................................................20 4.5删除指令操作............... (20) 4.6复制指令操作………........……………………………………………………………………………….204.7阵列复制操

自动锁螺丝机的调试方法

东莞市领航者自动化设备有限公司 当使用一台自动锁螺丝机时,过程中如出现因振动造成零部件位置变化或者所使用螺丝规格不同,需要调试的。需要先把设备调试完成才能确保自动打螺丝机的正常运行。以下内容是针对市场上常见的锁螺丝机所总结出来的一些调试方法。 希望能帮助每位客户合理的使用螺丝机。 工具/原料 自动锁螺丝机一台 方法/步骤 1.调节螺丝通过板 观察及调节螺丝通过板高度使其略高于螺帽0.2-0.3MM。 2.传感器调节 当螺丝位于传感器发射端与接收端中间时,机器感应到螺丝,分料起停止转动,LED灯亮;当没有感应到螺丝时,分料转盘持续转动,LED灯灭。要观察及调节感应器高度(传感器调整螺丝)。 3.I/O调试 1. 首先确保所有感应开关输入与电磁阀输出都按照系统提供商提供的系统输 入输出列表上的顺序接入控制器的输入输出口。 2. 确保气缸能够在行程内安全运作的情况下手动按照系统提供商提供的配线 IO列表点动操作电磁阀,观察电磁阀的开闭与气缸运动状态是否正常,如果

电磁阀输出状态与气缸状态不相符请调换相应气缸上的气管,如点动电磁阀气缸没相应则检查是否有气输入且总气阀是否已经打开。 3. 断掉总气,进入系统的I/O操作界面,手动移动气缸,将气缸从原位与动 位两个状态之间来回切换,观察该气缸相应的原位、动位输入到位信号是否正确输入(灯亮即为有输入),如果原位与动位的到位信号相反则更换接入到两个输入口上面的信号线即可,如果其中一个输入口始终没有信号输入则排查感应开关是否正确接入相应的输口或感应开关是否为低电平输出形式。 4. 进入系统的I/O操作界面,在确保气缸能够在行程内安全运作的情况下按 顺序逐个点击界面上的输出口控制按键,观察其相应的到位信号是否正确输入。 4.轨道及分料模块调节 轨道与分料盘之间保持有一定的间隙,如轨道与分料盘撞击,将会出现分料盘反复正反转的现象;若该间隙过大,螺丝则可能卡在间隙初或落入机器内部; 若轨道与分料板有接触,则摩擦增大即使调大振动,螺丝亦输送不畅。调节方法:松开轨道固定螺丝(轨道调节孔处),将轨道推拉至合适位置,固定轨道,松开分料模块固定螺丝,将分料模块左右、上下移动,使分料板不与轨道有接触,同时分料盘面与轨道面相平或略低,且轨道出口正对分料盘缺口,最后固定分料模块。 5.轴运动调试 1. 进入参数设置界面,确保各种参数已经设置并且正确设置。如出厂设置里 的步数/转、传动比设置,速度参数设置里的回零速度、加速时间、减速时间

相关文档
最新文档