二次根式(说课稿)
人教版数学八年级下册16.1《二次根式》说课稿1

人教版数学八年级下册16.1《二次根式》说课稿1一. 教材分析人教版数学八年级下册16.1《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。
本节内容是在学生已经掌握了实数、有理数、无理数等基础知识的基础上进行学习的,为后续学习二次根式的应用和进一步学习高中数学打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数、有理数、无理数等概念有一定的了解。
但是,对于二次根式的概念和性质,学生可能初次接触,理解起来有一定的难度。
因此,在教学过程中,需要引导学生通过观察、思考、讨论等方式,逐步理解和掌握二次根式的相关知识。
三. 说教学目标1.知识与技能:让学生掌握二次根式的概念、性质和运算方法。
2.过程与方法:通过观察、思考、讨论等方式,培养学生的逻辑思维能力和团队合作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:二次根式的概念、性质和运算方法。
2.教学难点:二次根式的性质和运算规律。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型等教学手段,帮助学生形象直观地理解二次根式的概念和性质。
六. 说教学过程1.导入新课:通过复习实数、有理数、无理数等基础知识,引出二次根式的概念。
2.探究二次根式的性质:让学生观察、分析例子,引导学生发现二次根式的性质。
3.学习二次根式的运算:通过讲解和练习,让学生掌握二次根式的运算方法。
4.应用拓展:布置一些相关的练习题,让学生巩固所学知识,并能够灵活运用。
七. 说板书设计板书设计要简洁明了,突出二次根式的概念、性质和运算方法。
可以设计如下:1.二次根式的概念–定义:形如√a(a≥0)的式子称为二次根式。
2.二次根式的性质–√a = √b(a=b≥0)–√a × √b = √(ab)(a≥0,b≥0)–√a ÷ √b = √(a/b)(a≥0,b>0)3.二次根式的运算方法–加减法:同底数相加减,指数不变;–乘除法:底数相乘除,指数相加减。
数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。
2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。
它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。
再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。
教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。
二次根式教案三篇

二次根式教案三篇二次根式教案三篇二次根式教案篇1 一、内容解析本节教材是在学生学习二次根式概念的根底上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和考虑得到二次根式的两个根本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个详细问题,让学生学生根据算术平方根的意义,就详细数字进展分析^p 得出结果,再分析^p 这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析^p ,确定本节课的教学重点为:理解二次根式的性质.二、目的和目的解析1.教学目的〔1〕经历探究二次根式的性质的过程,并理解其意义;〔2〕会运用二次根式的性质进展二次根式的化简;〔3〕理解代数式的概念.2.目的解析〔1〕学生能根据详细数字分析^p 和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;〔2〕学生能灵敏运用二次根式的性质进展二次根式的化简;〔3〕学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析^p二次根式的性质是二次根式化简和运算的重要根底.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵敏运用二次根式的性质进展二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的.灵敏运用存在一定的困难,打破这一难点需要老师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵敏运用的才能.本节课的教学难点为:二次根式性质的灵敏运用.四、教学过程设计1.探究性质1问题1 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕.【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的才能.例2 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质1,学会灵敏运用.2.探究性质2问题4 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的才能.例3 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质2,学会灵敏运用.3.归纳代数式的概念问题7 回忆我们学过的式子,如 ___________〔≥0〕,这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括才能.4.综合运用〔1〕算一算:【设计意图】设计有一定综合性的题目,考察学生的灵敏运用的才能,第〔2〕、〔3〕、〔4〕小题要特别注意结果的符号.〔2〕想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.〔3〕谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思〔1〕你知道了二次根式的哪些性质?〔2〕运用二次根式性质进展化简需要注意什么?〔3〕请谈谈发现二次根式性质的考虑过程?〔4〕想一想,到如今为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2 活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。
苏科版数学八年级下册12.1《二次根式》说课稿3

苏科版数学八年级下册12.1《二次根式》说课稿3一. 教材分析《二次根式》是苏科版数学八年级下册第12章第1节的内容。
这一节主要介绍了二次根式的概念、性质和运算。
二次根式在数学中占有重要的地位,它是学习更高级数学的基础。
通过本节的学习,学生能够理解和掌握二次根式的基本概念和性质,能够进行二次根式的运算,为后续的学习打下坚实的基础。
二. 学情分析八年级的学生已经学习过一次根式,对根式有一定的了解。
但是,二次根式相对于一次根式来说,概念更加抽象,性质更加复杂。
因此,学生在学习本节内容时可能会感到困难和困惑。
另外,学生对于二次根式的运算可能还不够熟悉,需要通过练习来提高。
三. 说教学目标1.知识与技能目标:学生能够理解二次根式的概念,掌握二次根式的性质,能够进行二次根式的运算。
2.过程与方法目标:通过观察、思考、交流等活动,学生能够培养自己的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生兴趣,树立自信心。
四. 说教学重难点1.教学重点:二次根式的概念、性质和运算。
2.教学难点:二次根式的性质的理解和应用,二次根式的运算的熟练掌握。
五. 说教学方法与手段在本节课中,我将采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣和主动性。
同时,我会利用多媒体教学手段,展示二次根式的图形和动画,帮助学生更好地理解和掌握二次根式。
六. 说教学过程1.导入:通过复习一次根式,引导学生思考二次根式的概念,激发学生的学习兴趣。
2.新课引入:讲解二次根式的概念,通过示例和练习,让学生理解和掌握二次根式的定义。
3.性质讲解:通过观察和实验,引导学生发现二次根式的性质,并进行证明和解释。
4.运算讲解:讲解二次根式的运算规则,通过示例和练习,让学生熟悉和掌握二次根式的运算。
5.巩固练习:布置一些练习题,让学生独立完成,巩固所学知识。
6.总结:对本节课的内容进行总结,强调二次根式的概念和性质,提醒学生注意运算的细节。
二次根式(说课稿)

《二次根式》说课稿一、说教材1、说课内容义务教育课程标准实验教材书数学八年级下册(人民教育出版社)第十六章二次根式第一、二节二次根式及乘除运算2、教材的地位及作用“二次根式”是《课程标准》“数与代数”的重要内容。
本章是在实数的基础上,进一步研究二次根式的概念,性质,和运算。
本章内容与已学内容“实数”“整式的计算与因式分解”联系紧密,同时也是为下一章节要学习的“勾股定理”以后将要学习的“一元二次方程”和“二次函数”“锐角三角函数”等内容的重要基础。
第一部分研究了二次根式的概念和性质。
它是学习本章的关键,它也是学习二次根式的化简和运算的依据,第二部分是二次根式的乘除运算,是二次根式运算的基础,同时也是对分式乘除运算的复习和巩固。
3、教学目标我所教的学生是八年级中等水平的学生。
根据学生的学习特点和心理水平,本节课可确定如下教学目标:(1)知识技能:使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围;了解二次根式的乘除法运算法则,能进行乘除法的混合运算;并能进行二次根式的化简;(2)数学思考:使学生理解二次根式被开方数的取值范围的重要性及乘除运算的特点及规律;(3)解决问题:培养学生根据条件处理问题的能力及分类讨论问题的能力,还有做题的准确率;(4)情感态度:通过简便有效的教学方式,是学生更好的接受本周所学的知识点,并喜欢上我的数学课;4、教学重点难点(1)教学重点:二次根式中被开方数的取值范围,及乘除运算(2)教学难点:二次根式的取值范围及运算二、说教法教学活动的本质是一种合作,一种交流。
所以,在教学过程中以问答及引导为主。
学生在学校已经学习了这部分的内容,所以在教学过程中分三步走:第一步:问答;第二步:各个知识点逐一突破;第三步:综合训练考查学生对各知识点的掌握及灵活运用的能力;说学法在教学中,学生是学习的主体。
要让学生成为真正的主人,在一节课中获得更多的知识及做题技巧。
二次根式说课稿课件

研究二次根式的概念、性质和运算.本章内容与
已学内容“实数”、“整式”、“勾股定理”
联系紧密,同时也是以后将要学习的“锐角三
角函数”、“一元二次方程”和“二次函数”
等内容的重要基础.本课研究了二次根式的概念
和性质,它是学习本章的关键,它也是学习二次
根式的化简和运算的依据.
二次根式说课稿
3
教材分析 教法分析 学法分析 教学过程 板书设计 教学评价
4
教材分析 教法分析 学法分析 教学过程 板书设计 教学评价
重难点分析
重点:
二次根式的概念及其基本性质.
难点:
二次根式的基本性质的灵活运用.
二次根式说课稿
5
教材分析 教法分析 学法分析 教学过程 板书设计 教学评价
教法分析
数学是一门培养人的思维、发展人的思 维的重要学科,在教学中,对学生不仅要 “知其然”更要“知其所以然”,因此基 于本节课的特点我着重采用情景教学与动 手操作相结合的教学方法,充分发挥八年 级学生思维活跃、富有激情的特点,组织 学生合作交流,体验学习的全过程,让学 生在活动中增长知识、锻炼思维。
二次根式说课稿
19
教材分析 教法分析 学法分析 教学过程 板书设计 教学评价
板书设计
§22.1 二次根式
二次根式的概念: 例1
二次根式的性质: 例2
注:
例3
练习
复习引入 作业
二次根式说课稿
20
教材分析 教法分析 学法分析 教学过程 板书设计 教学评价
教学评价
新的课程标准,倡导把课堂变为 学生自主、合作、发展新知,运用新 知解决问题,以及用数学语言交流的 能力为目标的教学思想.
练习 x是怎样的实数时二,次下根列式有意义?
《二次根式》说课稿

《两次根式》道课稿之阳早格格创做诸位教授:大家佳!即日尔道课的真量是是人教版八年级下册第十六章《两次根式》(第一课时).原次道课包罗四个部分:课本分解,教法与教法分解,教教历程战板书籍安排.一、课本分解1、课本的职位与效率:“两次根式”是《课程尺度》“数与代数”的要害真量.原章是正在第13章《真数》的前提上,进一步钻研两次根式的知识.它与已教真量“真数”“整式”通联稀切,共时也是后里的“勾股定理”,“一元两次圆程”,“两次函数”等真量的要害前提.原节课波及的两次根式的字母与值范畴的问题是中考的必考题型.2、教教目标:(1)、知识目标:1.明白两次根式的观念.2. 决定两次根式中字母的与值范畴.(2)、本收目标:培植教死瞅察、分解、归纳等本收,体验从特殊到普遍的教习要收 .(3)、情感目标:使教死经历瞅察、预测、归纳、应用等数教活动,体验战体验数教活动的兴趣,并普及教死应用数教的意识.3、教教沉面、易面教教沉面:两次根式的观念.教教易面:决定两次根式中字母的与值范畴.两、教法与教法分解(1)、原节课中,尔采与教案导教战小拉拢做的要收举止教教,并充分利用多媒介辅帮教教.通过教死的自决教习,合做接流战西席的适合面拨,使教死达到对于知识的创造战掌握.(2)、教法:采与自决教习战商量教习的要收,以便更佳天收挥教死的主瞅能动效率,普及他们的概括本收.三、教教历程分解(一)、温故知新,情境导进.1.复习仄圆根战算术仄圆根的有闭知识 .2.创建情境,提出问题:由本量问题得到的式子有什么共共特性? 安排企图:通过创建情境,把数教问题与教死的现真死计通联起去,激励教死的教习兴趣,让教死从分歧的式子中探觅顺序,由特殊到普遍引进两次根式的观念.(两)、观念训练,超过沉面.正在一组分歧的式子中让教死指出哪些是两次根式?安排企图:为教死提供训练的时间战空间,使他们进一步明白两次根式的观念.(三)、例题道解,突破易面.通过顺序渐进的例题使教死计划接流归纳决定两次根式中字母与值范畴的要收.例1x 的与值必须谦脚什么条件? 例2:要使蓄意思,字母x 必须谦脚什么条件?思索:把题目改为:要使蓄意思,字母x 必须谦脚什么条件? 安排企图:通过有梯度的例题的教习,让教死有一个由浅进深的教习历程,进而真真掌握决定两次根式中字母与值范畴的题型.共时采与变式安排,步步深进,使原节课的教教易面迎刃而解.(四)、坚韧使用,加深明白x x --32x x --32单沉非背性2. 1、通过仿例题的前提训练让教死体验教习的成便感.2、通过课堂检测,概括观察教死对于原节知识的掌握程度.(五)、量疑问易,归纳评介归纳原课知识,根据各小组表示评分.安排企图:教死共共归纳,与少补短.归纳各小组得分情况,通过小组评比的形式,普及教死教习兴趣,促进教死教习的主动性,产死良佳的比赛意识.四、板书籍安排采与目收式的板书籍,体现原节课的主要真量,使教死有“话”可道,有“理”可循.1..0≥a0≥a a )0(≥a a )0(≠B B A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式(说课稿)《二次根式》说课稿一、说教材1、说课内容义务教育课程标准实验教材书数学九年级上册(人民教育出版社)第二十一章二次根式第一节二次根式2、教材的地位及作用“二次根式”是《课程标准》“数与代数”的重要内容。
本章是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步研究二次根式的概念,性质,和运算。
本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也是以后将要学习的“锐角三角函数”“一元二次方程”和“二次函数”等内容的重要基础。
第一节研究了二次根式的概念和性质。
它是学习本章的关键,它也是学习二次根式的化简和运算的依据。
3、教学目标根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:(1)知识技能:使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围(2)数学思考:使学生理解二次根式被开方数的取值范围的重要性(3)解决问题:培养学生根据条件处理问题的能力及分类讨论问题(4)情感态度:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,发展学生观察、分析、发现问题的能力,培养学生辩证唯物主义观点4、教学重点难点(1)教学重点:二次根式中被开方数的取值范围(2)教学难点:二次根式的取值范围二、说教法教学活动的本质是一种合作,一种交流。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。
为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。
三、说学法新课程标准指出:学生是学习的主体。
要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。
本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。
先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习。
通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生辩证唯物主义观点得以培养。
四、说教学手段使用多媒体与黑板板书结合,有条理,有逻辑性地展示问题的发现、分析研究、得出结论的过程,加深学生们的理解五、说教学过程活动一温故知新回顾思考首先带领学生复习平方根与算术平方根的使用,由四个实际问题(三个几何问题,一个物理问题)入手,设置问题情境,让学生感受到研究二次根式来源于生活又服务于生活。
思考:用带有根号的式子填空,看看写出的结果有什么特点?(1)要做一个两条直角边的长分别为7cm和4cm的三角尺,斜边的长应为 cm(学生口答)(2)面积为S的正方形的边长为(学生口答)m的圆形喷水池,它的半径为 m( (3)要修建一个面积为6.282取3.14)(学生举手回答)(4)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=52t.如果用含有h的式子表示t,则t= (学生举手回答,最快举手者回答)(目的:既可以巩固旧知识,又可以让学生有一个明确的思考方向,同时,还可以培养学生的观察能力,做到老师是课堂上的引导者,学生是学习的主人)活动二探求新知分析例题学生发现复习题结果都是一些正数的算术平方根,教师引导学,此时教(0a≥)这一条件。
在此基础上引出二次根式的定义:一般的,的式子叫做二次根式,“”称为二次根号.又请同学们思考:为什么一定要加上0a≥这一条件?引导学生说出只有正数和零才有平方根,负数没有平方根。
(目的:传授学生学习的方法:在于善于和以前学过的知识相联系、相结合,这便于对新知识的进行有层次的理解、记忆与运用)继续请学生思考,二次根式可否简单而又笼统的理解为开算术平方根,为什么? 从而使学生得出一个认识:a≥)表示非负数a的算术平方根,(0a≥)也是非负数,它的平方等于a,有0≥ (0a≥),(2)()2a a=≥,由此引出二次根式的基本性质:根式,但不作甚解,让学生带着疑问去学习、研究,从而在接下来的引领教学中培养学生辩证唯物主义观,为学生在下面的学习过程中产生顿悟的喜悦感设下伏笔(目的:让学生领会,学数学,是一个感性到理性的培养过程,最终目的并不是仅仅学习如何去运算式子、计算数字,而是重点通过学数学培养、锻炼我们的分析、联想能力、启发性思维和发散性思维)从二次根式的基本性质:()20a a =≥,引导学生提出预习时从读法、意义、a 的取值范围、外表、结果五个方面对它们进行区分:()20a a =≥是“对非负数a a =是“对任意数a 的平方开算术平方根”;显然前后“a ”所代表的意义都不相同;“a ”的取值范围: 2中的“a ”必须满足“()0a ≥”,a ”为任意数;运算结果:0a ≥时,2= ,0a <时,无意义2无意义,a =-.相同点:①都有平方和开平方运算;②运算结果都是非负数;③仅当0a ≥时,2=. 回顾所学过的式子的共同特点,发现它们都是用基本运算符号把数和表示体的认识。
们的相同点和不同点得出区分方法,然后和老师一起总结,并请学生结合具体例子对这些结论进行分析;引导学生由具体到抽象,得出一般的结论,并发现开平方运算与平方运算的关系,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。
)例题例1.下列各式是否为二次根式?(1)12+m ;(2)2a ;(3)2n -;(4)2-a ;(5)y x -第(1)小题与学生一起分析;第(2)小题请学生分析;第(3)小题请学生认真思考后回答;(4)(5)两小题需要分情况讨论,请学生考虑清楚在回答.例2.当x 为何值时,下列各式在实数范围内有意义?(1)3-x ;(2)x 432-;(3)x 5-;(4)1+x第(1)(2)小题学生自己能够解决;第(3)小题注意符号问题;第(4)小题请学生思考后解答,并试着讨论. (目的:通过对例题的共同探讨,让学生体会二次根式概念的初步应用。
加深对二次根式定义的理解,并注重新旧知识间的联系,用转化的思想解决问题,总结出解题规律:求未知数的取值范围即转化为①被开方数大于等于0;②分母不为0列不等式或不等式组解决问题)✧ 活动三 接触新知 动手实践练习1. 一个矩形的面积是18cm 2,它的边长之比为2:3,它的边长应为多少?2. 当a 是怎样的实数时,下列各式在实数范围内有意义?(1)1-a (2)32+a3. 已知y =3-x -x -3,求x +y 的值.学生练习1、2两小题是基础题,学生自己能够完成;3题是灵活应用二次根式的取值范围才能解的题目,需要学生认真思考.(1、2两小题检查中等及以下学生对基础知识的掌握情况;3题检查中等以上学生是否对二次根式的取值范围有更深刻的理解.) (目的:通过课堂练习,检查学生对基础知识的掌握情况,了解学生是否对二次根式的取值范围有更深刻的理解,使学生进一步巩固知识,运用知识)✧ 活动四 归纳知识 总结收获查问学生本节课有什么收获和体会/总结有何收获和经验教训(从知识、方法、规律和注意点等方面谈),教师引领提升。
如:1. 二次根式的定义及被开方数的取值范围;2. 被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用.(目的:有助于培养学生的总结能力,并让学生总结经验教训有助于学生大胆的说出自己的错误避免今后再出现同样的失误)活动五 知识延伸 分层作业基础练习:1.下列各式是否为二次根式?32+x ; 2a ; 2a -;7-m .2.当a 是怎样的实数时,下列各式在实数范围内有意义? (1) a 3; (2) 1--a ; (3) 226a +.选作练习:一、选择题1.下列式子中,是二次根式的是( )A .B D .x2.下列式子中,不是二次根式的是( )A B D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对 二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.(目的:分层作业,分层训练学生对知识的理解与运用;大的作业量,小的要求,素质教育,让学生拥有多元化的选择和更多的思考与讨论的空间)六、板书设计七、教学评价新的课程标准,倡导把课堂变为学生自主、合作、探究的场所,呼唤学生主体性的发展。
教学活动中,学生在问题的基础之上逐步地得出这节课的重点内容,这样让学生感觉坡度不大,掌握起来比较容易。
本课教学始终贯穿“发展、创新”两个主要思想,并以训练思维为主线,重视知识的形成、发展过程,解题思路的探索过程,重视知识的概括和总结,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成自主、合作获取、发展新知,运用新知解决问题,以及用数学语言交流的能力。