小学六年级数学工程问题例题解析

合集下载

六年级数学工程问题(附例题答案)

六年级数学工程问题(附例题答案)

六年级数学工程问题(附例题答案)本文介绍了工程问题中的基本数量关系,即工作总量=工作效率×工作时间。

举例说明了如何计算两人合作完成一件工作需要的时间。

为了计算方便,可以把工作量设为整体1或整数化,也可以从比例角度出发或列方程等。

接下来给出了一个例题:甲做9天可以完成一件工作,乙做6天可以完成,现在甲先做了3天,问乙需要做几天才能完成全部工作。

根据基本数量关系,甲的工效为1/9,乙的工效为1/6,甲三天做了1/3的工作,余下的工作量为2/3,乙需要的时间为2/3÷1/6=4天。

第七讲工程问题例2.一个工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。

这个工程由丙队单独做需几天完成?解析:先计算甲、乙两队合作完成这个工程所需的时间:1-(1/24+1/30)×8=2/56÷2/5=15天。

因此,丙队单独做这个工程需要15+6=21天完成。

例3.某工程先由甲单独做63天,再由乙单独做28天即可完成,若由甲乙两人合作,需48天完成。

现在甲先单独做42天,然后由乙来单独完成,那么还需要多少天?解析:根据已知条件,可以得出甲的工效为(1-28/48)/35=1/84,乙的工效为1/48-1/84=1/112.因此,甲先单独做42天后,剩下的工程量为1-42*1/84=1/2,需要乙再完成1/2,所需时间为(1/2)÷(1/112)=56天。

另一种方法是设甲每天完成工程的百分比为x,乙每天完成工程的百分比为y,则63x+28y=148(x+y)=1,解得x=1/84,y=1/112.因此,甲先单独做42天后,剩下的工程量为1/2,需要乙再完成1/2,所需时间为(1-42*1/84)/(1/112)=56天。

例4.一项工程,甲乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的甲乙单独做这项工程各需要多少天?解析:设甲单独做需要X天,乙单独做需要Y天,则有4*(1/X + 1/Y)+5/Y=1,同时有1/X -1/Y=1/30.解得X=10,Y=15,因此甲单独做需10天,乙单独做需15天。

六年级工程问题应用题50题

六年级工程问题应用题50题

六年级工程问题应用题50题一、基本工程问题(1 10题)1. 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。

两队合作需要多少天完成?解析:把这项工程的工作量看作单位“1”。

甲队的工作效率是公式,乙队的工作效率是公式。

两队合作的工作效率就是公式。

根据工作时间 = 工作量÷工作效率,可得两队合作需要的时间为公式天。

2. 修一条路,甲单独修12天可完成,乙单独修比甲多用6天。

如果两队合修,多少天可以修完?解析:乙单独修需要公式天。

甲的工作效率为公式,乙的工作效率为公式。

两队合作的工作效率为公式。

合作完成需要的时间为公式天。

3. 一项工程,甲单独做8小时完成,乙单独做10小时完成。

如果按甲、乙、甲、乙……的顺序交替工作,每次1小时,那么完成这项工程需要多少小时?解析:甲的工作效率为公式,乙的工作效率为公式。

甲乙各做1小时看作一个循环周期,一个周期完成的工作量是公式。

公式,说明经过4个完整周期后还剩下的工作量为公式。

接下来轮到甲做,甲做公式小时。

所以总共需要公式小时。

4. 一件工作,甲单独做20小时完成,乙单独做12小时完成。

甲先做4小时,然后乙加入一起做,还要几小时完成?解析:甲的工作效率为公式,乙的工作效率为公式。

甲先做4小时完成的工作量为公式。

剩下的工作量为公式。

甲乙合作的工作效率为公式。

那么还需要的时间为公式小时。

5. 一项工程,甲队单独做20天完成,乙队单独做30天完成。

甲、乙两队合做几天后,乙队因事请假,甲队继续做,从开工到完成任务共用了16天。

乙队请假多少天?解析:甲队16天完成的工作量为公式。

那么乙队完成的工作量为公式。

乙队的工作效率为公式,乙队工作的时间为公式天。

所以乙队请假公式天。

6. 一项工程,甲、乙两队合做12天可以完成。

如果甲队先做6天,乙队接着做10天,也可以完成这项工程。

乙队单独做这项工程需要多少天?解析:设甲队的工作效率为公式,乙队的工作效率为公式。

小学六年级数学工程问题例题详解及练习(有答案)

小学六年级数学工程问题例题详解及练习(有答案)

小学六年级数学工程问题例题详解及练习(有答案)顾名思义;工程问题指的是与工程建造有关的数学问题。

其实;这类题目的内容已不仅仅是工程方面的问题;也括行路、水管注水等许多内容。

在分析解答工程问题时;一般常用的数量关系式是:工作量=工作效率×工作时间;工作时间=工作量÷工作效率;工作效率=工作量÷工作时间。

工作量指的是工作的多少;它可以是全部工作量;一般用数1表示;也可工作效率指的是干工作的快慢;其意义是单位时间里所干的工作量。

单位时间的选取;根据题目需要;可以是天;也可以是时、分、秒等。

工作效率的单位是一个复合单位;表示成“工作量/天”;或“工作量/时”等。

但在不引起误会的情况下;一般不写工作效率的单位。

例1 单独干某项工程;甲队需100天完成;乙队需150天完成。

甲、乙两队合干50天后;剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天;甲的工作效例2某项工程;甲单独做需36天完成;乙单独做需45天完成。

如果开工时甲、乙两队合做;中途甲队退出转做新的工程;那么乙队又做了18天才完成任务。

问:甲队干了多少天?分析:将题目的条件倒过来想;变为“乙队先干18天;后面的工作甲、乙两队合干需多少天?”这样一来;问题就简单多了。

答:甲队干了12天。

例3 单独完成某工程;甲队需10天;乙队需15天;丙队需20天。

开始三个队一起干;因工作需要甲队中途撤走了;结果一共用了6天完成这一工程。

问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天;去掉乙、丙两队6天的工作量;剩下的是甲队干的;所以甲队实际工作了例4 一批零件;张师傅独做20时完成;王师傅独做30时完成。

如果两人同时做;那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个?分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间;例5 一水池装有一个放水管和一个排水管;单开放水管5时可将空池灌满;单开排水管7时可将满池水排完。

六年级【小升初】小学数学专题课程《工程问题》(含答案)

六年级【小升初】小学数学专题课程《工程问题》(含答案)

18.工程问题知识要点梳理一、基本概念1.工程问题:做某件事,制造某种产品,完成某项任务或工程等,都叫做工程问题。

2.工程问题的三个基本量是工作效率、工作时间和工作总量。

(1)工作效率:单位时间内完成的工作量,它是衡量一个人工作快慢的量。

(2)工作时间:完成工作总量所需的时间。

(3)工作总量:完成一项工作的总量。

一般都是把工作总量看做单位“1”。

二、基本数量关系1.一般公式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率甲工效+乙工效=甲乙合作工效之和特别注意:工作量和工作效率都可以直接相加求和,但工作时间不能。

2.巧解工程问题:一般不知道工作总量的时候,我们常常用假设法求解。

我们把工作总量假设为单位“1”,这个巧解方法的公式有:。

(1)一般给出工作时间,工作效率=工作时间(2)一般给出工作效率,就可以知道工作时间为a。

三、基本方法算术方法、比例方法、方程方法。

考点精讲分析典例精讲考点1 简单的工程问题【例1】一件工作,甲单独10天完成,乙单独15天完成,甲乙合做()天完成。

【精析】根据题意,把这件工作总量看作单位“1”,甲的工作效率是,乙的工作效率是,甲、乙的工作效率和是,再用工作总量除以工作效率和就等于合作的工作时间。

【答案】把这件工作总量看作单位“1”,(天)【归纳总结】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,要求甲乙合做需要多少天可以完成,应求出甲乙工作效率和。

考点2 合作工程问题【例2】一件工作,甲、乙合作需4小时完成,甲、丙合作需5小时完成,乙、丙合作需6小时完成,乙单独做这件工作需多少个小时完成?【精析】首先把这件工作看作单位“1”,根据工作效率=工作量÷工作时间,分别求出甲乙、甲丙、乙丙的工作效率,再把它们求和,即可求出三人的工作效率之和的2倍,进而求出三人的工作效率之和是多少;然后用三人的工作效率之和减去甲丙的工作效率,求出乙的工作效率;最后根据工作时间=工作量÷工作效率,用1除以乙的工作效率,求出乙单独做这件工作需多少个小时完成即可。

六年级数学上册《工程问题》专项练习题及答案解析

六年级数学上册《工程问题》专项练习题及答案解析

六年级数学上册《工程问题》例题及解析【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。

这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷(甲工作效率+乙工作效率)【解题思路和方法】变通后可以利用上述数量关系的公式。

01解题思路:设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。

因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?24÷[1÷(1/6+1/8)]=7(个)(2)这批零件共有多少个?7÷(1/6-1/8)=168(个)解二上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3由此可知,甲比乙多完成总工作量的4-3 / 4+3 =1/7所以,这批零件共有24÷1/7=168(个)02一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。

现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解题思路:必须先求出各人每小时的工作效率。

如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是60÷12=560÷10=6 60÷15=4因此余下的工作量由乙丙合做还需要(60-5×2)÷(6+4)=5(小时)也可以用(1-1/12*2)/(1/10+1/15)03一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。

(完整版)六年级数学工程问题(附例题答案)

(完整版)六年级数学工程问题(附例题答案)

第七讲工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量 =工作效率×工作时间 . 在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题” .举一个简单例子:一件工作,甲做 10 天可完成,乙做 15 天可完成 .问两人合作几天可以完成?一件工作看成 1 个整体,因此可以把工作量算作 1.所谓工作效率,就是单位时间内完成的工作量,我们用11的时间单位是“天” ,1 天就是一个单位,因此甲的工作效率是1,乙的工作效率是1,我们想求两人合10 1511作所需时间,就要先求两人合作的工作效率,再根据基本数量关系式,得到所需时间 =工作量÷工10 15作效率=6(天) .两人合作需要 6 天 .这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的 . 为了计算整数化(尽可能用整数进行计算),可把工作量多设份额 .如上题, 10 与 15 的最小公倍数是30.设全部工作量为 30 份.那么甲每天完成 3份,乙每天完成 2 份.两人合作所需天数是30÷( 3+ 2)= 6(天)11实际上我们把1 ()这个算式,先用 30 乘了一下,都变成整数计算,就方便些.10 151110 天与 15 天,体现了甲、乙两人工作效率之间比例关系: 3: 2 .或者说“工作量固定,工作效10 15率与时间成反比例” .甲、乙工作效率的比是 15∶ 10=3∶ 2.当知道了两者工作效率之比,从比例角度考虑问3 3 3题,也是非常实用的 .根据3: 2 ,两人合作时,甲应完成全部工作的 3 3,所需时间是10 3 6(天)3 2 5 5因此,在下面例题的讲述中,我们可以采用“把工作量设为整体 1”的做法,也可以“整数化” 或“从比例角度出发” 、“列方程”等,这样会使我们的解题思路更灵活一些 .二、典型例题例 1. 一件工作,甲做 9 天可以完成,乙做 6 天可以完成 .现在甲先做了 3 天,余下的工作由乙继续完成 . 乙需要做几天可以完成全部工作?解析:甲的工效: 1 ÷9 = 1/9 乙的工效: 1÷6=1/6 甲三天做了的: 1/9 × 3=1/3余下的工作: 1 - 1/3 =2/3 乙需做的天数: 2/3 ÷ 1/6 = 4(天)例 2. 有一工程,甲队单独做 24 天完成,乙队单独做 30 天完成,甲、乙两队合做 8 天后,余下的由丙队做,又做了 6 天才完成。

【小学数学】小学六年级奥数工程问题例题详解及练习(一)

【小学数学】小学六年级奥数工程问题例题详解及练习(一)

工程问题(一)顾名思义;工程问题指的是与工程建造有关的数学问题。

其实;这类题目的内容已不仅仅是工程方面的问题;也括行路、水管注水等许多内容。

在分析解答工程问题时;一般常用的数量关系式是:工作量=工作效率×工作时间;工作时间=工作量÷工作效率;工作效率=工作量÷工作时间。

工作量指的是工作的多少;它可以是全部工作量;一般用数1表示;也可工作效率指的是干工作的快慢;其意义是单位时间里所干的工作量。

单位时间的选取;根据题目需要;可以是天;也可以是时、分、秒等。

工作效率的单位是一个复合单位;表示成“工作量/天”;或“工作量/时”等。

但在不引起误会的情况下;一般不写工作效率的单位。

例1 单独干某项工程;甲队需100天完成;乙队需150天完成。

甲、乙两队合干50天后;剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天;甲的工作效例2某项工程;甲单独做需36天完成;乙单独做需45天完成。

如果开工时甲、乙两队合做;中途甲队退出转做新的工程;那么乙队又做了18天才完成任务。

问:甲队干了多少天?分析:将题目的条件倒过来想;变为“乙队先干18天;后面的工作甲、乙两队合干需多少天?”这样一来;问题就简单多了。

答:甲队干了12天。

例3 单独完成某工程;甲队需10天;乙队需15天;丙队需20天。

开始三个队一起干;因工作需要甲队中途撤走了;结果一共用了6天完成这一工程。

问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天;去掉乙、丙两队6天的工作量;剩下的是甲队干的;所以甲队实际工作了例4 一批零件;张师傅独做20时完成;王师傅独做30时完成。

如果两人同时做;那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个?分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间;例5 一水池装有一个放水管和一个排水管;单开放水管5时可将空池灌满;单开排水管7时可将满池水排完。

六年级上册工程问题所有题型及讲解

六年级上册工程问题所有题型及讲解

六年级上册工程问题所有题型及讲解工程问题是数学中一个重要的应用题型,它需要学生运用数学知识来解决实际问题,培养学生的应用能力和解决问题的能力。

下面是六年级上册工程问题的一些典型题型及讲解:1.长方体的体积:题目:一个长方体的长、宽、高分别是3cm、4cm、5cm,求它的体积。

解析:根据长方体的定义,我们知道体积等于长乘以宽乘以高,即体积=长×宽×高。

将已知的数值代入公式计算,得到体积=3cm×4cm×5cm=60cm³。

2.直角三角形的面积:题目:一个直角三角形的两条直角边分别是3cm、4cm,求它的面积。

解析:根据直角三角形的面积公式,面积等于直角边之积除以2,即面积=直角边×直角边÷2。

将已知的边长代入公式计算,得到面积=3cm×4cm÷2=6cm²。

3.比例问题:题目:小明用3小时做完一份作业,小红用4小时做完相同的作业,如果小红的速度是小明的几倍?解析:根据题目,我们可以设小红的速度是小明的n倍。

根据速度等于工作量除以时间的公式,我们可以写出以下等式:3n=4。

解方程得到n=4/3,所以小红的速度是小明的4/3倍。

4.钱币组合问题:题目:小明有2元、5角和1角三种面额的钱币各若干,共计9个,其中2元的钱币是5角的钱币数量的4倍,1角的钱币数量是5角钱币的数量的3倍,求小明手中的钱币分别有多少个?解析:设5角的钱币数量为x个,则2元的钱币数量为4x个,1角的钱币数量为3x个。

根据题目可以得到一个等式:x+4x+3x=9。

解方程得到x=1,所以小明手中的钱币分别有1个5角、4个2元、3个1角。

5.圆的周长和面积:题目:一个圆的直径是4cm,求它的周长和面积。

解析:根据圆的周长公式,周长等于π乘以直径,即周长=π×4cm≈12.56cm。

根据圆的面积公式,面积等于π乘以半径的平方,即面积=π×(4/2)²=π×2²≈12.56cm²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学工程问
题例题解析
Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
工程问题,是小升初常考的知识点,奥数网小编将工程问题知识点及经典例题解析整理如下。

知识要点
1、分数工程应用题,一般没有具体的工作总量,工作总量常用单位“1”表示,用1/工作时间表示各单位的工作效率。

工作效率与完成工作总量所需时间互为倒数。

2、解工程问题的应用题,一般都是围绕寻找工作效率的问题进行。

3、工作效率、工作时间、工作总量是工程问题的三个基本量,解题时要注意对应关系。

经典例题解析
1、一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成
2、师徒二人合作生产一批零件,6天可以完成任务,师傅先做5天后,因事外出,由徒弟接着做3天,共完成任务的7/10,如果每人单独做这批零件各需几天
3、一件工作甲先做6小时,乙接着做12小时可以完成,甲先做8小时,乙接着做6小时也可以完成,如果甲做3小时后由乙接着做,还需要多少小时完成
4、蓄水池有一条进水管和一排水管,要灌满一池水,单开进水管需要5小时,排光一池水,单开排水管需3小时。

现在池内有半池水,如果按进水、排水、进水、排水……的顺序轮流各开1小时,问:多上时间后水池的水刚好排完(精确到分钟)
5、甲乙二人植树,单独植完这批树甲比乙所需要的时间多1/ 3,如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵
6、一项工程,甲单独做需要12小时完成,乙单独做需要18小时完成,若甲先做1小时,然后乙接着做1小时,再由甲接着做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时。

相关文档
最新文档