人教版初中数学二次函数技巧及练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学二次函数技巧及练习题

一、选择题

1.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )

A .①②

B .①②③

C . ①③④

D . ①②④

【答案】D

【解析】

【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a

=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123

b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b

c ++>,将23a b =-代入可得40c b ->.

【详解】

①根据抛物线开口方向得到0a >,根据对称轴02b x a

=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.

②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.

③由对称轴123

b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b

c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.

故答案选D.

【点睛】

本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

2.已知,二次函数y=ax 2+bx+a 2+b (a≠0)的图象为下列图象之一,则a 的值为( )

A .-1

B .1

C .-3

D .-4

【答案】A

【解析】

【分析】 分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a 2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a 2=3,由抛物线与x 的交点坐标得到x 2=-a ,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a 2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a 的值.

【详解】

解:若二次函数的图形为第一个,对称轴为y 轴,则b=0,y=ax 2+a 2,其顶点坐标为(0,a 2),而a 2>0,所以二次函数的图形不能为第一个;

若二次函数的图形为第二个,对称轴为y 轴,则b=0,y=ax 2+a 2,a 2=3,而当y=0时,x 2=−a ,所以−a=4,a=−4,所以二次函数的图形不能为第二个;

若二次函数的图形为第三个,令x=−1,y=0,则a−b+a 2+b=0,所以a=−1;

若二次函数的图形为第四个,令x=0,y=0,则a 2+b=0①;令x=−2,y=0,则

4a−2b+a 2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.

故选A.

【点睛】

本题考查了二次函数y=ax 2+bx+c(a≠0)的图象与系数的关系:a >0,开口向上;a <0,开口向下;抛物线的对称轴为直线x=-

;顶点坐标为(-,);也考查了点在抛物线

上则点的坐标满足抛物线的解析式.

3.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位

【答案】A

【解析】

【分析】

原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.

【详解】

y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,

0),

则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .

【点睛】

此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.

4.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )

A .1

B .2

C .3

D .4

【答案】C

【解析】

【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a

=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到2

44ac b a

-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.

【详解】

∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,

∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.

∴当x=-1时,y >0,

即a-b+c >0,所以①正确;

∵抛物线的对称轴为直线x=-

2b a

=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;

∵抛物线的顶点坐标为(1,n ), ∴2

44ac b a

-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;

相关文档
最新文档