高考数学中利用空间向量解决立体几何的向量方法-法向量

合集下载

高中数学空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量学案含解析

高中数学空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量学案含解析

1.2.2 空间中的平面与空间向量导思1.什么是平面的法向量?它在解决线面位置关系中有何用途? 2.什么是三垂线定理及其逆定理?1.平面的法向量(1)定义:如果α是空间中的一个平面,n 是空间中的一个非零向量,且表示n 的有向线段所在的直线与平面α垂直,则称n 为平面α的一个法向量.此时也称n 与平面α垂直,记作n ⊥α. (2)性质:如果A ,B 是平面α上的任意不同两点,n 为平面α的一个法向量,则: 1 若直线l ⊥α,则l 的任意一个方向向量都是平面α的一个法向量 2 对任意实数λ≠0,λn 是平面α的一个法向量 3向量AB → 一定与n 垂直,即AB →·n =0平面α的法向量唯一吗?它们有什么共同特征? 提示:不唯一,都平行.2.空间线面的位置关系与空间向量若v 是直线l 的一个方向向量,n 1,n 2分别是平面α1,α2的一个法向量,则:1 n 1∥v ⇔l ⊥α12 n 1⊥v ⇔l ∥α1或l ⊂α13 n 1⊥n 2⇔α1⊥α24 n 1∥n 2⇔α1∥α2或α1,α2重合已知v 是直线l 的一个方向向量,n 是平面α的一个法向量,如果n ⊥v ,那么直线l 一定与平面α平行吗?提示:不一定,也可能l ⊂α. 3.三垂线定理及其逆定理 射影已知平面α和一点A ,过点A 作α的垂线l ,设l 与α相交于点A′,则A′就是点A在平面α内的射影,也称为投影.三垂线定理如果平面内的一条直线与平面的一条斜线在该平面内的射影垂直,则它也和这条斜线垂直.三垂线定理的逆定理如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在该平面内的射影垂直.1.辨析记忆(对的打“√”,错的打“×”).(1)已知直线l垂直于平面α,向量a平行直线l,则a是平面α的法向量.()(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.()(3)若a是平面α的一条斜线,直线b垂直于a在α内的射影,则a⊥b.()提示:(1)×.向量a必须为非零向量.(2)√.(3)×.因为b不一定在平面α内,所以a与b不一定垂直.2.若a=(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是() A.(0,1,2) B.(3,6,9)C.(-1,-2,3) D.(3,6,8)【解析】选B.向量(1,2,3)与向量(3,6,9)共线.3.(教材例题改编)已知PO⊥平面ABC,且O为△ABC的垂心,则AB与PC的关系是________.【解析】因为O为△ABC的垂心,所以CO⊥AB.又因为OC为PC在平面ABC内的射影,所以由三垂线定理知AB⊥PC.答案:垂直关键能力·合作学习类型一 平面的法向量(数学运算)1.若两个向量AB → =(1,2,3),AC →=(3,2,1),则平面ABC 的一个法向量 为( )A .(-1,2,-1)B .(1,2,1)C .(1,2,-1)D .(-1,2,1)2.已知点A(2,-1,2)在平面α内,n =(3,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .P(1,-1,1)B .P ⎝⎛⎭⎫1,3,32C .P ⎝⎛⎭⎫1,-3,32D .P ⎝⎛⎭⎫-1,3,-343.正四棱锥如图所示,在向量PA → -PB → +PC → -PD → ,PA → +PC → ,PB → +PD → ,PA → +PB → +PC →+PD →中,不能作为底面ABCD 的法向量的是________.【解析】AB → =(1,2,3),AC →=(3,2,1), 设平面ABC 的一个法向量n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AB →=x +2y +3z =0n ·AC →=3x +2y +z =0 ,取x =-1,得平面ABC 的一个法向量为(-1,2,-1).2.选B.设P(x ,y ,z),则AP →=(x -2,y +1,z -2); 由题意知,AP → ⊥n ,则n ·AP →=0;所以3(x -2)+(y +1)+2(z -2)=0,化简得3x +y +2z =9. 验证得在A 中,3×1-1+2×1=4,不满足条件; 在B 中,3×1+3+2×32 =9,满足条件; 同理验证C 、D 不满足条件.3.连接AC ,BD ,交于点O ,连接OP ,则OP → 是底面ABCD 的一个法向量,PA → -PB → +PC → -PD →=BA → +DC → =0,不能作为底面ABCD 的法向量;PA → +PC → =-2OP →,能作为底面ABCD 的法向量;PB → +PD → =-2OP → ,能作为底面ABCD 的法向量;PA → +PB → +PC → +PD → =-4OP →,能作为底面ABCD 的法向量.答案:PA → -PB → +PC → -PD →求平面ABC 的一个法向量的方法1.平面垂线的方向向量法:证明一条直线为一个平面的垂线,则这条直线的一个方向向量即为所求.2.待定系数法:步骤如下:类型二 三垂线定理及其逆定理的应用(直观想象、逻辑推理)【典例】如图所示,三棱锥P-ABC 中,PA ⊥平面ABC ,若O ,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.【思路导引】利用三垂线定理及其逆定理证明【证明】如图,连接AO 并延长交BC 于点E ,连接PE.因为PA ⊥平面ABC ,AE ⊥BC(由于O 是△ABC 的垂心), 所以PE ⊥BC ,所以点Q 在PE 上.因为⎩⎪⎨⎪⎧AE ⊥BC ,PE ⊥BC ,AE ∩PE =E ⇒BC ⊥平面PAE ⇒BC ⊥OQ.①连接BO 并延长交AC 于点F ,则BF ⊥AC. 连接BQ 并延长交PC 于点M ,则BM ⊥PC. 连接MF.因为PA ⊥平面ABC ,BF ⊥AC , 所以BF ⊥PC(三垂线定理).因为⎩⎪⎨⎪⎧BM ⊥PC ,BF ⊥PC ,BM ∩BF =B ⇒PC ⊥平面BMF ⇒PC ⊥OQ.②由①②,知OQ ⊥平面PBC.利用三垂线定理及其逆定理证明线线垂直的基本环节在正方体ABCD-A 1B 1C 1D 1中,求证:A 1C ⊥平面BDC 1.【证明】连接AC,CD1,在正方体中,AA1⊥平面ABCD,所以AC是A1C在平面ABCD内的射影,又AC⊥BD,所以BD⊥A1C.同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.类型三利用空间向量证明线面、面面的位置关系(逻辑推理)证明平行问题角度1【典例】如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q 是CC1上的点.当点Q在什么位置时,BQ∥平面PAO?【思路导引】建立恰当的坐标系,设出点Q的坐标,由BQ∥平面PAO确定其位置即可.【解析】建立如图所示的空间直角坐标系Dxyz,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2). 再设Q(0,2,c),所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,c),BD 1=(-2,-2,2). 设平面PAO 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·OA →=0,n ·OP →=0, 所以⎩⎪⎨⎪⎧x -y =0,-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n =(1,1,2). 若BQ ∥平面PAO ,则n ⊥BQ ,所以n ·BQ → =0,即-2+2c =0,所以c =1, 故当Q 为CC 1的中点时,BQ ∥平面PAO.本例若把“Q 是CC 1上的点”改为“Q 是CC 1的中点”,其他条件不变,求证:平面D 1BQ ∥平面PAO.【证明】建立如图所示的空间直角坐标系,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2),Q(0,2,1), 所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,1),BD 1=(-2,-2,2). 设平面PAO 的法向量为n 1=(x ,y ,z), 则⎩⎪⎨⎪⎧n 1·OA →=0n 1·OP →=0 ,所以⎩⎪⎨⎪⎧x -y =0-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n 1=(1,1,2).同理可求平面D 1BQ 的一个法向量为n 2=()1,1,2 , 因为n 1=n 2,所以n 1∥n 2, 所以平面D 1BQ ∥平面PAO.角度2证明垂直问题【典例】在如图所示的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB ∥CD ,AB =2BC ,∠ABC =60°,AC ⊥FB. (1)求证:AC ⊥平面FBC ;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.【思路导引】(1)利用余弦定理和勾股定理的逆定理可得AC ⊥BC ,再利用已知AC ⊥FB 和线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,利用两个平面的法向量是否垂直即可. 【解析】(1)因为AB =2BC ,∠ABC =60°,在△ABC 中,由余弦定理可得AC 2=AB 2+BC 2-2AB ·BCcos 60°=3BC 2, 所以AC 2+BC 2=4BC 2=AB 2, 所以∠ACB =90°,所以AC ⊥BC. 又因为AC ⊥FB ,FB ∩BC =B , 所以AC ⊥平面FBC.(2)线段ED 上不存在点Q ,使平面EAC ⊥平面QBC. 证明如下:因为AC ⊥平面FBC , 所以AC ⊥FC.因为CD ⊥FC ,所以FC ⊥平面ABCD.所以CA ,CF ,CB 两两互相垂直,如图建立空间直角坐标系.在等腰梯形ABCD 中,可得CB =CD.设BC =1,所以C(0,0,0),A(3 ,0,0),B(0,1,0),D(32 ,-12 ,0),E ⎝ ⎛⎭⎪⎪⎫32,-12,1 .所以CE → =⎝⎛⎭⎪⎪⎫32,-12,1 ,CA →=(3 ,0,0),CB →=(0,1,0).设平面EAC 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·CE →=0n ·CA →=0 ,所以⎩⎨⎧32x -12y +z =03x =0,取z =1,得n =(0,2,1).假设线段ED 上存在点Q , 设Q ⎝⎛⎭⎪⎫32,-12,t (0≤t≤1),所以CQ →=⎝ ⎛⎭⎪⎫32,-12,t . 设平面QBC 的法向量为m =(a ,b ,c),则⎩⎪⎨⎪⎧m ·CB →=0m ·CQ →=0 ,所以⎩⎨⎧b =032a -12b +tc =0,取c =1,得m =⎝ ⎛⎭⎪⎫-2t 3,0,1 .要使平面EAC ⊥平面QBC ,只需m·n =0, 即-23t×0+0×2+1×1=0,此方程无解.所以线段ED上不存在点Q,使平面EAC⊥平面QBC. 利用空间向量证明平行、垂直问题的常用思路线面平行(1)求出直线l的方向向量是a,平面α的法向量是u,只需证明a⊥u,即a·u=0.(2)在平面内找一个向量与已知直线的方向向量是共线向量即可.面面平行(1)转化为相应的线线平行或线面平行.(2)求出平面α,β的法向量u,v,证明u∥v即可说明α∥β.线面垂直求出平面内两条相交直线的方向向量,证明直线的方向向量和它们都垂直.面面垂直(1)转化为线面垂直.(2)求解两个平面的法向量,证明两个法向量垂直.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.【解析】如图所示建立空间直角坐标系,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以FC1=(0,2,1),DA → =(2,0,0),AE → =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA → ,n 1⊥AE → ,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0n 1·AE →=2y 1+z 1=0 ⇒⎩⎪⎨⎪⎧x 1=0z 1=-2y 1 , 令z 1=2⇒y 1=-1,所以n 1=(0,-1,2),因为n 1·1FC =-2+2=0,所以n 1⊥1FC , 又因为FC 1⊄平面ADE ,即FC 1∥平面ADE.(2)因为11C B =(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥1FC ,n 2⊥11C B ,得21222112FC 2y z 0C B 2x 0⎧=+=⎪⎨==⎪⎩n n ⇒⎩⎪⎨⎪⎧x 2=0z 2=-2y 2. 令z 2=2⇒y 2=-1,所以n 2=(0,-1,2),所以n 1=n 2,所以平面ADE ∥平面B 1C 1 F.2.在正方体ABCD-A 1B 1C 1D 1中,E 是BC 的中点,在CC 1上求一点P ,使平面A 1B 1P ⊥平面C 1DE.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,如图所示,设正方体棱长为2,且P(0,2,a),则D(0,0,0),E(1,2,0),C 1(0,2,2),A 1(2,0,2),B 1(2,2,2),则DE → =(1,2,0),1DC =(0,2,2),设n 1=(x 1,y 1,z 1)且n 1⊥平面DEC 1,则⎩⎪⎨⎪⎧x 1+2y 1=0y 1+z 1=0 ,取n 1=(2,-1,1). 又1A P =(-2,2,a -2),11A B =(0,2,0),设n 2=(x 2,y 2,z 2)且n 2⊥平面A 1B 1P ,则⎩⎪⎨⎪⎧-2x 2+2y 2+(a -2)z 2=0y 2=0 ,取n 2=(a -2,0,2). 由平面A 1B 1P ⊥平面C 1DE ,得n 1·n 2=0,1的中点.【补偿训练】在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F.求证:(1)PA ∥平面EDB.(2)PB ⊥平面EFD.K【证明】建立如图所示的空间直角坐标系.D 是坐标原点,设DC =a.(1)连接AC 交BD 于G ,连接EG ,依题意得D(0,0,0),A(a ,0,0),P(0,0,a),E ⎝⎛⎭⎫0,a 2,a 2 . 因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0 ,所以EG → =⎝⎛⎭⎫a 2,0,-a 2 .又PA → =(a ,0,-a),所以PA → =2EG → ,这表明PA ∥EG.而EG ⊂平面EDB ,且PA ⊄平面EDB ,所以PA ∥平面EDB.(2)依题意得B(a ,a ,0),PB → =(a ,a ,-a),DE → =⎝⎛⎭⎫0,a 2,a 2 ,所以PB → ·DE → =0+a 22 -a 22 =0,所以PB → ⊥DE → ,即PB ⊥DE.又已知EF ⊥PB ,且EF∩DE =E ,所以PB ⊥平面EFD.课堂检测·素养达标1.设直线l 的方向向量为a ,平面α的法向量为n ,l ⊄α,则使l ∥α成立的是( )A .a =(1,-1,2),n =(-1,1,-2)B .a =(2,-1,3),n =(-1,1,1)C .a =(1,1,0),n =(2,-1,0)D .a =(1,-2,1),n =(1,1,2)【解析】l 的方向向量为a ,平面α的法向量为n ,l ⊄α,使l ∥α成立,所以a·n =0, 在A 中,a·n =-1-1-4=-6,故A 错误;在B 中,a·n =-2-1+3=0,故B 成立;在C 中,a·n =2-1=1,故C 错误;在D 中,a·n =1-2+2=1,故D 错误.2.(教材练习改编)若平面α与β的法向量分别是a =(2,4,-3),b =(-1,2,2),则平面α与β的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 【解析】选B.a·b =(2,4,-3)·(-1,2,2)=-2+8-6=0,所以a ⊥b ,所以平面α与平面β垂直.3.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)【解析】选A.设平面α内一点P(x ,y ,z),则:MP → =(x -1,y +1,z -2),因为n =(6,-3,6)是平面α的法向量,所以n ⊥MP → ,n ·MP → =6(x -1)-3(y +1)+6(z -2)=6x -3y +6z -21,所以由n ·MP → =0得6x -3y +6z -21=0,所以2x -y +2z =7,把各选项的坐标数据代入上式验证可知A 适合.4.正三棱锥P-ABC 中,BC 与PA 的位置关系是________.【解析】如图,在正三棱锥P-ABC 中,P 在底面ABC 内的射影O 为正三角形ABC 的中心,连接AO ,则AO 是PA 在底面ABC 内的射影,且BC ⊥AO ,所以BC ⊥PA.答案:BC ⊥PA。

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

(浙江专用)高考数学总复习 第八章 立体几何与空间向量 第7讲 立体几何中的向量方法(一)—证明平行

(浙江专用)高考数学总复习 第八章 立体几何与空间向量 第7讲 立体几何中的向量方法(一)—证明平行

第7讲立体几何中的向量方法(一)——证明平行与垂直最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=01.判断正误(在括号内打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)若两直线的方向向量不平行,则两直线不平行.( )(3)若两平面的法向量平行,则两平面平行或重合.( )(4)若空间向量a平行于平面α,则a所在直线与平面α平行.( )答案(1)×(2)√(3)√(4)×2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对解析∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β不平行,也不垂直.答案 C3.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33 D.⎝⎛⎭⎪⎫33,33,-33 解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .答案 C4.(2017·青岛月考)所图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设|AD |=2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),所以AM →=(-2,0,1),ON →=(1,0,2),因此AM →·ON →=-2+0+2=0,故AM ⊥ON .答案 垂直5.(2017·杭州调研)设直线l 的方向向量为a ,平面α的法向量为n =(2,2,4),若a =(1,1,2),则直线l 与平面α的位置关系为________;若a =(-1,-1,1),则直线l 与平面α的位置关系为________. 解析 当a =(1,1,2)时,a =12n ,则l ⊥α;当a =(-1,-1,1)时,a ·n =(-1,-1,1)·(2,2,4)=0,则l ∥α或l ⊂α. 答案 l ⊥α l ∥α或l ⊂α6.(2017·绍兴月考)设α,β为两个不同的平面,u =(-2,2,5),v =(1,-1,x )分别为平面α,β的法向量.(1)若α⊥β,则x =________; (2)若α∥β,则x =________.解析 (1)由α⊥β,得u ·v =0,即-2-2+5x =0,x =45;(2)由α∥β,得u ∥v ,即-21=2-1=5x ,x =-52.答案 (1)45 (2)-52考点一 利用空间向量证明平行问题【例1】 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz . 由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0,∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB →=(2,0,-2),FE →=(0,-1,0), FG →=(1,1,-1).设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →, 又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM ⊥PA .又∵PA ∩PB =P , ∴DM ⊥平面PAB .∵DM ⊂平面PAD , ∴平面PAD ⊥平面PAB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,故AB 1⊥平面A 1BD . 法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三 利用空间向量解决探索性问题【例3】 (2017·湖州调研)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .规律方法 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. 【训练3】 在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 坐标;若不存在,试说明理由.(1)证明 由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,从而得EF ⊥CD . (2)解 假设存在满足条件的点G ,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即存在满足条件的点G ,且点G 为AD 的中点.[思想方法]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直. [易错防范]1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.。

高考数学一轮复习第7讲 立体几何中的向量方法

高考数学一轮复习第7讲 立体几何中的向量方法

第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

用空间向量解立体几何问题方法归纳

用空间向量解立体几何问题方法归纳

用空间向量解立体几何问题方法归纳(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面PAB ,EF ⊄平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求P A 长. (2)学审题由(1)―→AD,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m |n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°. 由余弦定理知AE =12+⎝ ⎛⎭⎪⎫122-2×1×12cos 60°=32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2, 即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎫1,-12,0, D ⎝ ⎛⎭⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎨⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·AC |n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值.解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE ⊥BD , ∴Rt △AOD ∽Rt △BAD ,∴DO AD =ADBD ,∴DO =4,∴BO =5. 在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧ n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x =25得n 1=(25,4,5).又n 2=(0,1,0)为平面AEP 的一个法向量, ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=461×1=46161, 故二面角E -AP -B 的余弦值为46161.5.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQQD 的值;若不存在,请说明理由.解:(1)在△P AD 中,P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量, cos 〈PB ,OA 〉=PB ·OA | PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ), 则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =(λ+1)y +(1-λ)z =0.取z =λ+1,得m =(1-λ,λ-1,λ+1), 又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍), 所以存在点Q ,且PQ QD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0). 设平面SCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧ SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1, 于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM ⊄平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪(1,0,0)·(2,-1,1)1·6=⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1). 又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪(x ,2x -3,-1)·(1,0,0)x 2+(2x -3)2+(-1)2·1=⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎫1x 2-12⎝ ⎛⎭⎪⎫1x +5=110⎝ ⎛⎭⎪⎫1x -352+75 .当1x =35,即x =53时,(sin θ)max =357.7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠F AB =∠DAB =90°,AF =AB =BC =2,AD =1,F A ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵F A ⊥AB ,F A ⊥CD ,AB 与CD 相交,∴F A ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DF =0,n ·DC =0⇒⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1. 则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点. (1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面P AB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ). 由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面P AB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧ n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝ ⎛⎭⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即 34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23). 设EC 与平面P AB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面P AB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE 的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0),则⎩⎪⎨⎪⎧ n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +(2-t )y =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。

立体几何之空间向量法

立体几何之空间向量法

立体几何之空间向量法【知识要点】1. 利用空间向量证明平行问题的方法(1)线线平行:直线与直线平行,只需证明它们的方向向量平行.(2)线面平行:利用线面平行的判定定理,证明直线的方向向量与平面内一条直线的方向向量平行;利用共面向量定理,证明平面外直线的方向向量与平面内两条相交直线的方向向量共面;证明直线的方向向量与平面的法向量垂直.(3)面面平行:平面与平面的平行,除了利用面面平行的判定定理转化为线面平行外,只要证明两个平面的法向量平行即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线平行:l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(2)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0.(3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.2. 利用空间向量证明垂直问题的方法(1)线线垂直:直线与直线的垂直,只要证明两条直线的方向向量垂直.(2)线面垂直:利用线面垂直的定义,证明直线的方向向量与平面内的任意一条直线的方向向量垂直;利用线面垂直的判定定理,证明直线的方向向量与平面内的两条相交直线的方向向量垂直;证明直线的方向向量与平面的法向量平行.(3)面面垂直:平面与平面的垂直,除了用面面垂直的判定定理转化为线面垂直外,只要证明两个平面的法向量垂直即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线垂直:l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3.(3)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.3. (1)夹角计算公式①两条异面直线的夹角若两条异面直线a 和b 的方向向量分别为n 1,n 2,两条异面直线a 和b 所成的角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|.②直线与平面所成的角若直线a 的方向向量为a ,平面α的法向量为n ,直线a 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=⎪⎪⎪⎪a ·n |a ||n |.③二面角设n 1,n 2分别为二面角的两个半平面的法向量,其二面角为θ,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,其中cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|. (2)距离公式①点点距离:点与点的距离,是以这两点为起点和终点的向量的模;②点线距离:点M 到直线a 的距离,设直线的方向向量为a ,直线上任一点为N ,则点M到直线a 的距离d =|MN |sin 〈MN ,a 〉; ③线线距离:两条平行线间的距离,转化为点线距离;两条异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;④点面距离:点M 到平面α的距离,如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN ||cos 〈MN ,n 〉|=||||MN n n ; ⑤线面距离:直线和与它平行的平面间的距离,转化为点面距离;⑥面面距离:两平行平面间的距离,转化为点面距离.4. (1)用空间向量解决立体几何问题的步骤及注意事项①建立空间直角坐标系,要写理由,坐标轴两两垂直要证明;②准确求出相关点的坐标(特别是底面各点的坐标,若底面不够规则,则应将底面单独抽出来分析),坐标求错将前功尽弃;③求平面法向量或直线的方向向量;④根据向量运算法则,求出问题的结果.(2)利用空间向量巧解探索性问题空间向量最适合于解决这类立体几何中的探索性问题,它无需进行繁杂的作图、论证、推理,只需通过坐标运算进行判断.在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.一、真题试做1.如图,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ).A .55B .53C .255D .352.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是__________.3.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A-B1E-A1的大小为30°,求AB的长.5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱P A上的点,满足异面直线BE与CD所成的角为30°,求AE的长.二、热点例析热点一利用空间向量证明平行问题【例1】如图所示,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.变式训练1如图,已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC ,D,E,F分别为B1A,C1C,BC的中点.求证:=90°,且AB=AA(1)DE∥平面ABC;(2)B1F⊥平面AEF.热点二利用空间向量证明垂直问题【例2】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F,求证:(1)PA∥平面EDB;(2)PB⊥平面EFD.变式训练2如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若P A=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求P A的长.热点三利用空间向量求角和距离【例3】如图所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.B1所成角的余弦值;(1)求异面直线AC与A(2)求二面角A-A1C1-B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.变式训练3 已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan β=2tan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的 高.热点四 用向量法解决探索性问题【例4】如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,请说明理由.变式训练4 如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD=2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值; (3)在线段CD 上是否存在一点Q ,使得A 到平面EFQ 的距离为45若存在,求出CQ 的值;若不存在,请说明理由.三、思想渗透转化与化归思想——利用向量解决空间位置关系及求角问题主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围;(2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角.【典型例题】如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1 图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.四、练习巩固 1.已知AB =(1,5,-2),BC =(3,1,z ),若,AB BC BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 的值分别为( ).A .337,-157,4B .407,-157,4C .4072,4D .4,407,-15 2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( ).A .26B .36C .13D .664.在四面体PABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为__________.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是__________.7.在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值;(2)若平面CDE ⊥平面CD 1O ,求λ的值.。

高考数学中利用空间向量解决立体几何的向量方法(三)——空间向量求距离

高考数学中利用空间向量解决立体几何的向量方法(三)——空间向量求距离

G
x D F A
C
E
y
B
例1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是 :
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点 z B 到平面 EFG 的距离. G 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2). E F ( 2 , 2 , 0 ), E G ( 2 , 4 , 2 ), D C
G
x D
F A
C
E
y
B
练习3: 正方体AC1棱长为1,求BD与平面GB1D1的 距离
D1 A1 Z B1
DD
C1 d
1
n
n
G A X
D
B
C Y
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
D1 A1 Z B1
AD
n
C1 d
n
D
A X B
C Y
| PA n | = |n |
.
这个结论说明,平面外一点到平面的距离等于连结此点与平面 上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的 绝对值.
例1、已知正方形ABCD的边长为4, CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
∴n M C 2 2 ax ay 0
a , 0, 0) N (
2 2
a,
1 2
a,
1 2
a)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档