人教版高中物理必修二第二学期高一单元测试(2)【课标】

合集下载

新教材人教版高中物理选择性必修第二册全册各章综合测验 精选配套习题 含解析

新教材人教版高中物理选择性必修第二册全册各章综合测验 精选配套习题 含解析

高中物理选择性必修第二册各章综合测验1.安培力与洛伦兹力.............................................................................................................. - 1 -2.电磁感应 ........................................................................................................................... - 15 -3.交变电流 ............................................................................................................................ - 27 -4.电磁振荡与电磁波............................................................................................................. - 39 -5.传感器 ................................................................................................................................ - 49 -1.安培力与洛伦兹力时间:90分钟 满分:100分一、单项选择题(本题共8小题,每小题3分,共24分)1.如图所示,一带负电的粒子(不计重力)进入磁场中,图中的磁场方向、速度方向及带电粒子所受的洛伦兹力方向标示正确的是( )2.如图所示,一根导线位于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中,其中AB =BC =CD =DE =l ,且∠C =120°、∠B =∠D =150°.现给这根导线通入由A 至E 的恒定电流I ,则导线受到磁场作用的合力大小为( )A .23BIl B.⎝ ⎛⎭⎪⎫2+32BIl C .(2+3)BIl D .4BIl3.在如图所示的匀强电场和匀强磁场共存的区域内,电子(重力不计)可能沿水平方向向右做直线运动的是( )4.电视显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是 ( )5.固定导线c垂直纸面,可动导线ab通以如图所示方向的电流,用测力计悬挂在导线c 的上方,导线c中通以如图所示的电流时,以下判断正确的是( )A.导线a端转向纸外,同时测力计读数减小B.导线a端转向纸外,同时测力计读数增大C.导线a端转向纸里,同时测力计读数减小D.导线a端转向纸里,同时测力计读数增大6.一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图所示,如果直导线可以自由地运动且通以方向为由a到b的电流,则导线ab受到安培力的作用后的运动情况为( )A.从上向下看顺时针转动并靠近螺线管B.从上向下看顺时针转动并远离螺线管C.从上向下看逆时针转动并远离螺线管D.从上向下看逆时针转动并靠近螺线管7.1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是( )A.离子从磁场中获得能量B.电场的周期随离子速度增大而增大C.离子由加速器的中心附近射入加速器D.当磁场和电场确定时,这台加速器仅能加速电荷量q相同的离子8.如图所示,将一束等离子体(即高温下电离的气体,含有大量带正电和负电的离子,从整体上来说呈电中性)喷射入磁感应强度为B的匀强磁场,磁场中有两块正对面积为S,相距为d的平行金属板,与外电阻R相连构成电路.设气流的速度为v,气体的电导率(电阻率的倒数)为g,则流过外电阻R的电流I及电流方向为( )A.BdvR,A→R→B B.BdvR,B→R→AC.BdvSggSR+d,A→R→B D.BdvSSR+gd,B→R→A二、多项选择题(本题共4小题,每小题4分,共16分)9.如图所示,虚线左侧的匀强磁场磁感应强度为B1,虚线右侧的匀强磁场磁感应强度为B2,且B1=2B2,当不计重力的带电粒子从B1磁场区域运动到B2磁场区域时,粒子的( )A.速率将加倍B.轨迹半径将加倍C.周期将加倍D.做圆周运动的角速度将加倍10.如图所示,质量为m的带电绝缘小球(可视为质点)用长为l的绝缘细线悬挂于O点,在悬点O下方有匀强磁场.现把小球拉离平衡位置后从A点由静止释放,则下列说法中正确的是( )A.小球从A至C和从D至C到达C点时,速度大小相等B.小球从A至C和从D至C到达C点时,细线的拉力相等C.小球从A至C和从D至C到达C点时,加速度相同D.小球从A至C和从D至C过程中,运动快慢一样11.一个用于加速质子的回旋加速器,其核心部分如图所示,D形盒半径为R,垂直D 形盒底面的匀强磁场的磁感应强度为B,两盒分别与交流电源相连.设质子的质量为m、电荷量为q,则下列说法正确的是( )A .D 形盒之间交变电场的周期为2πm qB B .质子被加速后的最大速度随B 、R 的增大而增大C .质子被加速后的最大速度随加速电压的增大而增大D .质子离开加速器时的最大动能与R 成正比12.如图所示,左右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直于纸面向里,一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场,欲使粒子不能从边QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.2+2Bqd mC.2-2Bqdm D.2qBd 2m三、非选择题(本题共6小题,共60分)13.(8分)如图所示,虚线框内存在一沿水平方向且与纸面垂直的匀强磁场.现通过测量通电导线在磁场所受的安培力,来测量磁场磁感应强度的大小并判定其方向.所用部分器材已在图中给出,其中D 为位于纸面内的U 形金属框,其底边水平,两侧边竖直且等长;E 为直流电源;R 为电阻箱;为电流表;S 为开关.此外还有细沙、天平、米尺和若干轻质导线.(1)在图中画线连接成实验电路图.(2)完成下列主要实验步骤中的填空:①按图接线.②保持开关S 断开,在托盘内加入适量细沙,使D 处于平衡状态,然后用天平称出细沙质量m 1.③闭合开关S ,调节R 的值使电流大小适当,在托盘内重新加入适量细沙,使D ________________,然后读出________________,并用天平称出________________.④用米尺侧量________.(3)用测得的物理量和重力加速度g 表示磁感应强度的大小,可以得出B =________________.(4)判定磁感应强度方向的方法:若________,磁感应强度方向垂直纸面向外;反之,磁感应强度方向垂直纸面向里.14.(8分)如图所示,两平行金属导轨间的距离L =0.4 m ,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B =0.5 T 、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E =4.5 V 、内阻r =0.5 Ω的直流电源.现把一个质量m =0.04 kg 的导体棒ab 放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直且接触良好,导体棒与金属导轨接触的两点间的电阻R 0=2.5 Ω,金属导轨电阻不计,g 取10 m/s 2.已知sin 37°=0.6,cos 37°=0.8,求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小;(3)导体棒受到的摩擦力大小.15.(8分)在真空中,半径r =3×10-2 m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T .一个带正电的粒子,以初速度v 0=106 m/s ,从直径ab 的一端a 射入磁场,已知该粒子的比荷q m =108C/kg ,不计粒子重力,求:(1)粒子在磁场中做匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0方向与ab的夹角θ及粒子的最大偏转角β.16.(10分)如图甲所示,M、N为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.有一群正离子在t=0时垂直于M板从小孔O射入磁场.已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电场的影响,不计离子所受重力.求:(1)磁感应强度B0的大小;(2)要使正离子从O′孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值.17.(12分)如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T,磁场内有一块足够长的平面感光板ab,板面与磁场方向平行,在距ab的距离l=16 cm处,有一个点状的α粒子放射源S,它向各个方向发射α粒子,α粒子的速率均为v =3.0×106 m/s ,已知α粒子的比荷q m =5.0×107C/kg ,现只考虑在纸面内运动的α粒子,不计α粒子重力,求ab 上被α粒子打中的区域的长度.18.(14分)如图所示,平面直角坐标系xOy 中,在第二象限内有一半径R =5 cm 的圆,与y 轴相切于点Q (0,5 3 cm),圆内有匀强磁场,方向垂直于xOy 平面向外.在x =-10 cm 处有一个比荷为q m =1.0×108C/kg 的带正电的粒子,正对该圆圆心方向发射,粒子的发射速率v 0=4.0×106 m/s ,粒子在Q 点进入第一象限.在第一象限某处存在一个矩形匀强磁场区域,磁场方向垂直于xOy 平面向外,磁感应强度B 0=2 T .粒子经该磁场偏转后,在x 轴M 点(6 cm,0)沿y 轴负方向进入第四象限(不考虑粒子的重力).求:(1)第二象限圆内磁场的磁感应强度B 的大小.(2)第一象限内矩形磁场区域的最小面积.答案及解析1.解析:A图中带负电的粒子向右运动,掌心向外,四指所指的方向向左,大拇指所指的方向是向下,选项A错误;B图中带负电粒子的运动方向与磁感线平行,此时不受洛伦兹力的作用,选项B错误;C图中带负电的粒子向右运动,掌心向外,四指所指的方向向左,大拇指所指的方向是向下,选项C正确;D图中带负电的粒子向上运动,掌心向里,四指应向下,大拇指的方向向左,选项D错误.答案:C2.解析:据题图和几何关系求得A、E两点间的距离为:L等=(2+3)l.据安培力公式得F=BIL等=(2+3)BIl,故A、B、D错误,C正确.答案:C3.解析:在A图中,电子向右运动,受力如图电子做曲线运动,A错误;在B图中,电子只受向左的电场力,不受洛伦兹力,只要电子v足够大,可以向右做匀减速直线运动,通过电磁场,B正确;在C图中,向右运动电子所受电场力,洛伦兹力均竖直向下,与v不共线,做曲线运动,C错误;在D图中,向右运动电子所受电场力,洛伦兹力均竖直向上,与v不共线,做曲线运动,D错误.答案:B4.解析:电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应的B­ t图的图线应在t轴下方,C、D错误;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应的B­ t图的图线应在t轴上方,A正确、B错误.答案:A5.解析:导线c中电流产生的磁场在右边平行纸面斜向左上,在左边平行纸面斜向左下,在ab左右两边各取一小电流元,根据左手定则,左边的电流元所受的安培力方向向外,右边的电流元所受安培力方向向里,知ab导线逆时针方向(从上向下看)转动.当ab导线转过90°后,两导线电流为同向电流,相互吸引,导致测力计的读数变大,故B正确,A、C、D 错误.答案:B6.解析:先由安培定则判断通电螺线管的南、北两极,找出导线左、右两端磁感应强度的方向,并用左手定则判断这两端受到的安培力的方向,如图甲所示.可以判断导线受到磁场力作用后从上向下看按逆时针方向转动,再分析导线转过90°时导线位置的磁场方向,再次用左手定则判断导线所受磁场力的方向,如图乙所示,可知导线还要靠近螺线管,所以D 正确,A、B、C错误.答案:D7.解析:离子在电场力作用下,从电场中获得能量,而洛伦兹力始终与速度的方向垂直,所以洛伦兹力不做功,离子不能从磁场中获得能量,A 错误;离子最终的速度与回旋半径成正比,要使半径最大,应使离子从中心附近射入加速器,C 正确;加速离子时,交变电场的周期与离子在磁场中运动的周期相等,离子在磁场中运动的周期T =2πm qB,与离子速度无关,与离子的比荷有关,当磁场和电场确定时,这台加速器仅能加速比荷相同的离子,B 、D 错误.答案:C8.解析:由左手定则知,正离子向上偏,负离子向下偏,故电流方向为A →R →B ,设带电离子电荷量为q ,由q E d =qvB ,I =E R +r ,r =ρd S ,ρ=1g ,联立解得I =BdvSg gSR +d ,故选C. 答案:C9.解析:带电粒子在洛伦兹力作用下做匀速圆周运动,轨迹半径R =mvqB ,周期T =2πm qB,角速度ω=2πT =qB m,洛伦兹力不做功,B 1=2B 2,故由B 1进入B 2后v 不变,R 加倍,T 加倍,ω减半,B 、C 正确.答案:BC10.解析:由题意可知,当进入磁场后,才受到洛伦兹力作用,且力的方向与速度垂直,所以只有重力做功,则小球从A 至C 和从D 至C 到达C 点时,速度大小相等,加速度相同,从A 至C 和从D 至C 过程中,运动快慢也一样,A 、C 、D 正确;由于进出磁场的方向不同,由左手定则可知,洛伦兹力方向不同,所以细线的拉力的大小不同,故B 错误.答案:ACD11.解析:D 形盒之间交变电场的周期等于质子在磁场中运动的周期,A 项正确;由r =mvqB 得:当r =R 时,质子有最大速度v m =qBR m,即B 、R 越大,v m 越大,v m 与加速电压无关,B 正确,C 错误;质子离开加速器时的最大动能E km =12mv 2m =q 2B 2R 22m,故D 错误. 答案:AB12.解析:粒子射入磁场后做匀速圆周运动,由R =mv 0qB知,粒子的入射速度v 0越大,R 越大.当粒子的径迹和边界QQ ′相切时,粒子刚好不从QQ ′射出,此时其入射速度v 0应为最大.若粒子带正电,其运动轨迹如图甲所示(此时圆心为O 点),容易看出R 1-R 1sin (90°-45°)=d ,将R 1=mv 0qB 代入得v 0=2+2Bqd m,选项B 正确;若粒子带负电,其运动轨迹如图乙所示(此时圆心为O ′点),容易看出R 2+R 2cos 45°=d ,将R 2=mv 0qB代入得v 0=2-2Bqdm,选项C 正确.答案:BC 13.解析:(1)根据实验目的和电磁天平的原理,将电源、开关、电阻箱、电流表及U 形金属框串联起来,连接成如答图所示的电路图.(2)设金属框质量为M ,托盘质量为m 0,第一次操作中未接通电源时由平衡条件得Mg =(m 0+m 1)g ;第二次接通电源后,重新加入适量细沙,使D 重新处于平衡状态,然后读出电流表的示数I ,用天平称出此时细沙的质量m 2,并测量出金属框底部的长度l .(3)若金属框受到的安培力竖直向下,由平衡条件得BIl +Mg =(m 0+m 2)g ,两式联立解得B =m 2-m 1g Il .若金属框受到的安培力竖直向上,则B =m 1-m 2g Il .综上可得B =|m 2-m 1|Ilg . (4)若m 2>m 1,则由左手定则可知磁感应强度方向垂直纸面向外,反之,磁感应强度方向垂直纸面向里.答案:(1)如解析图所示(1分) (2)③重新处于平衡状态(1分) 电流表的示数I (1分) 此时细沙的质量m 2(1分) ④D 的底边长度l (1分) (3)|m 2-m 1|Ilg (2分) (4)m 2>m 1(1分)14.解析:(1)根据闭合电路欧姆定律I =ER 0+r=1.5 A .(2分)(2)导体棒受到的安培力F 安=BIL =0.3 N .(2分)(3)导体棒受力分析如图,将重力正交分解F 1=mg sin 37°=0.24 N ,(1分)F 1<F 安,根据平衡条件,mg sin 37°+F f =F 安,(1分)解得F f =0.06 N .(2分)答案:(1)1.5 A (2)0.3 N (3)0.06 N15.解析:(1)粒子射入磁场后,由于不计重力,所以洛伦兹力充当其做圆周运动需要的向心力,根据牛顿第二定律有:qv 0B =mv 20R(2分)得R =mv 0qB=5×10-2m .(2分)(2)粒子在圆形磁场区域的运动轨迹为一段半径R =5 cm 的圆弧,要使偏转角最大,就要求这段圆弧对应的弦最长,即为场区的直径,粒子运动轨迹的圆心O ′在ab 弦的中垂线上,如图所示,由几何关系知sin θ=r R=0.6,所以θ=37°,(2分)而最大偏转角β=2θ=74°.(2分)答案:(1)5×10-2m (2)θ=37° β=74°16.解析:(1)正离子射入磁场,洛伦兹力提供向心力,qv 0B 0=mv 20r,(2分)正离子做匀速圆周运动的周期T 0=2πrv 0,(1分)联立两式解得磁感应强度B 0=2πm qT 0.(2分)(2)要使正离子从O ′孔垂直于N 板射出磁场,v 0的方向应如图所示,当正离子在两板之间只运动一个周期,即t =T 0时,有r =d4,(1分)当正离子在两板之间运动n 个周期,即t =nT 0时,有r =d4n(n =1,2,3,…),(2分)联立解得正离子的速度的可能值为v 0=B 0qr m =πd 2nT 0(n =1,2,3,…).(2分)答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)17.解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示其轨迹半径,有qvB =m v 2R,(2分)可得R =mv qB,(1分)代入数值得R =10 cm ,(1分) 则2R >l >R .(1分)由于α粒子的速率一定,轨迹半径一定,则由定圆旋转法作出α粒子运动的临界轨迹如图所示,其中SP 垂直于ab ,在P 1点α粒子的运动轨迹与ab 板相切,即P 1点为ab 上被α粒子打中区域的左边界,由几何知识有P 1P = R 2-l -R2,(2分)P 2点为ab 上被α粒子打中区域的右边界, SP 2=2R ,由几何关系得PP 2=2R2-l 2,(2分)所求长度为P 1P 2=P 1P +PP 2,(1分) 代入数据得P 1P 2=20 cm.(2分) 答案:20 cm18.解析:(1)画出粒子的运动轨迹,如图所示 作O 1P 1垂直于PO ,由几何关系知∠O 1OP =60°(2分)设粒子在第二象限圆内磁场做匀速圆周运动的半径为r 1,由几何关系有tan 60°=r 1R(2分)由洛伦兹力提供向心力得qv 0B =m v 20r 1(2分)解得B =4315T.(2分)(2)粒子在第一象限内转过14圆周,设轨迹半径为r 2,由洛伦兹力提供向心力得qv 0B 0=m v 20r 2(2分)答图中的矩形面积即最小磁场区域面积,由几何关系得S min =2r 2⎝ ⎛⎭⎪⎫r 2-22r 2(2分) 联立解得矩形磁场区域的最小面积为S min =4(2-1)cm 2.(2分) 答案:(1)4315T (2)4(2-1)cm22.电磁感应时间:90分钟 满分:100分一、单项选择题(本题共8小题,每小题3分,共24分)1.一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为( )A .逆时针方向 逆时针方向B .逆时针方向 顺时针方向C .顺时针方向 顺时针方向D .顺时针方向 逆时针方向2.如图所示,在一蹄形磁铁下面放一个铜盘,铜盘和磁铁均可以自由绕OO ′轴转动,两磁极靠近铜盘,但不接触.当磁铁绕轴转动时,铜盘将( )A .以相同的转速与磁铁同向转动B .以较小的转速与磁铁同向转动C .以相同的转速与磁铁反向转动D .静止不动3.如图所示,空间有一垂直于纸面向里的匀强磁场,一长为L 的直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为E ;将此棒弯成一半圆形置于与磁感应强度相垂直的平面内,当它沿垂直直径的方向以速度v 运动时,棒两端的感应电动势大小为E ′,则E ′E等于( )A.π2B.2πC.1 D.1π4.如图所示电路中,L a、L b两灯相同,闭合开关S电路达到稳定后两灯一样亮,则( )A.当S断开的瞬间,L a、L b两灯中电流立即变为零B.当S断开的瞬间,L a、L b两灯中都有向右的电流,两灯不立即熄灭C.当S闭合的瞬间,L a比L b先亮D.当S闭合的瞬间,L b比L a先亮5.如图所示,条形磁铁从高h处自由下落,中途穿过一个固定的空心线圈.开关S断开,条形磁铁至落地用时t1,落地时速度为v1;S闭合,条形磁铁至落地用时t2落地时速度为v2,则它们的大小关系正确的是( )A.t1>t2,v1>v2 B.t1=t2,v1=v2C.t1<t2,v1<v2 D.t1<t2,v1>v26.如图甲所示,面积S=1 m2的导体圆环内通有垂直于圆平面向里的磁场,磁场的磁感应强度B随时间t变化的关系如图乙所示(B取向里为正),以下说法正确的是( )A.环中没有产生感应电流B.环中产生顺时针方向的感应电流C.环中产生的感应电动势大小为1 VD.环中产生的感应电动势大小为2 V7.如图所示,将两块水平放置的金属板用导线与一线圈连接,线圈中存在方向竖直向上、大小变化的磁场,两板间有一带正电的油滴恰好处于静止状态,则磁场的磁感应强度B随时间t变化的图像是( )8.如图所示,A是一边长为L的正方形导线框.虚线框内有垂直纸面向里的匀强磁场,磁场宽度为3L.线框的bc边与磁场左右边界平行且与磁场左边界的距离为L.现维持线框以恒定的速度v沿x轴正方向运动.规定磁场对线框作用力沿x轴正方向为正,且在图示位置时为计时起点,则在线框穿过磁场的过程中,磁场对线框的作用力随时间变化的图像正确的是( )二、多项选择题(本题共4小题,每小题4分,共16分)9.如图甲所示,10匝的线圈内有一垂直纸面向里的磁场,线圈的磁通量在按图乙所示规律变化,下列说法正确的是( )A.电压表读数为10 VB.电压表读数为15 VC .电压表“+”接线柱接A 端D .电压表“+”接线柱接B 端10.如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面积的电荷量为q 1;第二次bc 边平行于MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )A .Q 1>Q 2B .q 1>q 2C .q 1=q 2D .Q 1=Q 211.如图甲为电动汽车无线充电原理图,M 为受电线圈,N 为送电线圈.图乙为受电线圈M 的示意图,线圈匝数为n ,电阻为r ,横截面积为S ,两端a 、b 连接车载变流装置,匀强磁场平行于线圈轴线向上穿过线圈.下列说法正确的是( )A .只要受电线圈两端有电压,送电线圈中的电流一定不是恒定电流B .只要送电线圈N 中有电流流入,受电线圈M 两端一定可以获得电压C .当线圈M 中磁感应强度均匀增加时,M 中有电流从a 端流出D .若Δt 时间内,线圈M 中磁感应强度均匀增加ΔB ,则M 两端的电压为nS ΔBΔt12.如图所示,在水平桌面上放置两条相距l 的平行粗糙且无限长的金属导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连.金属滑杆MN 垂直于导轨并可在导轨上滑动,且与导轨始终接触良好.整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B .滑杆与导轨电阻不计,滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一质量为m 的物块相连,拉滑杆的绳处于水平拉直状态.现若由静止开始释放物块,用I 表示稳定后回路中的感应电流,g 表示重力加速度,设滑杆在运动中所受的摩擦阻力恒为F f ,则在物块下落过程中( )A .物块的最终速度为mg -F f RB 2l 2B .物块的最终速度为I 2Rmg -F fC .稳定后物块重力的功率为I 2R D .物块重力的最大功率可能大于mg mg -F f RB 2l 2三、非选择题(本题共6小题,共60分)13.(6分)观察如图实验装置,实验操作中,当导体棒AB 沿着磁感线方向上下运动时,电流计指针________(选填“偏转”或“不偏转”);当导体棒AB 垂直磁感线方向左右运动时,电流计指针________(选填“偏转”或“不偏转”);若流入电流计的电流从右接线柱进入,指针就往右偏转,则为使图中电流计指针往左偏转,导体棒AB 应往________(选填“上”“下”“左”“右”)运动.14.(8分)我们可以通过实验探究电磁感应现象中感应电流方向的决定因素和其所遵循的物理规律.以下是实验探究过程的一部分.(1)如图甲所示的实验装置,当磁铁的N 极向下运动时,发现电流表指针偏转,若要探究线圈中产生的感应电流的方向,必须知道________.(2)如图乙所示,实验中发现闭合开关时,电流表指针向右偏转.电路稳定后,若向左移动滑动变阻器的滑片,则电流表指针向________偏转;若将线圈A 抽出,则电流表指针向________偏转.(填“左”或“右”)15.(7分)如图所示,电阻为0.1 Ω的正方形单匝线圈abcd 的边长为0.2 m ,bc 边与匀强磁场边缘重合.磁场的宽度等于线圈的边长,磁感应强度大小为0.5 T .在水平拉力作用下,线圈以8 m/s 的速度向右穿过磁场区域.求线圈在上述过程中(1)感应电动势的大小E;(2)所受拉力的大小F;(3)感应电流产生的热量Q.16.(9分)如图甲所示,平行长直金属导轨水平放置,间距L=0.4 m.导轨右端接有阻值R=1 Ω的电阻.导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图乙所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s后刚好进入磁场,若使棒在导轨上始终以速度v=1 m/s做直线运动,求:(1)棒进入磁场前,回路中的电动势E.(2)棒在运动过程中受到的最大安培力F.17.(14分)如图所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,电阻R=0.3 Ω接在导轨一端,ab是跨接在导轨上质量m=0.1 kg、电阻r=0.1 Ω的导体棒,已知导体棒和导轨间的动摩擦因数为0.2.从零时刻开始,对ab棒施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,过程中棒始终保持与导轨垂直且接触良好,求:(1)导体棒所能达到的最大速度;(2)试定性画出导体棒运动的速度—时间图像.18.(16分)如图所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计.质量分别为m 和12m 的金属棒b 和c 静止放在水平导轨上,b 、c 两棒均与导轨垂直.图中de 虚线往右有范围足够大、方向竖直向上的匀强磁场.质量为m 的绝缘棒a 垂直于倾斜导轨静止释放,释放位置与水平导轨的高度差为h .已知绝缘棒a 滑到水平导轨上与金属棒b 发生弹性正碰,金属棒b 进入磁场后始终未与金属棒c 发生碰撞.重力加速度为g ,求:(1)绝缘棒a 与金属棒b 发生弹性正碰后分离时两棒的速度大小; (2)金属棒b 进入磁场后,其加速度为其最大加速度的一半时的速度大小; (3)两金属棒b 、c 上最终产生的总焦耳热.。

人教版高一物理必修二单元测试(二):第五章 曲线运动 Word版缺答案.pptx

人教版高一物理必修二单元测试(二):第五章 曲线运动 Word版缺答案.pptx

终是垂直于该物体的速度方向,则物体的运动将是 ( )
A.速率增大,曲率半径也随之增
B.速率逐渐减小,曲率半径不变
C.速率不变,曲率半径逐渐增大
D.速率不变,曲率半径逐渐减小
2. 半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体 m,如图 4—1 所示,今给小物体一个水平初速度 , gR
则物体将( )
重要演算步骤。只写出最后答案的不能得分。有数值计算的题, 答案中必须明确写出数值和单位。 16. 生产流水线上的皮带传输装置如图 4—14 所示,传输带上等间
距地放着很多半成品产品。A 轮上方装有光电计数器 s,它可以

录通过 s 处的产品数,已经测得 A、B 半径分别为 rA = 20cm、rB = 10cm 相邻两产品距离 为 30cm,lmin 内有 41 个产品通过 s 处。求:
学无止 境
18. 在足够高处将质量 m=1kg 的小球沿水平方向抛出,已知在抛出后第 2s 末时小球速度大小
为 25m/s,求: (1)第 4s 末小球速度的大小:
(2)2s→4s 内平均速度的大小(g = lOm/S2).
学无 止 境 19. 飞机在空气中竖直平面内用υ = 150m/s 的速度特技表演飞行。如果飞行的圆半径 R =
析上述三条轨迹可得出结论
14. 在“研究平抛物体的运动”实验中,在固定斜槽时,应该使 ,每次释放小球的 位置应 该 。图 4—ll 是小球做平抛运动时的一闪光照片,该照片记下平抛小球 在运动中的几
个位置 O、A、B、C,其中 O 为小球刚作平抛运动时初位置,O D 为竖直线, 照片的闪光 间隔是 1/30s,小球的初速度为 ,m/s(g = 10m/s2 图中小方格均为 正方形)。

新教材人教版高中物理必修第二册全册各章节课时分层练习题及章末测验(培优练习,含解析)

新教材人教版高中物理必修第二册全册各章节课时分层练习题及章末测验(培优练习,含解析)

人教版必修第二册全册练习题第5章抛体运动 ..................................................................................................................... - 2 -5.1曲线运动 ................................................................................................................... - 2 -5.2 运动的合成与分解................................................................................................... - 8 -5.3实验:探究平抛运动的特点.................................................................................. - 15 -5.4 抛体运动的规律..................................................................................................... - 22 -第五章达标检测卷........................................................................................................ - 30 - 第五章进阶突破............................................................................................................ - 39 - 第6章圆周运动分层练习题................................................................................................ - 48 -6.1 圆周运动 ................................................................................................................ - 48 -6.2 向心力 .................................................................................................................... - 56 -6.3 向心加速度 ............................................................................................................ - 64 -6.4 生活中的圆周运动................................................................................................. - 71 -第六章达标检测卷........................................................................................................ - 79 - 第六章进阶突破............................................................................................................ - 88 -第7章万有引力与宇宙航行................................................................................................ - 96 -7.1 行星的运动 ............................................................................................................ - 96 -7.2 万有引力定律 ...................................................................................................... - 102 -7.3 万有引力理论的成就........................................................................................... - 108 -7.4 宇宙航行 .............................................................................................................. - 116 -7.5 相对论时空观与牛顿力学的局限性................................................................... - 124 -第七章达标检测卷...................................................................................................... - 130 - 第七章进阶突破.......................................................................................................... - 139 -第八章机械能守恒定律...................................................................................................... - 146 -8.1 功与功率 .............................................................................................................. - 146 -8.2 重力势能 .............................................................................................................. - 154 -8.3动能和动能定理.................................................................................................... - 160 -8.4 机械能守恒定律................................................................................................... - 169 -8.5 实验:验证机械能守恒定律............................................................................... - 178 -第八章达标检测卷...................................................................................................... - 184 - 第八章进阶突破.......................................................................................................... - 193 -第5章抛体运动5.1曲线运动A组·基础达标1.(2020届贵州遵义名校期中)一小球从M运动到N,a、b、c、d是其运动轨迹上的四个点,某同学在图上标出了小球经过该点时的速度v a、v b、v c、v d如图所示.其中可能正确的是()A.a B.bC.c D.d【答案】B【解析】做曲线运动的物体的速度方向沿轨迹的切线方向,故B正确.2.(2020届宿迁名校期末)关于曲线运动的描述,下列说法正确的是() A.曲线运动一定是变速运动B.曲线运动不可能是匀变速运动C.物体只有在恒力作用下才做曲线运动D.物体只有在变力作用下才做曲线运动【答案】A【解析】曲线运动的速度方向一定变化,则一定是变速运动,故A正确;曲线运动也可能是匀变速运动,例如平抛运动,故B错误;物体在恒力或变力作用下均可能做曲线运动,例如圆周运动是在变力作用下的曲线运动,故C、D错误.3.如图所示,这是质点做匀变速曲线运动的轨迹示意图.已知质点在B点的加速度方向与速度方向垂直,则下列说法中正确的是()A.C点的速率大于B点的速率B.A点的加速度比C点的加速度大C.运动过程中加速度大小始终不变,方向时刻沿轨迹的切线方向而变化D.质点受合力方向可能向上【答案】A【解析】质点做匀变速曲线运动,从B点到C点的加速度方向与速度方向夹角小于90°,则速率增大,故A正确;质点做匀变速直线运动,加速度恒定,大小和方向均不变,故A点的加速度与C点的加速度相等,故B、C错误;合力方向指向轨迹凹侧,D错误.4.物体做曲线运动,则()A.物体的加速度大小一定变化B.物体的加速度方向一定变化C.物体的速度的大小一定变化D.物体的速度的方向一定变化【答案】D【解析】物体做曲线运动,其速度方向时刻变化,但是大小可以不变,例如匀速圆周运动,其速度大小不变,但是方向时刻变化,其加速度大小不变,但是加速度方向时刻变化;匀变速曲线运动的加速度大小和方向都是不变的.故A、B、C错误,D正确.5.(2020届菏泽名校期中)关于曲线运动的描述,下列说法正确的是()A.物体只有在恒力作用下才做曲线运动B.物体只有在变力作用下才做曲线运动C.曲线运动速度方向变化,加速度方向不一定变化D.曲线运动速度大小一定变化【答案】C【解析】曲线运动的条件是合外力与速度不在同一条直线上,与力是否变化无关,物体在变力作用下可能做直线运动,如机车启动的过程中,合外力的大小是变化的;在恒力作用下也可做曲线运动,如平抛运动,故A、B错误;曲线运动的条件是合外力与速度不在同一条直线上,速度方向时刻变化,但加速度方向可能不变,故C正确;匀速圆周运动是速度大小不变方向改变的曲线运动,故D错误.6.关于曲线运动的论述中,正确的是()A.做曲线运动的物体所受的合外力可能为零B.物体不受外力时,其运动轨迹可能是直线也可能是曲线C.做曲线运动的物体的速度一定时刻变化D.做曲线运动的物体,其所受的合外力方向与速度方向可能一致【答案】C【解析】物体做曲线运动时,所受合外力的方向与速度的方向不在同一直线上,合外力不能等于零,故A错误;物体不受外力时,物体做匀速直线运动或者静止,不能做曲线运动,故B错误;做曲线运动的物体的速度方向一定是变化的,所以速度一定时刻变化,故C正确;物体做曲线运动时,所受合外力的方向与速度的方向不在同一直线上,故D错误.7.如图所示,双人滑冰运动员在光滑的水平冰面上做表演,甲运动员给乙运动员一个水平恒力F,乙运动员在冰面上完成了一段优美的弧线MN.v M与v N正好成90°角,则此过程中,乙运动员受到甲运动员的恒力可能是图中的()A.F1B.F2C.F3D.F4【答案】B8.一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向一定与该恒力的方向相同B.质点速度的方向一定与该恒力的方向垂直C.质点加速度的方向一定与该恒力的方向相同D.单位时间内质点速度的变化量逐渐增大【答案】C【解析】质点开始做匀速直线运动,现对其施加一恒力,其合力不为零,如果所加恒力与原来的运动方向在一条直线上,质点做匀加速或匀减速直线运动,质点速度的方向与该恒力的方向相同或相反;如果所加恒力与原来的运动方向不在一条直线上,物体做曲线运动,速度方向沿切线方向,力和运动方向之间有夹角,故A错误;由A分析可知,质点速度的方向不可能总是与该恒力的方向垂直,故B错误;由于质点做匀速直线运动,即所受合外力为0,原来质点上的力不变,增加一个恒力后,则质点所受的合力就是这个恒力,所以加速度方向与该恒力方向相同,故C正确;因为合外力恒定,加速度恒定,由Δv=aΔt可知,质点单位时间内速度的变化量总是不变,故D错误.9.如图所示为水平桌面上的一条弯曲轨道.钢球进入轨道的M端沿轨道做曲线运动,它从出口N端离开轨道后的运动轨迹是()A.a B.bC.c D.d【答案】C【解析】当离开末端时,由于惯性作用,仍保持原来运动的方向,即沿着曲线的切线c的方向,故C正确.B组·能力提升10.(多选)如图所示,一辆汽车在水平公路上转弯.下图中画出了汽车转弯时所受合力F的四种方向,其中可能正确的是()A BC D【答案】AB【解析】汽车在水平公路上转弯,汽车做曲线运动,所受合力F的方向指向运动轨迹内测,故知A、B是可能的,而C、D两种情况下,F都指向轨迹的外侧,不可能,故A、B正确,C、D错误.11.一质点从A开始沿曲线AB运动,M、N、P、Q是轨迹上的四点,M→N 质点做减速运动,N→B质点做加速运动,图中所标出质点在各点处的加速度方向正确的是()A.M点B.N点C.P点D.Q点【答案】C【解析】根据轨迹弯曲的方向,可以判定质点加速度的方向大体向上;故N、Q一定错误,而在M→N过程质点做减速运动,故加速度与速度夹角应大于90°;N→B质点做加速运动,加速度与速度方向的夹角应小于90°;故只有P点标得正确;故A、B、D错误,C正确.12.一个物体在光滑水平面上以初速度v0做曲线运动,已知在此过程中物体只受一个恒力F作用,运动轨迹如图所示.则由M到N的过程中,物体的速度大小将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大【答案】D【解析】判断做曲线运动的物体速度大小的变化情况时,应从下列关系入手:当物体所受合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率增大;当物体所受合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率减小;当物体所受合外力方向与速度方向的夹角始终为直角时,物体做曲线运动的速率不变.在本题中,合力F的方向与速度方向的夹角先为钝角,后为锐角,故D正确.13.小球在水平面上移动,每隔0.02秒记录小球的位置如图所示.每一段运动过程分别以甲、乙、丙、丁和戊标示.试分析,在哪段小球所受的合力为零()A.甲B.乙C.丙D.戊【答案】C【解析】小球所受的合力为零时,物体处于静止或匀速直线运动状态,根据题图可知,甲阶段的位移越来越小,所以做减速直线运动,合力不为零,故A错误;乙阶段做曲线运动,则合外力要改变速度,所以不为零,故B错误;丙阶段在相等时间内的位移相等,所以做匀速直线运动,则合外力为零,故C正确;戊阶段的位移越来越大,所以做加速运动,则戊阶段小球所受的合力不为零,故D错误.14.光滑水平面上有一质量为2 kg 的物体,在三个恒定的水平共点力的作用下处于平衡状态.现同时撤去大小分别为 5 N 和15 N 的两个水平力而其余力保持不变,关于此后物体的运动情况,下列说法正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.可能做匀减速直线运动,加速度大小可能是2 m/s2C.一定做匀变速运动,加速度大小可能是10 m/s2D.可能做匀速圆周运动,向心加速度大小可能是10 m/s2【答案】C【解析】根据平衡条件得知,余下力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为5 N和15 N的两个力后,物体的合力大小范围为10 N≤F合≤20 N,根据牛顿第二定律F=ma,得物体的加速度范围为5 m/s2≤a≤10 m/s2;若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上时,物体可以做曲线运动,加速度大小可能是5 m/s2,故A错误;若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,则撤去两个力后物体做匀减速直线运动,由上知加速度大小不可能是2 m/s2,故B错误;由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动.加速度大小可能等于10 m/s2,故C正确;由于撤去两个力后其余力保持不变,恒力作用下不可能做匀速圆周运动,故D错误.15.如图所示,曲线AB为一质点的运动轨迹,某人在曲线上P点作出质点在经过该处时其受力的8个可能方向,正确的是()A.8个方向都可能B.只有方向1、2、3、4、5可能C.只有方向2、3、4可能D.只有方向1、3可能【答案】C【解析】当合力的方向与速度方向不在同一条直线上时,物体做曲线运动.曲线运动轨迹夹在合力与速度方向之间,合力指向轨迹凹的一侧.根据该特点知,只有方向2、3、4可能.5.2 运动的合成与分解A组·基础达标1.关于合运动与分运动,下列说法正确的是()A.合运动的速度等于两个分运动的速度之和B.合运动的时间一定等于分运动的时间C.两个直线运动的合运动一定是直线运动D.合运动的速度方向一定与其中某一分速度方向相同【答案】B【解析】根据平行四边形定则可知,合运动的速度可能比分运动的速度大,可能比分运动的速度小,可能与分运动的速度相等,故A错误;合运动与分运动具有等时性,故B正确;两个直线运动的合运动不一定是直线运动,故C错误;合运动的速度方向可以与某一分运动的速度方向相同,也可能不同,故D错误.2.跳伞表演是人们普遍喜欢的观赏性体育项目,当运动员从直升机由静止跳下后,在下落过程中不免会受到水平风力的影响,下列说法中正确的是() A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力有关D.运动员着地速度与风力无关【答案】B【解析】运动员同时参与了两个分运动,竖直方向向下落和水平方向被风吹动,两个分运动同时发生,相互独立;因而,水平风速越大,落地的合速度越大,会对运动员造成伤害,但落地时间不变;风力越大,运动员下落时间不变,A错误;风力越大,运动员着地速度越大,有可能对运动员造成伤害,B正确;运动员着地速度与风力有关,C、D错误.3.双人滑运动员在光滑的水平冰面上做表演,甲运动员给乙运动员一个水平恒力F ,乙运动员在冰面上完成了一段优美的弧线MN .v M 与v N 正好成90°角,则此过程中,乙运动员受到甲运动员的恒力可能是图中的( )A .F 1B .F 2C .F 3D .F 4【答案】C 【解析】根据图示物体由M 向N 做曲线运动,物体向上的速度减小,同时向右的速度增大,故合外力的方向指向图F 2水平线下方,故F 3的方向可能是正确的,C 正确,A 、B 、D 错误.4.如图所示,汽车在岸上用轻绳拉船,若汽车行进速度为v ,拉船的绳与水平方向夹角为π6,则船速度为( )A.33vB.3vC.233vD.32v【答案】C【解析】将小船的速度沿着平行绳子和垂直绳子方向正交分解,如图所示,平行绳子的分速度等于与拉绳子的速度,可得v =v ′cos θ,代入数据,得v ′=v cos 30°=233v ,故C 正确,A 、B 、D 错误.5.人们在探究平抛运动规律时,将平抛运动分解为沿水平方向的运动和沿竖直方向的运动.从抛出开始计时,图甲(水平方向)和图乙(竖直方向)分别为某一平抛运动两个分运动的速度与时间关系的图像,由图像可知这个平抛运动在竖直方向的位移y 0与在水平方向的位移x 0的大小关系为( )A .y 0=x 0B .y 0=2x 0C .y 0=x 02D .y 0=x 04【答案】C【解析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,在t 0时间内水平位移x =v 0t 0,竖直位移y =12v 0t 0,则y 0=12x 0,故C 正确.6.(多选)如图所示,某同学在研究运动的合成时做了下述活动:用左手沿黑板推动直尺竖直向上运动,运动中保持直尺水平,同时,用右手沿直尺向右移动笔尖.若该同学左手的运动为匀速运动,右手相对于直尺的运动为初速度为零的匀加速运动,则关于笔尖的实际运动,下列说法中正确的是( )A .笔尖做匀速直线运动B .笔尖做匀变速直线运动C .笔尖做匀变速曲线运动D .笔尖的速度方向与水平方向夹角逐渐变小【答案】CD【解析】笔尖同时参与了直尺竖直向上匀速运动和水平向右初速度为零的匀加速运动,合运动为匀变速曲线运动,所以A 、B 错误,C 正确;由于水平速度增大,所以合速度的方向与水平方向夹角逐渐变小,故D 正确.7.(多选)在河面上方12 m 的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v=3 m/s拉绳,使小船靠岸,那么()A.小船靠岸过程做加速运动B.3 s时小船前进了9 mC.3 s时绳与水面的夹角为37°D.3 s时小船的速率为5 m/s【答案】AD【解析】将船的速度分解为沿细绳方向的速度和垂直于细绳方向的速度,则v船=vcos θ,随θ角的增加,船速变大,即小船靠岸过程做加速运动,A正确;由几何关系可知,开始时河面上的绳长为L1=24 m,此时船离岸的距离x1=L1cos 30°=24×32m=12 3 m,3 s后,绳子向左移动了s=v t=3 m×3=9 m,则河面上绳长为L2=(24-9) m=15 m,则此时小船离河边的距离x2=L22-h2=152-122m =9 m,小船前进的距离x=x1-x2=(123-9) m,绳与水面的夹角为α,则有sin α=hL2=1215=0.8,绳与水面的夹角为53°,故B、C错误;3 s时小船的速率为v船=vcos 53°=30.6m/s=5 m/s,故D正确.8.如图所示是某品牌的电动车,当这种电动车在平直公路上行驶时,车前照灯的光束跟平直的道路吻合.当该车转弯时,其前、后车轮在地面上留下了不同的曲线轨迹,则此时照明灯光束的指向跟下列哪条轨迹相切()A.后轮的轨迹B.前轮的轨迹C.在车前、后轮连线中点的运动轨迹D.条件不够,无法确定【答案】B【解析】因为电动车的车灯固定在车头上,随前轮一起转动,所以照明灯光束的指向与前轮在地面上留下的曲线轨迹相切,故B正确.9.一辆汽车在凹凸不平的地面上行驶,其运动轨迹如图所示,它先后经过A、B、C、D四点,速度分别是v A、v B、v C、v D , 请在图中标出各点的速度方向.【答案】见解析【解析】做曲线运动的汽车,其速度方向沿轨迹的切线方向.依次作出A、B、C、D各点运动的速度方向如图.B组·能力提升10.(2020届江苏百校联考)无人机在空中拍摄运动会入场式表演.无人机起飞上升并向前追踪拍摄,飞行过程的水平方向速度v x和竖直向上的速度v y与飞行时间t的关系图线如图所示.下列说法正确的是()A.无人机在0~t1内沿直线飞行B.无人机在t1~t2内沿直线飞行C.无人机在t1时刻上升至最高点D.无人机在0~t1内处于失重状态【答案】A【解析】由题图可知,t=0时的初速度为0,0~t1时间内水平方向和竖直方向加速度恒定,即合加速度恒定,做匀加速运动,初速度为0的匀加速运动一定是直线运动,A正确;0~t1时间内沿直线飞行,t1时刻速度方向与合加速度方向一致,t1时刻之后,水平方向加速度变为0,合加速度方向为竖直方向,与此时速度方向不共线,所以做曲线运动,B错误;t1时刻之后,竖直速度依然向上,还在上升,直到t2时刻,竖直速度减为0,到达最高点,C错误;0~t1时间内竖直加速度向上,超重状态,D错误.11.如图所示,水平面上的小车向左运动,系在车后缘的轻绳绕过定滑轮,拉着质量为m的物体上升.若小车以v1的速度匀速直线运动,当车后的绳与水平方向的夹角为θ时,物体的速度为v2,绳对物体的拉力为T,则下列关系式正确的是()A.v2=v1B.v2=v1 cos θC.T=mg D.T>mg【答案】D【解析】小车的运动可分解为沿绳方向和垂直于绳的方向两个运动,由几何关系可得v2=v1cos θ,因v1不变,而当θ逐渐变小,故v2逐渐变大,物体有向上的加速度,当加速上升时,处于超重状态,T>mg,故D正确.12.如图所示,长为L的直杆一端可绕固定轴O无摩擦转动,另一端靠在以水平速度v匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A的线速度为()A.vsin θB.v sin θC.vcos θD.v cos θ【答案】C【解析】如图将A点的速度分解,根据运动的合成与分解可知,接触点A的实际运动、即合运动为在A点垂直于杆的方向的运动,该运动由水平向左的分运动和竖直向下的分速度组成,所以v A=vcos θ,为A点做圆周运动的线速度.故选C.13.光滑水平面上有一质量为2 kg的滑块以5 m/s的速度向东运动,当受到一个向南大小为8 N 的力以后,则( )A .物块改向东南方向做直线运动B .1 s 以后物块的位移为29 mC .经过很长时间物块的运动方向就会向南D .2 s 后物块的运动方向为南偏东37°【答案】B【解析】物体在向东的方向做匀速直线运动,向南做匀加速运动,合运动为曲线运动,A 错误;向南的加速度为a =F m =82 m/s 2=4 m/s 2,1 s 以后向东的位移x 1=v 0t =5 m ,向南的位移x 2=12at 2=12×4×12m =2 m ,则总位移x =x 21+x 22=29 m ,B 正确;无论经过多长时间,物体沿正东方向总有分速度,即物块的运动方向不可能向南,C 错误;2 s 后物块沿向南方向的分速度v 2=at 2=8 m/s 2,则tan θ=v 0v 2=58,则运动方向为南偏东的角度θ≠37°,D 错误.14.一快艇要从岸边某一不确定位置处到达河中离岸边100 m 远的一浮标处,已知快艇在静水中的速度v x 图像和水流的速度v y 图像分别如图甲、乙所示,则下列说法中正确的是( )A .快艇的运动轨迹为直线B .船头如果垂直于河岸,则快艇应从上游60 m 处出发C .最短到达浮标处时间为10 sD .快艇的船头方向应该斜向上游【答案】B【解析】两个分运动一个做匀加速直线运动,一个做匀速直线运动,合加速度的方向与合速度的方向不在同一条直线上,合运动为曲线运动,故A 错误;船速垂直于河岸时,时间最短,在垂直于河岸方向上的加速度为a =0.5 m/s 2,由d =12at 2,得t =20 s .在沿河岸方向上的位移为x =v 2t =3×20 m =60 m .故B 正确,C 、D 错误.15.有一小船正在渡河,如图所示,在离对岸30 m 时,其下游40 m 处有一危险水域.假若水流速度为5 m/s,为了使小船在危险水域之前到达对岸,那么,小船从现在起相对于静水的最小速度应是多大?【答案】3 m/s【解析】当小船到达危险水域前,恰好到达对岸,其合速度方向沿AC方向,合位移方向与河岸的夹角为α,小船相对于静水的速度为v1,水流速度v2=5 m/s,如图所示.此时小船平行河岸方向位移x=40 m,垂直河岸方向位移y=30 m,则小船相距对岸的位移s=50 m,sin α=35.为使船速最小,应使v1与v垂直,则v1=v2sin α=5×35m/s=3 m/s.5.3实验:探究平抛运动的特点A组·基础达标1.(多选)如图所示为一小球做平抛运动的闪光照片的一部分,图中方格的边长为10 cm,若小球在平抛运动途中的几个位置如图中的a、b、c、d所示,如果g 取10 m/s2,那么()A .闪光的时间间隔是0.1 sB .小球运动的水平分速度为2.0 m/sC .小球经过b 点速度的大小为2.5 m/sD .小球是从O 点开始水平抛出的【答案】ABC【解析】在竖直方向上,根据Δy =L =gT 2得,闪光的时间间隔T =L g =0.110s =0.1 s ,A 正确;小球的水平分速度v x =2L T =2×0.10.1 m/s =2 m/s ,B 正确;小球经过b 点的竖直分速度v by =3L 2T =0.30.2 m/s =1.5 m/s ,根据速度的平行四边形定则可知,b 点的速度v b =v 2by +v 2x = 1.52+22 m/s =2.5 m/s ,C 正确;根据v by =1.5 m/s =gt b ,可推出抛出点到b 点的运动时间为t b =0.15 s ,而O 到b 的时间为0.2 s ,可知O 点不是抛出点,D 错误.2.未来在一个未知星球上用如图甲所示装置研究平抛运动的规律.悬点O 正下方P 点处有水平放置的炽热电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动, 现对小球采用频闪数码相机连续拍摄,在有坐标纸的背景屏前拍下了小球在做平抛运动过程中的多张照片,经合成后照片如图乙所示,a 、b 、c 、d 为连续四次拍下的小球位置,已知照相机连续拍照的时间间隔是0.10 s ,照片大小如图中坐标所示,又知该照片的长度与实际背景屏的长度之比为1∶4,则:(1)由以上信息,可知a 点________(填“是”或“不是”)小球的抛出点.(2)由以上信息,可以推算出该星球表面的重力加速度为__________m/s 2.(3)由以上信息可以算出小球平抛的初速度大小是________m/s.(4)由以上信息可以算出小球在b 点时的速度大小是________m/s.【答案】(1)是 (2)8 (3)0.8 (4)425【解析】(1)因为竖直方向上相等时间内的位移之比为1∶3∶5,符合初速度为零的匀变速直线运动特点,因此可知a 点的竖直分速度为零,a 点为小球的抛出点.(2)由照片的长度与实际背景屏的长度之比为1∶4,可得乙图中正方形的边长l =4 cm ,竖直方向上有Δy =2L =g ′T 2,解得g ′=2L T 2=2×4×10-20.12 m/s 2=8 m/s 2. (3)水平方向小球做匀速直线运动,因此小球平抛运动的初速度为v 0=2L T =2×4×10-20.1 m/s =0.8 m/s. (4)b 点竖直方向上的分速度v yb =4L 2T =0.160.2 m/s =0.8 m/s ,所以v b =v 20+v 2yb =0.8 2 m/s =425 m/s.3.图甲是“研究平抛物体的运动”的实验装置图.(1)实验前应对实验装置反复调节,直到斜槽末端切线________.每次让小球从同一位置由静止释放,是为了每次平抛____________.(2)图乙是正确实验取得的数据,其中O 为抛出点,则此小球做平抛运动的初速度为________m/s(g 取9.8 m/s 2).(3)在另一次实验中将白纸换成方格纸,每个格子的边长L =5 cm ,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为________m/s ,B 点的竖直分速度为________m/s.(g 取10 m/s 2)【答案】(1)水平 初速度相同 (2)1.6 (3)1.5 2.0【解析】(1)实验前应对实验装置反复调节,直到斜槽末端切线水平,目的是保证小球的初速度水平,从而做平抛运动,每次让小球从同一位置由静止释放,是为了每次平抛初速度相同,从而保证画出的为一条抛物线轨迹.(2)根据y =12gt 2,得t =2yg =2×0.1969.8 s =0.2 s ,则小球平抛运动的初速度为v 0=x t =0.320.2 m/s =1.6 m/s.(3)在竖直方向上,根据Δy =2L =gT 2,则T =0.1 s.则小球平抛运动的初速度为v 0=3L T =1.5 m/s ,B 点的竖直分速度为v yB =h AC 2T =2.0 m/s.4.(1)在做“研究平抛运动”的实验中,以下哪些操作可能引起实验误差( )A .安装斜槽时,斜槽末端切线方向不水平B .确定OY 轴时,没有用重垂线C .斜槽不是绝对光滑的,有一定摩擦D .每次从轨道同一位置释放小球(2)如图所示为某次实验中一小球做平抛运动的闪光照相照片的一部分,图中背景方格的边长均为5 cm.如果g 取10 m/s 2,那么:①闪光频率是 ______Hz.②小球平抛时的初速度的大小是________m/s.③小球经过B 点的速度大小是__________m/s.【答案】(1)AB (2)10 1.5 2.5【解析】(1)当斜槽末端切线没有调整水平时,小球脱离槽口后并非做平抛运动,但在实验中,仍按平抛运动分析处理数据,会造成较大误差,故斜槽末端切线方向不水平会造成误差;确定Oy 轴时,没有用重锤线,就不能调节斜槽末端切线水平,会引起实验误差,故A 、B 会引起误差,只要让小球从同一高度、无初速度开始运动,在相同的情形下,即使球与槽之间存在摩擦力,仍能保证球做平抛运动的初速度相同,因此,斜槽轨道不必要光滑,所以不会引起实验误差.每次从轨道同一位置释放小球不会引起实验误差,故C 、D 不会引起误差.(2)在竖直方向上有Δh =gT 2,其中Δh =10 cm ,代入求得T =0.1 s ,因此闪光频率为f =1T =10 Hz.水平方向匀速运动,有s =v 0t ,其中s =3l =15 cm ,t =T =0.1 s ,代入解得v 0=1.5 m/s.根据匀变速直线运动中,时间中点的瞬时速度等于该过程。

人教版高中物理必修二第二学期期中考试高一试卷 (2)

人教版高中物理必修二第二学期期中考试高一试卷 (2)

(精心整理,诚意制作)杭高20xx 学年第二学期期中考试高一物理试卷注意事项:1.本卷考试时间90分,满分100分,2.本卷答案一律做在答卷页上,不能使用计算器。

一、单选题(本大题共8小题,每小题3分,共24分)1.如图所示,用细绳拴一小球,若使小球在竖直平面内做圆周运动,则关于小球的受力情况,下列说法正确的是A .小球受到重力、绳的拉力和向心力的作用B .小球受到重力和绳的拉力的作用C .小球受到重力和向心力的作用D .小球所受合力方向始终指向圆心 2.下列情况中,人处于超重状态的是A .减速上升的观光电梯中的游客B .平直轨道上高速行驶的列车中的乘客C .到达最高点的跳高运动员D .到达最低点的荡“秋千”的小孩3.如图所示,定滑轮的质量和摩擦都可忽略不计,轻绳绕过定滑轮连接着A 、B 两个物体它们的质量分别是M 和m ,物体A 在水平桌面上保持静止,绳与水平面间的夹角为θ,则此时物体A 受到的静摩擦力大小与滑轮轴对滑轮的弹力大小分别是A .θcos mg ,)245cos(θ- mgB .θsin mg ,2)245sin(θ- mgC .θsin mg ,θcos mgD .θcos mg ,2)245cos(θ- mg4.如图所示,质量为M 的小车放在光滑的水平面上.小车上用细线悬吊一质量为m 的小球,M >m .现用一力F 水平向右拉小球,使小球和车一起以加速度a 向右运动时,细线与竖直方向成α角,细线的拉力为T ;若用一力F’水平向左拉小车,使小球和车一起以加速度a’向左运动时,细线与竖直方向也成α角,细线的拉力为T’.则BA .a'=a,T '=TB .a'>a,T '=TC .a'<a,T '=TD .a'>a,T '>T5.在水平粗糙地面上,使同一物体由静止开始做匀加速直线运动,第一次是斜向上拉,第二次是斜下推,两次力的作用线与水平方向的夹角相同,力的大小也相同,位移大小也相同,则:A .力F 对物体做的功相同,合力对物体做的总功也相同B .力F 对物体做的功相同,合力对物体做的总功不相同C .力F 对物体做的功不相同,合力对物体做的总功相同D .力F 对物体做的功不相同,合力对物体做的总功也不相同6.如图,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度和沿水平方向抛出,经过时间和后落到与两抛出点水平距离相等的P 点.若不计空气阻力,下列关系式正确的是:A .>,<B .>,>C .<,<D .<,>7.如图所示,一圆盘可以绕竖直轴在水平面内转动,圆盘半径为R 。

人教版高中物理必修二高一下学期模块测试题

人教版高中物理必修二高一下学期模块测试题

(精心整理,诚意制作)广东××县东山中学20xx-20xx学年度高一下学期模块测试题(必修2部分 适合选理科同学)班级:座号:姓名:成绩:一、单项选择题:(在每小题给出的四个选项中,只有一个选项符合题目要求)1.关于曲线运动,下列说法中正确的是A.变速运动—定是曲线运动B.曲线运动—定是变速运动C.速率不变的曲线运动是匀速运动D.曲线运动也可以是速度不变的运动2.下面关于功率的说法正确的是A.做功多的汽车,功率必定大B.功率小的汽车牵引力一定小C.功率大的汽车做功一定快D.功率大小与做功快慢无关3.两物体质量比为1∶4,速度比为4∶1,则两物体的动能比是A.1∶1B.1∶4C. 2∶1D. 4∶14.下列说法正确的是A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星 D.日心说和地心说都是错误的5.万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律.以下说法正确的是A.物体的重力不是地球对物体的万有引力引起的B.人造地球卫星离地球越远,受到地球的万有引力越大C.人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D.宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用6.下列现象中,机械能守恒的是(不计空气阻力)A.沿斜面匀速下滑的物体 B.抛出的钢球作平抛运动C.跳伞运动员在空中匀速下降 . D.气球在平衡力作用下匀速竖直上升7.物体克服重力做5 J的功,则它的重力势能增加了A.5 JB.-5 JC.0D.不能确定8.作平抛运动的物体,在水平方向通过的最大距离取决于A.物体的初速度和抛出点的高度 B.物体所受的重力和初速度C.物体所受的重力和抛出点的高度 D.物体所受的重力、高度和初速度9.小球在水平桌面上做匀速直线运动,当它受到如图所示的力的方向作用时,小球可能运动的方向是A、 OaB、 ObC、 OcD、 Od10.平抛物体的运动可以看成A、水平方向的匀速运动和竖直方向的匀速运动的合成B、水平方向的匀加速运动和竖直方向的匀速运动的合成C、水平方向的匀速运动和竖直方向的自由落体运动的合成D、水平方向的匀加速运动和竖直方向的自由落体运动的合成11.下列说法中不正确的是A、曲线运动不一定是变速运动B、做曲线运动的物体的速度方向时刻改变C、曲线运动一定是变速运动D、某点瞬时速度的方向就在曲线上该点的切线上12.关于运动的合成有下列说法,不正确的是A、合运动的位移为分运动位移的矢量和B、合运动的速度为分运动速度的矢量和C、合运动和分运动是等效替代关系D、合运动的时间为分运动的时间之和13.一小船在静水中的速率是5m/s,要渡过河宽为30m,水流速度为4m/s的河流,则渡河的最短时间是A、4sB、6sC、7.5sD、10s14.关于竖直上抛运动,下列说法正确的是A.在最高点速度为零,加速度也为零B.上升的时间小于下落过程的时间C.从上升到下降的整个过程中加速度保持不变D.上升到某一高度时速度小于下降到此高度时的速度15.重物从地面以10m/s的速度竖直向上抛出,忽略空气阻力,则物体从抛出到落回地面在空中的运行时间是(g=10 m/s2)A 0.2sB 1sC 2sD 1.8s16.关于平抛物体的运动,下列说法中不正确的是A、物体只受重力的作用,是a=g的匀变速曲线运动B、初速度越大,物体在空中的飞行时间越长C、平抛运动任一时刻的速度沿水平方向上的分量都相同D、物体落地时的水平位移与抛出点的高度有关17.从同一高度h以不同的速度v1,v2水平抛出的两个物体落到地面的时间A、速度大的物体时间长B、速度小的物体时间长C、落地时间一定相同D、由质量大小决定18.水平匀速飞行的飞机投弹,若不计空气阻力和风的影响,下列说法中正确的是A、炸弹落地时飞机的位置在炸弹的前上方B、炸弹落地点的距离越来越大C、炸弹落地时飞机的位置在炸弹的正上方D、炸弹落地点的距离越来越小19.将小球以3m/s的速度水平抛出,它落地速度为5m/s,小球在空中运动的时间为(g=10m/s2)A、0.2sB、0.3sC、0.4sD、0.5s20.若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是21.河宽42m,船在静水中速度为4m/s,水流速度是3m/s,则船过河的最短时间为A.14 s B.10.5 s C.8.4 s D.76 s22.如图所示,小球从平台A水平抛出落到平台B上,已知AB的高度差为h=1.25m,两平台的水平距离为s=5m,则小球能够落到平台B上的初速度至少为 (g取10m/s2)A. 5m/sB. 10m/sC. 15 m/sD. 20 m/s23.如图所示,轻杆一端固定了一小球,另一端安装在电动机的转轴O上.当电动机匀速转动时,小球在水平面内做匀速圆周运动.则A.小球的加速度不变 B.小球所受合外力为零C.小球所受合外力大小一定,方向改变D.小球所受合外力大小、方向均一定24.具有某一速率v 0的子弹(不考虑重力作用),恰好能垂直射穿四块叠在一起的等厚同质的固定木块,则此子弹在刚射穿第一块木块时的速率是A. 023υB. 043υC. 032υD. 031υ25.如图所示,小物体A与圆柱保持相对静止,跟着圆盘一起作匀速圆周运动,则A受力情况是A .重力、支持力B .重力、向心力C .重力、支持力、向心力和摩擦力D .重力、支持力和指向圆心的摩擦力26.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有A.车对两种桥面的压力一样大 B.车对平直桥面的压力大C.车对凸形桥面的压力大 D.无法判断27.如图,一轻绳的一端系在固定粗糙斜面上的O 点,另一端系一小球.给小球一足够大的初速度,使小球在斜面上做圆周运动.在此过程中,A.小球的机械能守恒B.重力对小球不做功C.绳的张力对小球不做功D.在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少二、双项选择题:(每题中有2个选项是正确的.)28. 从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,下列说法正确的是A. 从飞机上看,物体做自由落体运动B. 从飞机上看,物体做匀速直线运动。

最新高中物理必修二单元测试题全套带答案详解

最新高中物理必修二单元测试题全套带答案详解

最新高中物理必修二单元测试题全套带答案详解(教科版)第一章抛体运动单元质量评估(90分钟 100分)[来源:学*科*网Z*X*X*K][来源:学§科§网]一、选择题(本大题共10小题,每小题4分,共40分。

每小题至少一个答案正确)1.某人游长江,他以一定的速度面部始终垂直河岸向对岸游去。

江中各处水流速度相等,他游过的路程,过河所用的时间与水速的关系是()A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关2.在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力,下列描述下落速度的水平分量大小vx 、竖直分量大小vy与时间t的图像,可能正确的是()3.滑雪运动员以20 m/s的速度从一平台水平飞出,落地点与飞出点的高度差为3.2 m。

不计空气阻力,g取10 m/s2。

运动员飞过的水平距离为s,所用时间为t,则下列结果正确的是()A.s=16 m,t=0.50 s B.s=16 m,t=0.80 sC.s=20 m,t=0.50 s D.s=20 m,t=0.80 s4.做曲线运动的物体,一定变化的物理量是()A.速率B.速度C.加速度D.合外力5.如图所示,沿y方向的一个分运动的初速度v1是沿x方向的另一个分运动的初速度v2的2倍,而沿y方向的分加速度a1是沿x方向的分加速度a2的一半。

对于这两个分运动的合运动,下列说法中正确的是()A.一定是曲线运动B.一定是直线运动C.可能是曲线运动,也可能是直线运动D.无法判定6.如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度va 和vb沿水平方向抛出,经过时间ta和tb后落到与两抛出点水平距离相等的P点。

若不计空气阻力,下列关系式正确的是()A.ta >tb,va<vbB.ta>tb,va>vbC.ta <tb,va<vbD.ta<tb,va>vb7.如图所示,斜面上有a、b、c、d四个点,且ab=bc=cd。

人教版高中物理必修二高一第二学期第二次统练试卷.docx

高中物理学习材料桑水制作台州中学2015学年第二学期第二次统练试题高一 物理命题人:徐玲 审题人:金佳嫣一、单选题(本题共12小题,每题3分,共36分。

每题只有一个选项是正确的。

)1.在科学的发展历程中,许多科学家做出了杰出的贡献.下列叙述符合物理学史实的是 A .亚里士多德指出“力是改变物体运动状态的原因”B .伽利略得出“加速度与力成正比,与质量成反比”的结论C .开普勒发现了万有引力定律D .卡文迪许测出了引力常量 G2.做曲线运动的物体,在运动过程中一定变化的物理量是 A .速度 B .加速度 C .动能 D .合外力3.水滴自高处由静止开始下落,在落地前遇到水平方向吹来的风,则 A .风速越大,水滴下落时间越长 B .风速越大,水滴下落的时间越短 C .水滴下落的时间与风速无关 D .水滴着地时的速度与风速无关 4.对于万有引力定律的表达式F=G221r m m ,下列说法中正确的是: A .公式中G 为引力常量,它是由牛顿通过实验测得的,而不是人为规定的 B .当r 趋近于零时,万有引力趋于无穷大C .m 1受到m 2的引力与m 2受到m 1的引力总是大小相等的,而与m 1、m 2是否相等无关D .m 1与m 2受到的引力是一对平衡力5.物体A 和B 质量相等,A 置于光滑的水平面上,B 置于粗糙水平面上,开始时都处于静止状态. 在相同的水平力作用下移动相同的距离,则 A .力F 对A 做功较多,A 的动能较大 B .力F 对B 做功较多,B 的动能较大 C .力F 对A 和B 做功相同,A 和B 的动能相同 D .力F 对A 和B 做功相同,但A 的动能较大6.静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间变化的关系是A B C D7.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 8.如图所示,在1687年出版的《自然哲学的数学原理》一书中,牛顿设想,抛出速度很大时,物体就不会落回地面.已知地球半径为R ,月球绕地球公转的轨道半径为n 2R ,周期为T ,不计空气阻力,为实现牛顿设想,抛出的速度至少为A .B .C .D .9.以初速度0v 水平抛出的物体,当水平方向的分位移与竖直方向的分位移相等时 A .水平分速度与竖直分速度大小相等 B .瞬时速度05v v t =C .运动的时间t=0v /gD .位移大小等于2gv 2010.质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上。

新人教版必修2高中物理第七章机械能守恒定律单元测试(二)

高中物理 第七章 机械能守恒定律单元测试2新人教版必修2一、选择题(本题共14小题,每小题4分,共56分。

在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。

全部选对的得6分,选不全的得3分,有选错或不答的得0分)1.汽车由静止开始运动,若要使汽车在开始运动的一小段时间内保持匀加速直线运动,则( )A .不断增大牵引力功率B .不断减小牵引力功率C .保持牵引力功率不变D .不能判断牵引力功率如何变化2.如图所示,质量为m 的物体P 放在光滑的倾角为θ的斜面体上,同时用力F 向右推斜面体,使P 与斜面体保持相对静止。

在前进水平位移为l 的过程中,斜面体对P 做功为( )A . FlB .1sin 2mg l θ⋅C .mg cos θ·l D .mg tan θ·l 3.将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v -t 图象如图所示。

以下判断正确的是( )A .前3 s 内货物处于超重状态B .最后2 s 内货物只受重力作用C .前3 s 内与最后2 s 内货物的平均速度相同D .第3 s 末至第5 s 末的过程中,货物的机械能守恒4.如图所示,细线的一端固定于O 点,另一端系一小球。

在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点。

在此过程中拉力的瞬时功率变化情况是( )A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大5.如图所示,某段滑雪雪道倾角为30°,总质量为m (包括雪具在内)的滑雪运动员从距底端高为h 处的雪道上由静止开始匀加速下滑,加速度为13g 。

在他从上向下滑到底端的过程中,下列说法正确的是( )A .运动员减少的重力势能全部转化为动能B .运动员获得的动能为13mgh C .运动员克服摩擦力做功为23mgh D .下滑过程中系统减少的机械能为13mgh6.如图所示,物体与路面之间的动摩擦因数处处相同且不为零,运动中无碰撞能量损失。

人教版高中物理必修二高一下学期 (2).docx

高中物理学习材料桑水制作三台县观桥中学高2016级高一下学期理科班单元检测(曲线运动)一.选择题:每小题所给的四个选项中,1-7题只有一个选项符合题意,8-10题有多个选项符合题意。

1.做曲线运动的物体,在运动过程中,一定变化的物理量是( )A.速率B.速度C.加速度D.合外力2.若已知物体运动的初速度v0的方向及它受到的恒定的合外力F的方向,下图中曲线a、b、c、d表示物体运动的轨迹,其中正确的是( )3.一个物体在光滑水平面上以初速度v0做曲线运动,已知在此过程中只受一个恒力F作用,运动轨迹如图3所示.则由M到N的过程中,速度的大小( )A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大4.(合运动与分运动的关系)对于两个分运动的合运动,下列说法正确的是( ) A.合运动的速度大小等于两个分运动的速度大小之和B.合运动的速度一定大于某一个分运动的速度C.合运动的方向就是物体实际运动的方向D.由两个分速度的大小就可以确定合速度的大小5.如图4所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为v 0,小船水平向左运动,绳某时刻与水平方向夹角为α,则小船的运动性质及此时刻小船的速度v x 为( )A .小船做变加速运动,v x =v 0cos αB .小船做变加速运动,v x =v 0cos αC .小船做匀速直线运动,v x =v 0cos αD .小船做匀速直线运动,v x =v 0cos α6.小船在静水中速度为4m/s ,它在宽为200 m ,流速为3 m/s 的河中渡河,船头始终垂直河岸,如图6所示.则渡河需要的时间为( )A .40sB .50sC .66.7sD .90s7.如图5所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g 取9.8 m/s 2)( )A.23sB.223s C.3sD .2s8.(对曲线运动的理解)下列关于曲线运动的说法正确的是( )A .物体所受合外力一定不为零,其大小方向都在不断变化B .速度的大小和方向都在不断变化C .物体的加速度可能变化,也可能不变化D .一定是变速运动9.质点在三个恒力F 1、F 2、F 3的共同作用下处于平衡状态,若突然撤去F 1,则质点( ) A .一定做匀变速运动B .可能做直线运动 C .一定做非匀变速运动D .一定做曲线运动10.有一物体在离水平地面高h 处以初速度v 0水平抛出,落地时速度为v ,竖直分速度为v y ,水平射程为l ,不计空气阻力,则物体在空中飞行的时间为( )A.l v 0B.h 2gC.v 2-v 20g D.2h v y二.填空题:把真确答案填写在相应的横线上。

人教版高中物理必修二《第2章 万有引力定律》单元测试卷(河北省

(精心整理,诚意制作)新人教版必修2《第2章万有引力定律》单元测试卷(河北省保定一中)一、选择题(每小题4分,共40分).1.如图所示,有一个质量为M,半径为R,密度均匀的大球体.从中挖去一个半径为的小球体,并在空腔中心放置一质量为m的质点,则大球体的剩余部分对该质点的万有引力大小为(已知质量分布均匀的球壳对壳内物体的引力为零)()A.G B.G C.4G D.02.火星表面特征非常接近地球,适合人类居住,近期,我国宇航员王跃与俄罗斯宇航员一起进行“模拟登火星”实验活动,已知火星半径是地球半径的,质量是地球质量的,自转周期与地球的基本相同,地球表面重力加速度为g,王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下列分析不正确的是()A.火星表面的重力加速度是B.火星的第一宇宙速度是地球第一宇宙速度的C.王跃在火星表面受的万有引力是在地球表面受万有引力的倍D.王跃以相同的初速度在火星上起跳时,可跳的最大高度是3.地球赤道上的物体随地球自转的向心加速度为a,角速度为ω,某卫星绕地球做匀速圆周运动的轨道半径为r1,向心力加速度为a1,角速度为ω1.已知万有引力常量为G,地球半径为R.下列说法中正确的是()A.向心力加速度之比=B.角速度之比=C.地球的第一宇宙速度等于D.地球的平均密度ρ=4.20xx年7月23日美国航天局宣布,天文学家发现“另一个地球”﹣﹣太阳系外行星开普勒452b.假设行星开普勒452b绕恒星公转周期为385天,它的体积是地球的5倍,其表面的重力加速度是地球表面的重力加速度的2倍,它与恒星的距离和地球与太阳的距离很接近,则行星开普勒452b与地球的平均密度的比值及其中心恒星与太阳的质量的比值分别为()A.和B.和C.和D.和5.如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,该系统是由一颗白矮星和它的类日伴星组成的双星系统,图片下面的亮点为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体).由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星.现假设类日伴星所释放的物质被白矮星全部吸收,并且两星间的距离在一段时间内不变,两星球的总质量不变,不考虑其它星球对该“罗盘座T星”系统的作用,则下列说法正确的是()A.两星间的万有引力不变 B.两星的运动周期不变C.类日伴星的轨道半径减小D.白矮星的线速度增大6.对于环绕地球做圆周运动的卫星说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r与周期T 关系作出如图所示图象,则可求得地球质量为(已知引力常量为G)()A.B.C.D.7.一飞船在探测某星球时,在星球表面附近飞行一周所用的时间为T,环绕速度为ν,则()A.该星球的质量为B.该星球的密度为C.该星球的半径为D.该星球表面的重力加速度为8.我国未来将建立月球基地,并在绕月球轨道上建造空间站,如图所示,关闭发动机的航天飞机在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆轨道的近月点B处与空间站C对接,已知空间站绕月球圆轨道的半径为r,周期为T,引力常量为G,月球的半径为R,下列说法中正确的是()A.月球的质量为M=B.月球的第一宇宙速度为v=C.航天飞机从图示A位置飞向B的过程中,加速度逐渐变大D.要使航天飞机和空间站对接成功,飞机在接近B点时必须减速9.20xx年12月2日,牵动亿万中国心的“嫦娥3号”探测器顺利发射,“嫦娥3号”要求一次性进入近地点210公里、远地点约36.8万公里的地月转移轨道,如图所示,经过一系列的轨道修正后,在p点实施一次近月制动进入环月圆形轨道I,经过系列调控使之进入准备“落月”的椭圆轨道II,嫦娥3号在地月转移轨道上被月球引力捕获后逐渐向月球靠近,绕月运行时只考虑月球引力作用,下列关于嫦娥3号的说法正确的是()A.发射“嫦娥3号”的速度必须达到第二宇宙速度B.沿轨道I运行至P点的速度大于沿轨道II运行至P的速度C.沿轨道I运行至P点的加速度等于沿轨道II运行至P的加速度D.沿轨道I运行的周期小于沿轨道II运行的周期10.4月24日为首个“中国航天日”,中国航天事业取得了举世瞩目的成绩.我国于16年1月启动了火星探测计划,假设将来人类登上了火星,航天员考察完毕后,乘坐宇宙飞船离开火星时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法,正确的是()A.飞船在轨道Ⅰ上运动到P点的速度小于在轨道Ⅱ上运动到P点的速度B.飞船绕火星在轨道Ⅰ上运动的周期跟飞船返回地面的过程中绕地球以与轨道Ⅰ同样的轨道半径运动的周期相同C.飞船在轨道Ⅲ上运动到P点时的加速度大于飞船在轨道Ⅱ上运动到P点时的加速度D.飞船在轨道Ⅱ上运动时,经过P点时的速度大于经过Q点时的速度二、填空题(每小题5分,共20分)11.v=7.9km/s是人造卫星在地面附近环绕地球做匀速圆周运动必须具有的速度,叫做速度.v=11.2km/s是物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的速度,叫做速度.v=16.7km/s是使物体挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去的速度,叫做速度.12.有两颗人造地球卫星A和B,分别在不同的轨道上绕地球做匀速圆周运动,两卫星的轨道半径分别为r A和r B,且r A>r B,则两卫星的线速度关系为v Av B;两卫星的角速度关系为ωAωB、两卫星的周期关系为T AT B.(填“>”、“<”或“=”)13.万有引力定律告诉我们自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成,与它们之间距离r的二次方成,引力常量G = N•m2/kg2.14.两颗球形行星A和B各有一颗卫星a和b,卫星的圆形轨道接近各自行星的表面,如果两颗行星的质量之比=p,半径之比=q,则两颗卫星的周期之比等于.三、计算题(每小题10分,共40分)15.试将一天的时间记为T,地球半径记为R,地球表面重力加速度为g.(结果可保留根式)(1)试求地球同步卫星P的轨道半径R P;(2)若已知一卫星Q位于赤道上空且卫星Q运动方向与地球自转方向相反,赤道上一城市A的人平均每三天观测到卫星Q四次掠过他的上空,试求Q的轨道半径R Q.16.已知万有引力常量为G,地球半径为R,地球表面的重力加速度为g,用以上各量表示在地球表面附近运行的人造地球卫星的第一宇宙速度v1及地球的密度ρ.17.总质量为m的一颗返回式人造地球卫星沿半径为R的圆轨道绕地球运动到P 点时,接到地面指挥中心返回地面的指令,于是立即打开制动火箭向原来运动方向喷出燃气以降低卫星速度并转到跟地球相切的椭圆轨道,如图所示,要使卫星对地速度将为原来的,卫星在P处应将质量为△m的燃气以多大的对地速度向前喷出?(将连续喷气等效为一次性喷气,地球半径为R0,地面重力加速度为g)18.1957年第一颗人造卫星上天,开辟了人类宇航的新时代.四十多年来,人类不仅发射了人造地球卫星,还向宇宙空间发射了多个空间探测器.空间探测器要飞向火星等其它行星,甚至飞出太阳系,首先要克服地球对它的引力的作用.理论研究表明,物体在地球附近都受到地球对它的万有引力的作用,具有引力势能,设物体在距地球无限远处的引力势能为零,则引力势能可以表示为E=﹣G=,其中G是万有引力常量,M是地球的质量,m是物体的质量,r是物体距地心的距离.现有一个空间探测器随空间站一起绕地球做圆周运动,运行周期为T,已知探测器的质量为m,地球半径为R,地面附近的重力加速度为g.要使这个空间探测器从空间站出发,脱离地球的引力作用,至少要对它作多少功?新人教版必修2《第2章万有引力定律》单元测试卷(河北省保定一中)参考答案与试题解析一、选择题(每小题4分,共40分).1.如图所示,有一个质量为M,半径为R,密度均匀的大球体.从中挖去一个半径为的小球体,并在空腔中心放置一质量为m的质点,则大球体的剩余部分对该质点的万有引力大小为(已知质量分布均匀的球壳对壳内物体的引力为零)()A.G B.G C.4G D.0【考点】万有引力定律及其应用.【分析】采用割补法,先将空腔填满,根据万有引力定律列式求解万有引力,该引力是填入的球的引力与剩余部分引力的合力;注意均匀球壳对内部的质点的万有引力的合力为零.【解答】解:采用割补法,先将空腔填满;填入的球的球心与物体重合,填入球上各个部分对物体m的引力的矢量和为零;均匀球壳对内部的质点的万有引力的合力为零,根据万有引力定律,有:,解得:故选:B.2.火星表面特征非常接近地球,适合人类居住,近期,我国宇航员王跃与俄罗斯宇航员一起进行“模拟登火星”实验活动,已知火星半径是地球半径的,质量是地球质量的,自转周期与地球的基本相同,地球表面重力加速度为g,王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下列分析不正确的是()A.火星表面的重力加速度是B.火星的第一宇宙速度是地球第一宇宙速度的C.王跃在火星表面受的万有引力是在地球表面受万有引力的倍D.王跃以相同的初速度在火星上起跳时,可跳的最大高度是【考点】万有引力定律及其应用.【分析】根据万有引力定律公式求出王跃在火星上受的万有引力是在地球上受万有引力的倍数.根据万有引力等于重力,得出重力加速度的关系,从而得出上升高度的关系.根据万有引力提供向心力求出第一宇宙速度的关系.【解答】解:A、根据万有引力定律得,F=G知王跃在火星表面受的万有引力是在地球表面受万有引力的倍.则火星表面重力加速度为g.故A正确.B、根据万有引力提供向心力G=m,得v=,知火星的第一宇宙速度是地球第一宇宙速度的倍.故B正确;C、根据万有引力等于重力得,G=mg,g=,知火星表面重力加速度时地球表面重力加速度的倍,故C错误.D、因为火星表面的重力加速度是地球表面重力加速度的倍,根据h=,知火星上跳起的高度是地球上跳起高度的倍,为h.故D正确.本题选择错误的,故选:C3.地球赤道上的物体随地球自转的向心加速度为a,角速度为ω,某卫星绕地球做匀速圆周运动的轨道半径为r1,向心力加速度为a1,角速度为ω1.已知万有引力常量为G,地球半径为R.下列说法中正确的是()A.向心力加速度之比=B.角速度之比=C.地球的第一宇宙速度等于D.地球的平均密度ρ=【考点】第一宇宙速度、第二宇宙速度和第三宇宙速度;人造卫星的加速度、周期和轨道的关系.【分析】根据月球绕地球的轨道半径和向心加速度,结合万有引力提供向心力求出地球的质量,从而结合地球的体积求出地球的密度.根据万有引力提供向心力求出地球的第一宇宙速度.【解答】解:A、赤道上物体靠万有引力和支持力的合力提供向心力,根据题目条件无法求出向心加速度之比,故A错误.B、由A选项分析可知,因向心加速度之比无法,则角速度也无法确定,故B错误.C、根据G=m得,地球的第一宇宙速度v==,故C错误.D、根据G=ma1得,地球的质量M=,那么其平均密度ρ=.故D正确.故选:D.4.20xx年7月23日美国航天局宣布,天文学家发现“另一个地球”﹣﹣太阳系外行星开普勒452b.假设行星开普勒452b绕恒星公转周期为385天,它的体积是地球的5倍,其表面的重力加速度是地球表面的重力加速度的2倍,它与恒星的距离和地球与太阳的距离很接近,则行星开普勒452b与地球的平均密度的比值及其中心恒星与太阳的质量的比值分别为()A.和B.和C.和D.和【考点】万有引力定律及其应用.【分析】在行星表面,万有引力等于重力,据此列式,再根据密度、体积公式联立方程求解,根据万有引力提供向心力,结合公转周期列式求出恒星质量的表达式,进而求出质量之比即可.【解答】解:在行星表面,万有引力等于重力,则有:,而,解得:ρ=,而行星开普勒452b的体积是地球的5倍,则半径为地球半径的倍,则有:,行星绕恒星做匀速圆周运动过程中,根据万有引力提供向心力得:解得:M′=,轨道半径相等,行星开普勒452b绕恒星公转周期为385天,地球的公转周期为36 5天,则,故A正确.故选:A5.如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,该系统是由一颗白矮星和它的类日伴星组成的双星系统,图片下面的亮点为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体).由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星.现假设类日伴星所释放的物质被白矮星全部吸收,并且两星间的距离在一段时间内不变,两星球的总质量不变,不考虑其它星球对该“罗盘座T星”系统的作用,则下列说法正确的是()A.两星间的万有引力不变 B.两星的运动周期不变C.类日伴星的轨道半径减小D.白矮星的线速度增大【考点】万有引力定律及其应用.【分析】组成的双星系统的周期T相同,根据万有引力定律提供向心力:G=M1R1=M2R2;推导周期以及轨道半径与什么因素有关;根据万有引力定律公式,分析两星间万有引力的变化.【解答】解:A、两星间距离在一段时间内不变,由万有引力定律可知,两星的质量总和不变而两星质量的乘积必定变化,则万有引力必定变化.故A错误;B、组成的双星系统的周期T相同,设白矮星与类日伴星的质量分别为M1和M2,圆周运动的半径分别为R1和R2,由万有引力定律提供向心力:G=M1R1=M2R2可得:GM1=GM2=两式相加:G(M1+M2)T2=4π2L3,白矮星与类日伴星的总质量不变,则周期T不变.故B正确;C、由G=M1R1=M2R2得:M1R1=M2R2.知双星运行半径与质量成反比,类日伴星的质量逐渐减小,故其轨道半径增大,白矮星的质量增大,轨道变小;故C错误;D、白矮星的周期不变,轨道半径减小,故v=,线速度减小,故D错误;故选:B.6.对于环绕地球做圆周运动的卫星说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r与周期T 关系作出如图所示图象,则可求得地球质量为(已知引力常量为G)()A.B.C.D.【考点】万有引力定律及其应用.【分析】根据万有引力提供向心力,得到轨道半径与周期的函数关系,再结合图象计算斜率,从而可以计算出地球的质量.【解答】解:由万有引力提供向心力有:,得:,由图可知:,所以地球的质量为:,故B正确、ACD错误.故选:B.7.一飞船在探测某星球时,在星球表面附近飞行一周所用的时间为T,环绕速度为ν,则()A.该星球的质量为B.该星球的密度为C.该星球的半径为D.该星球表面的重力加速度为【考点】万有引力定律及其应用.【分析】由周期与速度可求得半径,由轨道半径与周期据万有引力等于向心力可求得质量,因轨道半径为星球的半径则可求出密度.【解答】解:ABC、由v=可得r=则C正确,由万有引力提供向心力:可求得M==,则A错误其密度为=,则B正确D、星球表面的重力加速度g==,则D错误故选:BC8.我国未来将建立月球基地,并在绕月球轨道上建造空间站,如图所示,关闭发动机的航天飞机在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆轨道的近月点B处与空间站C对接,已知空间站绕月球圆轨道的半径为r,周期为T,引力常量为G,月球的半径为R,下列说法中正确的是()A.月球的质量为M=B.月球的第一宇宙速度为v=C.航天飞机从图示A位置飞向B的过程中,加速度逐渐变大D.要使航天飞机和空间站对接成功,飞机在接近B点时必须减速【考点】万有引力定律及其应用.【分析】A、根据可判断A选项;B、根据可得月球的第一宇宙速度,可判断B选项;C、航天飞机从图示A位置飞向B的过程中半径逐渐变小,由知,加速度逐渐增大,可判断C选项;D、要使航天飞机和空间站对接成功,飞机在接近B点时必须减速,否则航天飞机将做椭圆运动,可判断D选项.【解答】解:A、根据可得,月球的质量为,故A选项正确;B、根据得,月球的第一宇宙速度为,故B选项错误;C、航天飞机从图示A位置飞向B的过程中半径逐渐变小,由知,加速度逐渐增大,故C选项正确;D、要使航天飞机和空间站对接成功,飞机在接近B点时必须减速,否则航天飞机将做椭圆运动,故D选项正确;故选:ACD.9.20xx年12月2日,牵动亿万中国心的“嫦娥3号”探测器顺利发射,“嫦娥3号”要求一次性进入近地点210公里、远地点约36.8万公里的地月转移轨道,如图所示,经过一系列的轨道修正后,在p点实施一次近月制动进入环月圆形轨道I,经过系列调控使之进入准备“落月”的椭圆轨道II,嫦娥3号在地月转移轨道上被月球引力捕获后逐渐向月球靠近,绕月运行时只考虑月球引力作用,下列关于嫦娥3号的说法正确的是()A.发射“嫦娥3号”的速度必须达到第二宇宙速度B.沿轨道I运行至P点的速度大于沿轨道II运行至P的速度C.沿轨道I运行至P点的加速度等于沿轨道II运行至P的加速度D.沿轨道I运行的周期小于沿轨道II运行的周期【考点】人造卫星的环绕速度.【分析】通过宇宙速度的意义判断嫦娥三号发射速度的大小,根据卫星变轨原理分析轨道变化时卫星是加速还是减速,并由此判定机械能大小的变化,在不同轨道上经过同一点时卫星的加速度大小相同.【解答】解:A、嫦娥三号仍在地月系里,也就是说嫦娥三号没有脱离地球的束缚,故其发射速度需小于第二宇宙速度而大于第一宇宙速度,故A错误;B、在椭圆轨道II上经过P点时将开始做近心运动,月于卫星的万有引力将大于卫星圆周运动所需向心力,在圆轨道上运动至P点时万有引力等于圆周运动所需向心力根据F向=r知,在椭圆轨道II上经过P点的速度小于圆轨道I上经过P点的速度,故B正确;C、卫星经过P点时的加速度由万有引力产生,不管在哪一轨道只要经过同一个P点时,万有引力在P点产生的加速度相同,故C正确;D、根据开普勒行星运动定律知,由于圆轨道上运行时的半径大于在椭圆轨道上的半长轴故在圆轨道上的周期大于在椭圆轨道上的周期,故D错误.故选:BC10.4月24日为首个“中国航天日”,中国航天事业取得了举世瞩目的成绩.我国于16年1月启动了火星探测计划,假设将来人类登上了火星,航天员考察完毕后,乘坐宇宙飞船离开火星时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法,正确的是()A.飞船在轨道Ⅰ上运动到P点的速度小于在轨道Ⅱ上运动到P点的速度B.飞船绕火星在轨道Ⅰ上运动的周期跟飞船返回地面的过程中绕地球以与轨道Ⅰ同样的轨道半径运动的周期相同C.飞船在轨道Ⅲ上运动到P点时的加速度大于飞船在轨道Ⅱ上运动到P点时的加速度D.飞船在轨道Ⅱ上运动时,经过P点时的速度大于经过Q点时的速度【考点】万有引力定律及其应用.【分析】根据开普勒第二定律可知,飞船在轨道Ⅱ上运动时,在P点速度大于在Q点的速度.飞船从轨道Ⅰ转移到轨道Ⅱ上运动,必须在P点时,点火加速,使其速度增大做离心运动,即机械能增大.飞船在轨道Ⅰ上运动到P点时与飞船在轨道Ⅱ上运动到P点时有r相等,则加速度必定相等.根据万有引力提供向心力与周期的关系确【解答】解:A、飞船在轨道Ⅰ上经过P点时,要点火加速,使其速度增大做离心运动,从而转移到轨道Ⅱ上运动.所以飞船在轨道Ⅰ上运动时经过P点的速度小于在轨道Ⅱ上运动时经过P点的速度.故A正确.B、根据周期公式T=2π,虽然r相等,但是由于地球和火星的质量不等,所以周期T不相等.故B错误.C、飞船在轨道上Ⅲ运动到P点时与飞船在轨道Ⅱ上运动到P点时受到的万有引力大小相等,根据牛顿第二定律可知加速度必定相等.故C错误.D、根据开普勒第二定律可知,飞船在轨道Ⅱ上运动时,在近地点P点速度大于在Q点的速度.故D正确.故选:AD二、填空题(每小题5分,共20分)11.v=7.9km/s是人造卫星在地面附近环绕地球做匀速圆周运动必须具有的速度,叫做第一宇宙速度速度.v=11.2km/s是物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的速度,叫做第二宇宙速度速度.v=16.7km/s是使物体挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去的速度,叫做第三宇宙速度速度.【考点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.【分析】物体在地面附近绕地球做匀速圆周运动的速度叫做第一宇宙速度,挣脱地球引力束缚的发射速度为第二宇宙速度,挣脱太阳引力的束缚的发射速度为第三宇宙速度.【解答】解:v=7.9km/s是人造卫星在地面附近环绕地球做匀速圆周运动必须具有的速度,叫做第一宇宙速度速度.v=11.2km/s是物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的速度,叫做第二宇宙速度速度.v=16.7km/s是使物体挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去的速度,叫做第三宇宙速度速度.故答案为:第一宇宙速度,第二宇宙速度,第三宇宙速度.12.有两颗人造地球卫星A和B,分别在不同的轨道上绕地球做匀速圆周运动,两卫星的轨道半径分别为r A和r B,且r A>r B,则两卫星的线速度关系为v A<v B;两卫星的角速度关系为ωA<ωB、两卫星的周期关系为T A>T B.(填“>”、“<”或“=”)【考点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.【分析】根据万有引力提供向心力得出线速度、角速度、周期与轨道半径的关系式,从而进行比较.【解答】解:根据得,v=,,T=,因为r A>r B,则v A<v B,ωA<ωB,T A>T B.故答案为:<,<,>.13.万有引力定律告诉我们自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成正比,与它们之间距离r的二次方成反比,引力常量G= 6.67×10﹣11N•m2/kg2.【考点】万有引力定律及其应用.【分析】根据万有引力定律可知自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成正比,与它们之间距离r的二次方成反比,引力常量为G=6.67×10﹣11N•m2/kg2【解答】解:根据万有引力定律可知:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成正比,与它们之间距离r的二次方成反比,引力常量为G=6.67×10﹣11N•m2/kg2故答案为:正比、反比 6.67×10﹣11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理学习材料(灿若寒星**整理制作)安徽省泾县中学2010—2011学年第二学期高一物理单元测试(2)【新课标】命题范围:必修2(机械能守恒定律)第Ⅰ卷为选择题,共40分;第Ⅱ卷为非选择题共60分。

满分100分,考试时间为90分钟。

第Ⅰ卷(选择题,共40分)一、选择题(本题共10小题,每小题4分,共40分.在每题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得3分,有选错或不答的得0分)1.如图所示,力F 大小相等,A B C D 物体运动的位移s 也相同,哪种情况F 做功最小( )2.一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,那么在这段时间内,其中一个力做的功为 ( )A .261mv B .241mvC .231mvD .221mv3.在奥运比赛项目中,高台跳水是我国运动员的强项。

质量为m 的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F ,那么在他减速下降高度为h 的过程中,下列说法正确的是:(g 为当地的重力加速度) ( ) A .他的动能减少了Fh B .他的重力势能增加了mgh C .他的机械能减少了(F -mg )hD .他的机械能减少了Fh4.一个质量为0.3kg 的弹性小球,在光滑水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小△v 和碰撞过程中墙对小球做功的大小W 为 ( ) A .△v =0 B .△v =12m/s C .W =0 D .W =10.8J5.质量为m 的物体,受水平力F 的作用,在粗糙的水平面上运动,下列说法中正确的是( ) A .如果物体做加速直线运动,F 一定做正功 B .如果物体做减速直线运动,F 一定做负功 C .如果物体做减速直线运动,F 可能做正功 D .如果物体做匀速直线运动,F 一定做正功6.将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升。

如果前后两过程的运动时间相同,不计空气阻力,则 ( ) A .加速过程中拉力做的功比匀速过程中拉力做的功大 B .匀速过程中拉力做的功比加速过程中拉力做的功大 C .两过程中拉力做的功一样大 D .上述三种情况都有可能 7.一质量不计的直角形支架两端分别连接质量为m 和2m 的小球A 和B 。

支架的两直角边长度分别为2l 和l ,支架可绕固定轴O 在竖直平面内无摩擦转动,如图所示。

开始时OA 边处于水平位置,由静止释放,则 ( ) A .A 球的最大速度为2glB .A 球速度最大时,两小球的总重力势能最小C .A 球速度最大时,两直角边与竖直方向的夹角为45°D .A 、B 两球的最大速度之比1:2: B A v v8.如图, 一很长的、不可伸长的柔软轻绳跨过光滑定滑轮, 绳两端各系一小球a 和b .a 球质量为m, 静置于地面; b 球质量为3m, 用手托住, 高度为h, 此时轻绳刚好拉紧.从静止开始释放b 后, a 可能达到的最大高度为( ) A .h B .1.5h C .2h D .2.5h9.滑块以速率v 1靠惯性沿固定斜面由底端向上运动,当它回到出发点时速率为v 2,且v 2< v 1,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( ) A .上升时机械能减小,下降时机械增大。

B .上升时机械能减小,下降时机械能也减小。

C .上升过程中动能和势能相等的位置在A 点上方。

D .上升过程中动能和势能相等的位置在A 点下方。

10.以初速度v 0竖直向上抛出一质量为m 的小物体。

假定物块所受的空气阻力f 大小不变。

已知重力加速度为g ,则物体上升的最大高度和返回到原抛出点的速率分别为 ( )A .22(1)v f g mg+和0mg fv mg f-+B .202(1)v f g mg+和0mgv mg f+C .2022(1)v f g mg+和0mg fv mg f-+D .2022(1)v f g mg+和0mgv mg f+第Ⅱ卷(非选择题,共60分)二、本题共2小题,共14分,把答案填在题中相应的横线上或按题目要求作答. 11.(8分)利用图中所示的装置可以研究自由落体运动。

实验中需要调整好仪器,接通打点计时器的电源,松开纸带,使重物下落。

打点计时器会在纸带上打出一系列的小点。

(1)为了测试中午下落的加速度,还需要的实验器材有________。

(填入正确选项 前的字母)A .天平B .秒表C .米尺 (2)若实验中所得到的重物下落的加速度值小于当地的重物加速度值,而实验操作 与数据处理均无错误,写出一个你认为 可能引起此错误差的原因:________。

12.(6分)如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,小球A 升至最高点C 时两球的速度为_______三、本题共3小题,共46分.解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.A B K F13.(13分)如图所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过K 分别与物块A 、B 相连,A 、B 的质量分别为m A 、m B 。

开始时系统处于静止状态。

现用一水平恒力F 拉物块A ,使物块B 上升。

已知当B 上升距离为h 时,B 的速度为v 。

求此过程中物块A 克服摩擦力所做的功。

重力加速度为g 。

14.(14分)过山车是游乐场中常见的设施。

下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,B 、C 分别是两个圆形轨道的最低点,半径R 1=2.0m 、R 2=1.4m 。

一个质量为m =1.0kg 的小球(视为质点),从轨道的左侧A 点以v 0=12.0m/s 的初速度沿轨道向右运动,A 、B 间距L 1=6.0m 。

小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的。

假设水平轨道足够长,圆形轨道间不相互重叠。

重力加速度g =10m/s 2,计算结果保留小数点后一位数字。

试求: ⑴小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; ⑵如果小球恰能通过第二个圆形轨道,B 、C 间距L 应是多少。

A v 0L 1 LL B C D R 1R 2 R 3 第一圆轨道 第二圆轨道 第三圆轨道15.(19分)如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。

开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。

现在挂钩上升一质量为3m 的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。

若将C 换成另一个质量为)(21m m 的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。

A B mk m 1参考答案1.D 2 B 3.D 4BC 5.A CD 6.D 7.BCD 8.B 9.BC 10.A 11.(8分)(1)C (4分,有选错的即不给分) (2)打点计时器与纸带间存在摩擦 (4分,其他合理答案同样给分) 12.mM mgRRMg v c +-=2π13.解:由于连结AB 绳子在运动过程中未松,故AB 有一样的速度大小,对AB 系统,由功能关系有: Fh -W -m B gh=12 (m A +m B )v 2求得:W=Fh -m B gh -12(m A +m B )v 214.(1)设小球经过第一个圆轨道的最高点时的速度为v 1根据动能定理 22111011222mgL mgR mv mv μ--=- ( 3分)小球在最高点受到重力mg 和轨道对它的作用力F ,根据牛顿第二定律211g v F m m R += ( 2分)由①②得 10.0N F = ( 2分) (2)设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R = ( 2分)()22122011222mg L L mgR mv mv μ-+-=- ( 2分)由④⑤得 L 12.5m = ( 3分) 15 .( 19 分) 开始时,A 、B 静止,设弹簧压缩量为x 1,有 kx 1=m 1g ① 挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 kx 2=m 2g ② B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点。

由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 ΔE =m 3g (x 1+x 2)-m 1g (x 1+x 2) ③ C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得 12 (m 3+m 1)v 2+12 m 1v 2=(m 3+m 1)g (x 1+x 2)-m 1g (x 1+x 2)-ΔE ④ 由③ ④ 式得12 (m 3+2m 1)v 2=m 1g (x 1+x 2) ⑤由①②⑤式得v=2m 1(m 1+m 2)g 2(2m 1+m 3)k⑥。

相关文档
最新文档