八下第二章 一元一次不等式 回顾与思考
北师大版数学八下第二章一元一次不等式和一元一次不等式组复习与回顾(1)课件

例3.某种商品的进价为600元,出售时标价为900元, 后来由于该商品积压,商店准备打折出售,但要保 持利润不低于20%,则最多可以打多少折?
例4.某单位急需用车,但以不准备买车,他们准备和一个个体车主或一国营出 租车公司中一家签订月租车合同,设汽车每月行驶x千米,应付给个体车主有 月租费用是y1元,应付给国营出租车公司的月租费用是y2元,y1、y2分别与x 之间的函数关系(两条射线)如图所示,回答下列问题: (1)分别写出y1、y2与x的函数关系式? (2)每月行驶的路程在什么范围内,租国营出租车公司的车合算?在什么范 围内租个体车主的车合算? (3)每月行驶的路程是多少千米时,租两家车的费用相同? (4)如果这个单位估计每月行驶的路程为2300米,那么这个单位租哪家的车 y(元) 合算?
3000 2500 2000
1000
O
500
1000
1500
2000
ห้องสมุดไป่ตู้x(千米)
建立数学模型
实 际 问 题 与 一 元 一 次 不 等 式 组
实际问题 符号表达
1.关键语句
2.用代数式表示各过程量
计算问题
3.解不等式的基本方法
( )
本节课的心得笔记
一元一次不等式的解题步骤: 1.去分母
实际问题 注意: 与一元一 符号表达 3.移项 次不等式 不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 计算问题 (组 ) 实际问题
例1、已知实数a、b、c在数轴上对应的点如图所示,则下列式中正确的是( (A)cb>ab (B)ac>ab (C)ac>bc (D)c+b>a+b
跟踪练习: 1、若m<n,则下列各式中正确的是( ) A. m-3>n-3 B. 3m>3n C. -3m>-3n D.
北师大版八年级数学下册第二章6 第2课时 一元一次不等式组的解法(2)及应用

B x<2
C
D
-1<x<2 无解
③
x≥-1, A x<2; x≥-1
④
x<-1, x≥2;
A x<-1
B x<2
B x≥2
C
D
-1≤x<2 无解
C
D
-1<x≤2 无解
2 一元一次不等式组的应用
例4 用若干辆载重量为 8 t 的汽车运一批货物,若每
辆汽车只装 4 t ,则剩下 20 t 货物;若每辆汽车装满
8 t,则最后一辆汽车不满也不空. 请你算一算:有多
少辆汽车运这批货物?
解:设有 x 辆汽车,则这批货物共有 (4x 4x
20<8x, 20>8(x 1).
解得
5<x<7.
因为 x 只能取整数,所以 x=6,即有 6 辆汽车运这批 货物.
针对训练 3. 某校今年冬季烧煤取暖时间为 4 个月.如果每月比计划 多烧 5 吨煤,那么取暖用煤量将超过 100 吨;如果每月 比计划少烧 5 吨煤,那么取暖用煤总量不足 68 吨. 若设 该校计划每月烧煤 x 吨,求 x 的取值范围. 解:根据题意,得 4( x+5 )>100, ①
第2课时 一元一次不等式组的解法(2) 及应用
情景导入
问题:在什么条件下,长度为 3 cm , 7 cm , x cm 的三条线段可以围成一个三角形?
讨论:你和同伴所列的不等式组一样吗?解集呢?
与同伴交流.
利用三角形三边关系可知: x >7-3, x <7+3 .
x >4 , x <10 .
所以,x 的取值范围是 4<x<10.
不存在
x<2
x> 6
并不是每一个不 等式组都有解
01234567
2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。
②能根据条件列出不等式。
③能用实际生活背景和数学背景解释简单不等式的意义。
2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。
教学重点:①通过探寻实际问题中的不等式关系,认识不等式。
②根据实际问题建立合理的不等关系。
教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。
设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。
某树栽种时的树围为6cm,以后树围每年增加约3cm。
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
北师大版八年级数学下册《一元一次不等式(第2课时)》精品教案

《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组2 不等式的基本性质

新知一览
不等关系 不等式的基本性质 不等式的解集 一元一次不等式 一元一次不等式与
一次函数 一元一次不等式组
八年级下册数学(北师版)
第二章 一元一次不等式与 一元一次不等式组
2.2 不等式的基本性质
复习导入 还记得等式的基本性质吗? 等式的基本性质1:在等式两边都加上 (或减去) 同一
(2) 根据不等式基本性质 3,两边都除以 -2,得 x< 3. 2
针对训练
1. 将下列不等式化成“x>a”,“x<a”的形式.
(1) x - 7<8;
(2) 3x<2x - 3.
解:(1) 根据不等式的基本性质 1,两边都加上 7,得
x - 7 + 7<8 + 7,
即
x<15.
(2) 根据不等式的基本性质 1,两边都减去 2x ,得
得 4 l2 >l2;
π
不等式的两边都除以 l2 ,由不等式基本性质 2,
得 4 >1.
π
因为上式恒成立,所以
l2 > l2
也恒成立.
4π 16
2 利用不等式的性质把不等式化成 x>a、x<a 的形式
例 将下列不等式化成“x>a”,“x<a”的形式.
(1) x - 5>-1;
(2) -2x>3.
解:(1) 根据不等式基本性质 1,两边都加 5,得 x>-1 + 5, 即 x>4.
(1) 5>3 + x; 解:x<2. (2) 2x<x + 6. 解:x<6.
(5) 2a + 3 _>___ 2b + 3; 不等式的性质 1,2
(6) (m2 + 1)a _>___ (m2 + 1)b (m 为常数) 不等式的性质 2
北师大版数学八下第一章一元一次不等式和一元一次不等式组复习与回顾(练习题)
第二章《一元一次不等式和一元一次不等式组》测试题班级 姓名一、选择题(每小题3分,共30分)1.已知b a <,下列四个不等式中不正确的是( )(A)b a 44< (B)b a 44-<- (C)44+<+b a (D)0<-b a2.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A 、x ≥-1B 、x >1C 、-3<x ≤-1D 、x >-33.如图,天平右盘中每个砝码的重量都是1g ,自然图中显示出某药品A 重量的范围是( )(A)大于2g (B)小于3g (C)大于2g 且小于3g (D)大于2g 或小于3g4.三个连续自然数的和小于11,这样的自然数组共有( )组A .1B .2C .3D .45.不等式2x -1≥3x -5的正整数解的个数为( )(A)1个 (B)2个 (C)3个 (D)4个6.如果不等式()11->-a x a 的解集为1<x ,则a 必须满足( )(A)1>a (B)0<a (C)1<a (D)1.-a7.一次函数323+-=x y 的图象如图所示,当-3<y <3时,x 的 取值范围是( )A 、x >4B 、0<x <2C 、0<x <4D 、2<x <48.如果不等式组⎩⎨⎧>-<+n x x x 737的解集是4>x ,则n 的取值范围是( )A 、4≥nB 、4≤nC 、4=nD 、4<n9.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )折A.6B.7C.8D.910.若方程组⎩⎨⎧=++=+3313y x k y x 的解x ,y 满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-4二、填空题(每小题3分,共15分)11.不等式2x -1<3的非负整数解是 .12、若一次函数y =2x -6,当x _____时,y >0。
八年级下册数学目录
第一章证明(二)
1、等腰三角形
2、直角三角形
3、线段的垂直平分线
4、角平分线
回顾与思考复习题
第二章一元一次不等式与一元一次不等式组
1、不等关系
2、不等式的基本性质
3、不等式的解集
4、一元一次不等式
5、一元一次不等式与一次函数
6、一元一次不等式组
回顾与思考复习题
第三章图形的平移与旋转
1、图形的平移
2、图形的旋转
3、中心对称
4、简单的图案设计
回顾与思考复习题
第四章因式分解
1、因式分解
2、提公因式法
3、运用公式法
回顾与思考复习题
第五章分式
1、认识分式
2、分式的乘除法
3、分式的加减法
4、分式方程
回顾与思考复习题
第六章平行四边形
1、平行四边形的性质
2、平行四边形的判定
3、三角形的中位线
4、多边形的内角和与外角和
回顾与思考复习题
综合与实践
△一元一次不等式与一元一次方程、一次函数的实际应用
△平面图形的镶嵌
总复习。
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
北师大版八年级数学下册第二章2.4第1课一元一次不等式的解法(2)
合并同类项得:-x>5
合并同类项得:-x=5
两边都除以-1得:x<-5
两边都除以-1得:x=-5
解不等式 2x 5 3x 2 2,并将其解集表示在数轴上. 64
解:去分母:2(2x-5)≤3(3x+2)-24 去括号:4x-15≤9x+9-24 移项:4x-9x≤9-24+10 合并同类项:-5x≤-5 系数化为1:x≥1 解集表示如下:
类型二:已知解集求字母系数的取值范围
若关于x的不等式(m+1)x<m+1的解集是x<1,
则m满足的条件是__m__>__-___1
解:不等式两边同除以(m+1)时,不等号的方向不变, 根据不等式性质知(m+1)为正数, 即m+1>0, 解得m>-1
类型二:已知解集求字母系数的取值范围
已知不等式 3x-a≤0 的正整数解恰是1,2,3,则a 的取值范围
∴最大正整数x=2
5.
已知方程组3x+x+3yy==11+-3mm
①, ② 的解满足 x+y>0,
求 m 的取值范围.
解:由①+②得:(3x+y)+(x+3y)=(1+3m) +(1-m)
即4(x+y)=2+2m ∵x+y>0 ∴4(x+y)>0 ∴2+2m>0 ∴m>-1
6. 若关于 x 的方程(x-2)+3k=x+3 k的解是非负数,则 k
2.4 一元一次不等式
第2课时 一元一次不等式的解法(二)
复习回顾
1、不等式的性质:
不等式的性质1:不等式两边同时加上或减去同一个数(式),不等号的方向 不变;
不等式的性质2:不等式两边同时乘以或除以一个正数,不等号的方向不变; 不等式的性质3:不等式两边同时乘以或除以一个负数,不等号的方要改变。
是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八下第二章一元一次不等式回顾与思考一、课标与教材:课标要求:内容目标:(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。
(2)能解数字系数的一元一次不等式,并能在数轴上表示出解集。
会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
能力目标:知识技能:体验从具体情境中抽象出数学符号的过程,理解不等式;掌握必要的运算技能;探索具体问题中的数量关系和变化规律,掌握用不等式进行表述的方法。
数学思考:通过用不等式表述数量关系的过程,体会模型的思想,建立符号意识;问题解决:初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
情感态度:在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。
核心概念:本章应当关注学生体会模型思想,积累建立不等式模型解决简单问题的经验。
对于一元一次不等式的一般形式ax+b>0或ax+b<0(a≠0)学生应有所认识。
通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系,发展学生对数学的综合认识,建立数学学科内部知识之间的联系,完善学生的认知结构并运用这种联系解决简单的实际问题,发展学生的应用意识。
教材分析:教科书首先通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集以及不等式的概念。
然后具体研究一元一次不等式的解、解集、解集的数轴表示,一元一次不等式的解法,以及一元一次不等式的简单应用,通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系。
最后研究一元一次不等式组的解、解集、一元一次不等式组的解法以及一元一次不等式组的简单应用。
本节课通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力.数学思想方法:理解不等式(组)的解及解集的含义,会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组,并会用数轴确定由两个一元一次不等式组成的不等式组的解集,初步体会数形结合的思想。
教学重点:探索不等式的基本性质;解一元一次不等式(组);一元一次不等式、一元一次方程和一次函数的内在联系,发展学生对数学的综合认识,建立数学学科内部知识之间的联系,完善学生的认知结构并运用这种联系解决简单的实际问题,发展学生的应用意识。
教学难点:应用不等式的基本性质进行不等式的变化;不等式(组)解集的理解及在数轴上表示;一元一次不等式、一元一次方程和一次函数的内在联系的理解及应用。
二、学情分析(一)学生已经知道的:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系. 经历探索、发现不等关系的过程学习解决一些简单的实际问题.学生能自己解决的:能用自己喜欢的方式梳理本章的知识脉络,并通过交流合作选择更合适的方式整理知识结构,形成知识体系。
需要教师指导解决的:本章知识的综合应用。
(二)大多数学生:能熟练掌握不等式的基本性质,并利用性质做出正确判断;能熟练解不等式(组);会用不等式模型解决简单的实际问题;能用不等式的知识解决函数问题。
(三)学困生:能熟练解简单的不等式(组)。
稍复杂的不等式(组)还常常出错。
帮助分析出错的原因,加强训练是关键。
三、教学目标:1.掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集.2.能够用一元一次不等式解决一些简单的实际问题.3.体会不等式、函数、方程之间的联系.4.通过梳理本章内容,进一步体会模型思想及类比的思想方法.创新支点:鼓励合作学习,引导学生从不同的角度思考问题、解决问题,发展学生个性,使每个学生都能体会学习数学的价值,增进学生对数学的理解和学好数学的信心.四、教学评价:小组学习,课堂测试五、教学方法与媒体引导发现法,以小组合作为主,结合利用学案六、教学过程(一)构建动场:用自己喜欢的方式梳理本章知识结构,小组展示交流,本章的知识联系图(二)自主学习、合作探究知识点(一):不等式的相关概念及性质1.不等式的有关概念(1)不等式:用符号“<”或“>”表示大小关系的式子,叫做不等式.(2)不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.(3)解不等式:求不等式的解集的过程叫做解不等式. 2.不等式的基本性质(1)不等式两边都加上(或减去)同一个数(或整式),不等号的方向不变,即若a <b ,则a +c <b +c (或a -c <b -c ).(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变,即若a <b ,且c >0,则ac <bc ⎝ ⎛⎭⎪⎫或a c <b c .(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变,即若a <b ,且c <0,则ac >bc ⎝ ⎛⎭⎪⎫或a c >b c .例题讲解:例1、已知“①x+y=1;②x >y ;③x+2y ;④x 2—y ≥1;⑤x <0”属于不等式的有( ).A.2个B. 3个C.4个D. 5个 例2、如果a >b,那么下列不等式中不成立的是( )A . a ―3>b ―3B .3a >3bC .―3a >―3bD .―a <―b例3、根据图1和图2所示,对a b c ,,三种物体的重量判断不正确的是( )A. a c <B.a b <C. a c >D.b c <例4、当a 时,不等式(a —1)x >1的解集是x <11-a .针对性练习:1、x 与3的和不小于6,用不等式表示为 。
2、如图,数轴上A ,B ,C 三点表示的数分别为a ,b ,c ,则它们的大小关系( )A .a>b>c B.b>c>a C. c>a>b D.b>a>c图1图23、下列不等式一定成立的是( )A.5a >4aB.x +2<x +3C.-a >-2aD.aa 24> 知识点(二):不等式(组)的解集1.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式.2.解一元一次不等式的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.3.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫这个一元一次不等式组的解集. 5.一元一次不等式组解集的确定方法: 若a <b ,则有: (1)⎩⎨⎧ x<a ,x<b 的解集是x <a ,即“同小取小”.(2)⎩⎨⎧ x>a ,x>b 的解集是x >b ,即“同大取大”.(3)⎩⎨⎧ x>a ,x<b 的解集是a <x <b ,即“大小小大中间夹”.(4)⎩⎨⎧x<a ,x>b的解集是空集,即“大大小小无解答”.例题讲解:例1、 不等式260x ->的解集在数轴上表示正确的是( )例2、 如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )ABCDA .x <4 B.x <2 C. 2<x <4 D.x >2例3、 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ) A. 0 B.-3 C. -2 D.-1例4、不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个 围是( ). A .-5≤a ≤-143 B .-5≤a <-143 C .-5<a ≤-143 D .-5<a <-143针对性练习:1、不等式-3x +6>0的正整数有( )A.1个B.2个C.3个D.无数多个2.、在数轴上与原点的距离小于8的点对应的x 满足( )A.-8<x <8B.x <-8或x >8C.x <8D.x >8A.m <11B.m >11C.m ≤11D.m ≥113、如果10<<x ,则下列不等式成立的( ) A 、x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<214、不等式组⎩⎨⎧>->11x x 的解集是 ;不等式组⎩⎨⎧>-≤33x x 的解集是 。
知识点(三)解不等式或不等式组: 解不等式或不等式组的步骤: 例题讲解:例1、 解不等式组⎩⎪⎨⎪⎧1-2(x -1)≤5,3x -22<x +12,并把解集在数轴上表示出来.例2、关于x 的不等式组⎩⎪⎨⎪⎧x +152>x -3,2x +23<x +a 只有4个整数解,则a 的取值范针对性练习:1、若不等式组⎩⎨⎧>≤11x mx 无解,则m 的取值范围是( )2、(1)64-x ≥157-x (2))1(2)3(410-≤--x x(3) ⎩⎨⎧-<++≥-148112x x x x (4) ⎪⎩⎪⎨⎧-+≥+<+14134)2(3x x x x(5). ⎪⎩⎪⎨⎧-<-+≤-3314)3(265x x x x (6). 0415212<---x x(7).⎩⎨⎧-<-<-2235x x (8)⎪⎩⎪⎨⎧+<-≤+--)1(3151215312x x x x 知识点(四)一元一次不等式与一元一次函数例题讲解:例1:如右图,当0<y 时,自变量 x 的范围是( ) A 、2-<x B 、2->x C 、2<x D 、2>x例2:观察下列图像,可以得出不等式组 的 解集是( )⎩⎨⎧>+->+015.0013xxA.x < 31B.-31< x < 0 C.0< x < 2 D.-31< x < 2针对性练习:1、点A (-5,1y )、B (-2,2y )都在直线x y 2-=上,则1y 与2y 的关系是 。
2.要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( ) A.m >23,n >-31 B.m >3,n >-3 C.m <3,n <-1 D.m <3,n >-31 3、如图所示,根据图中信息。
(1)你能写出m 、n 的值吗? (2)你能写出出P 点的坐标吗? (3)当x 为何值时,y 1>y 2?知识点(五):不等式(组)的应用例题讲解:某家电商场计划用32 400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元? 购买的这10辆车每日都可租出,要使这10 辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案? 针对性练习:1、某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环) A 、5 B 、6 C 、7 D 、82、现有150吨泥沙需要搬运,搬运的货车每辆的承载量为4吨,则至少需要_______辆货车才能把这些泥沙一次性搬运完毕.3、校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为2400元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?(三)综合建模:通过本章复习,你有哪些收获?解决了哪些疑惑?还存在哪些问题?综合训练:1.不等式3x -7<3+x 的正整数解有( ).A .1个B .2个C .3个D .4个2.不等式组⎩⎪⎨⎪⎧32x +1>x -12,3-x ≥2的解集在数轴上表示正确的是( ).3.(2011山东日照)若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( ).A .1<a ≤7B .a ≤7C .a <1或a ≥7D .a =74.(2011四川眉山)关于x 的不等式3x -a ≤0,只有两个正整数解,则a 的取值范围是__________.5.现用甲、乙两种运输车将46吨物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( ).A .4辆B .5辆C .6辆D .7辆6.关于x 的不等式-2x +a ≤2的解集如图所示,那么a 的值是( ).A .-4B .-2C .0D .27.如果不等式组⎩⎪⎨⎪⎧x 2+a ≥2,2x -b <3的解集是0≤x <1,那么a +b 的值为__________.8.如图是一次函数y =kx +b 的图象,则关于x 的不等式kx +b >0的解集为__________.9.已知方程组⎩⎨⎧3x +y =k +1, ①x +3y =3 ②的解为x 、y ,且2<k <4,则x -y 的取值范围是__________.10.已知关于x ,y 的方程组⎩⎨⎧x +y =m +2,4x +5y =6m +3的解x ,y 都是正数,求m 的取值范围.11.洞庭实验学校准备在“五一”期间组织部分教师到张家界旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠;而乙旅行社是免去一位带队老师的费用,其余的八折优惠.(1)求人数为多少时,两家旅行社的收费相同?(教师在10人以上)(2)请你通过计算说明:旅游人数在什么范围时选择甲旅行社费用较少?旅游人数在什么范围时选择乙旅行社的费用较少?12. 画出函数y=3x+12的图象,并回答下列问题:(1)当x 为什么值时,y >0?(2)如果这个函数y 的值满足-6≤y ≤6,求相应的x 的取值范围.13、已知方程组⎩⎨⎧=+-=+2212y x m y x 的解x 、y 满足x+y >0,求m 的取值范围.(主备人:董家中学 马俊红)。