大学物理3章作业

合集下载

大学物理3章答案-7页精选文档

大学物理3章答案-7页精选文档

第3章 能量定理和守恒定律3-5一圆锥摆的摆球在水平面上作匀速圆周运动。

已知摆球质量为m ,圆半径为R ,摆球速率为υ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大小为多少?解:如3-5题图所示,一周内作用在摆球上重力冲量的大小为 3-6用棒打击质量为0.3Kg 、速率为20m/s 的水平飞来的球,球飞到竖直上方10 m 的高度。

求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力。

解:设球的初速度为1υ,球与棒碰撞后球获得竖直向上的速度为2υ,球与棒碰撞后球上升的最大高度为h ,如3-6题图所示,因球飞到竖直上方过程中,只有重力作功,由机械能守恒定律得 由冲量的定义可得棒给予球的冲量为 其冲量大小为 球受到的平均冲力为t F I ⋅=__()N tIF 366__==3-7质量为M 的人,手里拿着一个质量为m 的球,此人用与水平线成θ角的速度0υ向前跳去。

当他达到最高点时,将物体以相对人的速度μ水平向后抛出,求由于物体的抛出,跳的距离增加了多少?(假设人可视为质点) 解:如3-7题图所示,把人与物视为一系统,当人跳跃到最高点处,在向后抛物的过程中,满足动量守恒,故有式中υ为人抛物后相对地面的水平速率,υμ-为抛出物对地面的水平速率,得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人由于向后抛出物体,在水平方向上增加的跳跃后距离为 3-8 一质量为m =2kg 的物体按()m t x 2213+=的规律作直线运动,求当物体由m x 21=运动到m x 62=时,外力做的功。

解:由2213+=t x ,可得 232dx t dt υ== 当物体在m x 21=处时,可得其时间、速度分别为()2113002m s υ-=⨯=⋅ (1)当物体在m x 62=处时,可得其时间、速度分别为()2123262m s υ-=⨯=⋅ (2)则由(1)、(2)式得外力做的功 3-9求把水从面积为250m 的地下室中抽到街道上来所需作的功。

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

大学物理第3章习题解答

大学物理第3章习题解答

第三章 刚体的定轴转动3-1掷铁饼运动员手持铁饼转动1.25圈后松手,此刻铁饼的速度值达到125-⋅=s m v 。

设转动时铁饼沿半径为R=1.0 m 的圆周运动并且均匀加速。

求: (1)铁饼离手时的角速度; (2)铁饼的角加速度;(3)铁饼在手中加速的时间(把铁饼视为质点)。

解:(1)铁饼离手时的角速度为(rad/s)250125===.//R v ω(2)铁饼的角加速度为)(rad/s 83925122252222..=⨯⨯==πθωα(3)铁饼在手中加速的时间为(s)628025251222..=⨯⨯==πωθt3-2一汽车发动机的转速在7.0s 内由2001min -⋅r 均匀地增加到3001min -⋅r 。

(1)求在这段时间内的初角速度和末角速度以及角加速度; (2)求这段时间内转过的角度和圈数;(3)发动机轴上装有一半径为r=0.2m 的飞轮,求它的边缘上一点在第7.0s 末的切向加速度、法向加速度和总加速度。

解:(1)初角速度为(rad/s)9206020020./=⨯=πω末角速度为(rad/s)3146030002=⨯=/πω角加速度为)(rad/s 9410792031420...=-=-=tωωα(2)转过的角度为)186(rad 1017172314920230圈=⨯=⨯+=+=..t ωωθ(3)切向加速度为)(m/s 388209412t ...=⨯==R a α法向加速度为)(m /s 10971203142422n ⨯=⨯==..R a ω总加速度为)(m/s 10971)10971(378242422n 2t ⨯=⨯+=+=...a a a总加速度与切向的夹角为9589378101.97arctan arctan 4t n '︒=⨯==.a a θ3-3 如图所示,在边长为a 的六边形顶点上分别固定有质量都是m 的6个小球(小球的直径a d <<)。

第三章 大学物理作业答案

第三章 大学物理作业答案


所以质点下落时一部分的重力势能转化为弹性势 能并且相对于同一个 弹性势能大于重力势能, 所以 v比悬线为非弹性是的速度要小
第四次作业 习题答案
4.4. 一半径为R的铅制球体中有一位于球体表面与 中心之间的空洞,如图所示. 设铅球未挖空前的质 量为M",试求这一中空的铅球与球外一质量为M的 质点之间的引力;该质点位于铅球和空洞的连心线 上,与铅球的中心距离为D.
习题答案
2.2一自由落体在最后1S内通过了其全程距离的 一半. 试求出该落体下落的距离及所用时间
设该落体下落的距离为h,所用的时间为t 由题意可知


所以
2.3一钢球从一建筑物的屋顶由静止开始自由下 落. 建筑物内一观察者站在高度为1.3 M的窗前 ,发现钢球从窗的最上端落至最下端用了1/8S. 钢球继续下落,2.0 S后,与水平地面发生完全 弹 性碰撞并上升至窗的最下端,试求该建筑物 的高度
4.5 得
周 期
设 150 0圈 后 损 失 的 机
4.5
结合(A)中公式可求得 D. 平均周长
E. 平均阻力
F. 不守恒, 变化2%
4.7. 考虑两个具有相等质量M的卫星A和B, 它 们在相同的轨道R上环绕地球运动, 但是方向相 反,故它们在某个时候将发生碰撞(如图). (A)用 G、M 、M和R,求出碰撞前两个卫星及地球的 总 能量EA + EB;(B)若碰撞是非弹性的,并且碰撞 碎片依旧聚集在一起(即质量变为2M),求碰撞后 的总机械能;(C)描述碰撞后碎片的运动. 由题意可知
由题意可知
所以
因为
,
,
所以
, 质点在垂直于F方向上的
当x=l 时 质 点 在 垂加直速于度F方向上的加速度应该是无限

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
两个质点的情况设系统内有两个质点1和2质量分别为m和m作用在质点上的外力分别为12f和f而两质点之间的相互作用力为f1212和f根据动量定理在ttt时间内2121两质点的动量的增量分别为t2??????ffdtmv?mv?11211110t1t2??????ffdtmv?mv?22122220t1把上面两式相加得t2t2????????ffdtffdt?12?1221t1t1????mv?mv?mv?mv1122110220??考虑牛顿第三定律f12?f21t2??得??????ffdtmv?mv?mv?mv?121122110220t1即
F外 dt=dP
力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化 0
因而
Fx 2mv cos / t
Fy 0
代入数据,得
Fx 2 0.2 6 cos 60 0 / 0.03 40 N
根据牛顿第三定律,球对墙壁的作用力为 40N,方向向左。 二、质点系的动量定理 1.两个质点的情况 设系统内有两个质点 1 和 2,质量分别 为 m1 和 m2,作用在质点上的外力分别为 F1 和 F2, 而两质点之间的相互作用力为 F12 和 F21,根据动量定理,在Δt=t2-t1 时间内, 两质点的动量的增量分别为
dv 1) F m dt dv 2) F m dt
F ma Fdt mdv dmv ——动量定理 dv dv dr 1 m mv mdr mv dv d mv 2 动能定理 dr dt dr 2

大学物理学3章习题解答

大学物理学3章习题解答

3章79页]3-4 质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图3-3所示。

若小球与桌面作用的时间为δt ,求小球对桌面的平均冲力。

解 设桌面对小球的平均冲力为f ,并建立如图所示的坐标系,根据动量定理,对于小球可列出,.由第一个方程式可以求得,由第二个方程式可以求得.根据牛顿第三定律,小球对桌面的平均冲力为,负号表示小球对桌面的平均冲力沿y 轴的负方向。

.3-7 求一个半径为r 的半圆形均匀薄板的质心。

解 将坐标原点取在半圆形薄板的圆心上,并建立如图3-5所示的坐标系。

在这种情况下,质心c 必定处于y 轴上,即,.质量元是取在y 处的长条,如图所示。

长条的宽度为d y ,长度为2x 。

根据圆方程,故有.如果薄板的质量密度为σ,则有图3-3 图3-5.令, 则,对上式作变量变换,并积分,得...3-10 如图3-9所示,一个质量为1.240 kg 的木块与一个处于平衡位置的轻弹簧的一端相接触,它们静止地处于光滑的水平桌面上。

一个质量为10.0 g 的子弹沿水平方向飞行并射进木块,受到子弹撞击的木块将弹簧压缩了2.0 cm 。

如果轻弹簧的劲度系数为2000 n ⋅m -1 ,求子弹撞击木块的速率。

解 设木块的质量为m ;子弹的质量为m ,速度为v ;碰撞后的共同速度为v 。

此类问题一般分两步处理:第一步是子弹与木块作完全非弹性碰撞,第二步是子弹在木块内以共同的速度压缩弹簧。

第一步遵从动量守恒,故有. (1)第二步是动能与弹力势能之间的转换,遵从机械能守恒,于是有. (2)有式(2)解得.将v 值代入式(1),就可求得子弹撞击木块的速率,为.3-11 质量为5.0 g 的子弹以500 m ⋅s -1 的速率沿水平方向射入静止放置在水平桌面上的质量为1245 g 的木块内。

木块受冲击后沿桌面滑动了510 cm 。

求木块与桌面之间的摩擦系数。

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章刚体力学
一.选择题
1. 刚体的转动惯量较大,则
(A) 该刚体的质量较大
(B) 该刚体转动的角速度较大
(C) 该刚体转动的角加速度较大
(D) 该刚体转动惯性较大
2.匀质细棒可绕通过其一端并与棒垂直的水平光滑轴在竖直面内转动,今使棒从水平位置开始自由下摆,在摆动到竖直位置的过程中,下述说法正确的是
(A) 角速度从大到小,角加速度从大到小
(B) 角速度从大到小,角加速度从小到大
(C) 角速度从小到大,角加速度从大到小
(D) 角速度从小到大,角加速度从小到大
3.几个力同时作用在一个有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体
(A) 必不会转动 (B) 转速必不变
(C) 转速必改变 (D) 转速可能变,也可能不变
4.半径均为R的匀质圆盘和圆环,质量都为m,都围绕通过圆心垂直于圆平面的轴转动,在相同外力矩作用下,获得的角加速度分别是、,则
(A) (B)
(C) (D) 无法确定
5. 两小球质量为m及2m,由长为的轻杆相连,系统绕通过杆中心垂直于杆的轴以恒定角速度转动,则系统的转动惯量和转动动能为
(A) ,
(B) ,
(C),
(D) ,
6. 质点作匀速率圆周运动时
(A) 它的动量不变,对圆心的角动量也不变
(B) 它的动量不变,对圆心的角动量不断变化
(C) 它的动量不断改变,对圆心的角动量不变
(D) 它的动量不断改变,对圆心的角动量也不断改变
7.人造地球卫星绕地球做椭圆运动(地球在椭圆一个焦点上),则卫星的
(A) 动量不守恒,角动量不守恒
(B) 动量不守恒,角动量守恒
(C) 动量守恒,角动量守恒
(D) 动量守恒,角动量不守恒
8.一转盘绕固定水平轴O匀速转动,沿同一水平直线从相反方
向射入两颗质量相同、速率相等的子弹,并留于盘中,则子弹射入
后的瞬时转盘的角速度
(A) 增大 (B) 减小
(C) 不变 (D) 无法确定
三.填空题
9. 一飞轮做匀减速运动,在5s内角速度由减至,则角加速度为__________,该飞轮在这5s内总共转过了__________圈.
10. 如图,长为l质量为m的匀质细杆,绕端点轴O在竖直面内旋转,
今使杆从水平位置开始自由下摆,当杆与水平方向夹45o角时,所受重力矩为_____
______,角加速度为___________.
11. 质量为m的小球以速率v做匀速圆周运动,圆周半径为R,此球相对圆心的转动惯量
为______________,转动动能为______________,角动量为____________.
12. 滑冰运动员绕自身竖直轴做旋转动作,当她收缩四肢时,转速会_____增大_________,这一过程运动员______角动量_______守恒.
13.飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J0,另一转动惯量为3J0的静止飞轮突然和上述转动的飞轮啮合在一起,它们绕同一转轴转动,则啮合后整个系统的角速度为_______________.
三.计算题
14.如图所示,圆柱形定滑轮质量为M,半径为R,转动惯量为,
一质量为m的物体与绕在滑轮上的轻绳相连,摩擦不计. 求物体由静止下落
过程中,下落速度与时间的关系.
解:设物体下落加速度为a,滑轮转动角加速度为β.
由牛顿第二定律、转动定律列方程如下
三式联立,可求得
下落速度与时间的关系为
15. 如图,两重物质量分别为m1和m2,且,定滑轮的半径
为r,对转轴的转动惯量为J,轻绳与滑轮间无滑动,不计摩擦,设开
始时系统静止 . 求t时刻滑轮的角加速度和角速度.
解:设物体加速度为a,滑轮转动角加速度为β.
由牛顿第二定律、转动定律列方程如下
解得:
16. 如图所示,一质量为m的小球系于轻绳的一端,以角速度
ω
在光滑水平面作半径为r0的圆周运动. 若绳的另一端穿过中
心小孔后受一铅直向下的拉力作用,使小球做圆周运动的半径变
为r0/2,试求:(1)小球此时的速率;(2)拉力在此过程中做
的功.
解:(1)小球所受重力、支持力、及绳的拉力对通过中心且与平面垂直的轴的力矩均为零,故小球对该轴的角动量守恒.
设小球圆周运动的半径变为r0/2时,角速度为ω,则
得,此时小球的速率为
(2)拉力做的功等于小球动能增量
17. 如图所示,质量为m、长为l的细棒,可绕通过棒中心且与棒垂直的竖直光滑轴O在水平面内自由转动,转动惯量,开始时棒静止,现有一质量也为m的子弹,在水平面内以速度v0垂直射入棒端.(1)若子弹嵌于棒中,求棒获得的角速度;(2)若子弹沿穿入方向穿出,且穿出时速度减半,再求棒的角速度.
解:(1)子弹和细棒系统角动量守恒,碰前棒静止,子弹对轴的角动量为
碰后子弹与棒系统角动量为
(2)碰后子弹与棒角动量之和为
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档